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1 Abstract

Computational methods in biology can infer large molecular interaction networks from multiple data sources

and at different resolutions, creating unprecedented opportunities to explore the mechanisms driving complex

biological phenomena. Networks can be built to represent distinct conditions and compared to uncover graph-

level differences—such as when comparing patterns of gene-gene interactions that change between biological

states. Given the importance of the graph comparison problem, there is a clear and growing need for robust

and scalable methods that can identify meaningful differences. We introduce node2vec2rank (n2v2r), a

method for graph differential analysis that ranks nodes according to the disparities of their representations

in joint latent embedding spaces. Improving upon previous bag-of-features approaches, we take advantage

of recent advances in machine learning and statistics to compare graphs in higher-order structures and in a

data-driven manner. Formulated as a multi-layer spectral embedding algorithm, n2v2r is computationally

efficient, incorporates stability as a key feature, and can provably identify the correct ranking of differences

between graphs in an overall procedure that adheres to veridical data science principles. By better adapting to

the data, node2vec2rank clearly outperformed the commonly used node degree in finding complex differences

in simulated data. In the real-world applications of breast cancer subtype characterization, analysis of cell

cycle in single-cell data, and searching for sex differences in lung adenocarcinoma, node2vec2rank found

meaningful biological differences enabling the hypothesis generation for therapeutic candidates. Software

and analysis pipelines implementing n2v2r and used for the analyses presented here are publicly available.

2 Introduction

Advances in sequencing technologies and computational biology now enable graph representations for a

multitude of molecular interactions, including gene regulation and epigenetics. These biological networks
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can be inferred by integrating multiple data modalities to create increasingly accurate and fine-grain de-

scriptions of complex biological processes (Silverbush et al., 2019; Schulte-Sasse et al., 2021), leading to

unprecedented opportunities to better understand complex disease etiologies and search for potential thera-

peutic targets (Reel et al., 2021; Ruiz et al., 2021). Given networks representing different biological contexts

and conditions, graph differential analysis aims to identify the higher-order mechanisms that differentiate

them, such as regulatory differences between healthy and diseased populations, or tracking the evolution

and differentiation of biological processes and pathologies.

Differential analysis is a major component of well-established data science pipelines for tabular data such

as gene expression. There, generalized linear model tools like edgeR (Robinson et al., 2010), DESeq2 (Love

et al., 2014), and limma (Ritchie et al., 2015), have been used to create differential rankings of genes between

groups that are then checked against databases of biological pathways (Ashburner et al., 2000; Kanehisa and

Goto, 2000) to assign domain-relevant interpretations (Subramanian et al., 2005). An equivalent paradigm

for graphs would complement these pipelines to reveal differences in higher-order gene interactions such as

communities and cascades, including genes that, while not showing differential expression, are regulated

differently and exhibit functional variations between biological states (Lopes-Ramos et al., 2020; Weighill

et al., 2021; Saha et al., 2023).

A natural way to extend differential analysis pipelines with graph comparison is to infer a network for

each biological state and then rank nodes based on differences in their summary statistics. A common choice

for such a statistic is the node degree corresponding to the sum of all edge weights of a node, which is an

interpretable proxy for differences in node connectivity. This bag-of-features approach, however, does not

fully use higher-order graph structures like communities and cascades. For example, the degree is oblivious

to fundamental operations such as adding and removing neighbors while preserving the number of edges.

In contrast to the bag-of-features paradigm, representation learning can infer node representations and

relevant summaries that capture higher-order graph structures in a data-driven manner. Representation-

based methods such as statistical modeling (Hoff et al., 2002; Rubin-Delanchy et al., 2022; Arroyo et al.,

2021; Gallagher et al., 2021; Levin et al., 2019) and graph machine learning (Grover and Leskovec, 2016;

Hamilton et al., 2017; Perozzi et al., 2014; Veličković et al., 2017) often exhibit better performance in

graph tasks including node clustering or classification and link prediction without having to choose the node

statistics explicitly.

Taking advantage of node representation learning to enable graph differential analysis in scientific ap-

plications, while well-motivated, poses many challenges. Comparing multiple graphs assigns the problem

to the less studied multi-layer graph analysis regime (Kivelä et al., 2014), where one must generate a joint

latent space in which nodes from different graphs can be correctly and meaningfully contrasted. In addition,

a mapping from node embeddings to graph differences is essential to quantify node-specific discrepancies

between networks. In the case of a single graph, concepts such as communities are characterized by affin-

ity and structural equivalence that translate to proximity in the latent space. However, graph differences

between multiple graphs are less well characterized, and the latent vector arithmetic is less well defined.

One additional feature—and challenge—of graphs is that they are known to exhibit a no-free-lunch behavior

where many “truths” can be conveyed simultaneously (Peel et al., 2017; Priebe et al., 2019), implying that

multiple types of meaningful differences may be detectable and should be accounted for in graph comparison.

Finally, the overall procedure of graph comparison should be computationally efficient, trustworthy, and

amenable to easy integration with established computational pipelines. For example, some embedding algo-

rithms based on neural networks or random walks are unstable when generating representations (Schumacher

et al., 2020; Wang et al., 2022), and little is known about their theoretical properties such as convergence.

Further, computationally efficient procedures not only facilitate the analysis of multiple large graphs but

also support the creation of ensembles consistent with veridical data science stability principles (Yu and

Kumbier, 2020).

Our solution to the representation-based graph differential analysis task is to rank the nodes based on

their disparities in the multi-layer latent space. This simple scheme resembles the clarity of bag-of-feature

methods that compare node summary statistics but instead uses data-driven statistics and vector arithmetic

that capture higher-order graph structures. As a multi-layer node embedding algorithm, we consider the

unfolded adjacency spectral embedding (UASE) with singular value decomposition (Gallagher et al., 2021)
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Figure 1: Illustration of node2vec2rank and an analysis pipeline for a case-control study with two graphs.

From the biological data, two gene regulatory networks are computationally inferred and subsequently con-

trasted using n2v2r to identify their differences. Node2vec2rank uses a multi-layer node embedding algorithm

to create two sets of vector representations for all genes (depicted here in two dimensions). For every gene,

n2v2r computes the disparity between its two representations, which is then used to rank the genes in de-

scending order of disparities. The process is repeated multiple times, producing different embedding spaces

(with dimensionalities of 2, 4, 8, 16, . . . ) and ranking based on different distance metrics (cosine, Euclidean,

etc.). The multiple rankings are aggregated to produce a final stable ranking. The output is readily available

to be used in downstream applications including visualizing the largest differences and performing gene set

enrichment analysis.

that allows us to efficiently analyze multiple large graphs and to establish theoretical guarantees regarding

the correct ranking of differences. For stability, we aggregate the rankings obtained from generating multiple

latent spaces by varying the number of dimensions and considering different distance metrics to measure

node disparity. The ranked output is then readily available for downstream applications such as gene set

enrichment analysis and visualization of the largest differences.

In summary, our contributions are as follows. We developed node2vec2rank (n2v2r), a computationally

efficient and stable graph differential method that uses the rich representation power of graphs based on

multi-layer spectral embedding. We formally prove identifiability for the correct ranking of node differences

in weighted graphs and two distance metrics. Finally, we validate the performance with both single-cell and

bulk real-world data, with multiple network inference methods, different biological questions and applications,

and different downstream analysis tools. The Python code and data analysis notebooks are publicly available

at https://github.com/pmandros/n2v2r.

The Node2vec2rank Framework

We are interested in the problem of ranking nodes in unipartite graphs based on how much their “behavior”

changes between graphs as captured through the application of appropriate criteria. Given a set of K graphs

with a common set of n nodes, we denote their weighted adjacency matrices as A(k) ∈ Rn×n, such that A
(k)
ij

is the weight of edge (i, j) in graph k ∈ [K].

Under this formulation, the (weighted) node degree statistic, also known as connectivity, is defined as

D
(k)
i =

∑
j 6=i

A
(k)
ij , (1)

which for a pair of graphs A(1) and A(2) leads to the Degree Difference (DeDi) ranking

RD(A(1),A(2)) =
[
rD1 , r

D
2 , . . . , r

D
n

]
, (2)

with rDq being the node i with the q-th largest absolute degree difference |D(1)
i −D

(2)
i | between the two graphs.

The degree is a valid node summary statistic for graph comparison, given its interpretability, but it is unable
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to detect the more complex differences occurring at higher-order graph structures such as communities and

cascades. For example, consider a situation in which nodes change connectivity between graphs but maintain

their sum of edge weights (in Figure 2, we simulated such a scenario).

Differential Ranking based on Multi-Layer Node Embeddings

Contrary to bag-of-features approaches, node embedding algorithms infer high-dimensional node representa-

tions that can encode the higher-order graph structures in a data-driven manner. For a single graph, an em-

bedding function maps nodes to a point cloud in a latent space of d dimensions, such that b(A) = X ∈ Rn×d
where the embedding of node i is the vector corresponding to the row Xi. We perform graph differential

analysis by ranking nodes based on the disparity of their representations between graphs. We term this

framework node2vec2rank (n2v2r).

A naive implementation of n2v2r for two graphs would involve obtaining two node embeddings from two

separate applications of the embedding function, arriving at

Rb(A
(1),A(2)) =

[
rb1, r

b
2, . . . , r

b
n

]
, (3)

where rbq is the node i that has the q-th largest disparity d(X
(1)
i ,X

(2)
i ) and d is some distance metric. While

this formulation is straightforward, there is one crucial requirement for n2v2r to be meaningful, which is the

construction of a latent space that is provably common for all graphs—otherwise, any comparison would

be misleading. For example, the naive n2v2r on two gene regulatory networks would create two separate

embedding spaces that are not guaranteed to capture the same latent biology; the first latent dimension

of the first graph could correspond to a metabolic pathway, while the first latent dimension on the second

graph might correspond to a cell-signaling pathway.

This requirement is satisfied by multi-layer node embedding algorithms bM , such as statistical mod-

els (Gallagher et al., 2021) and fine-tuning and transfer learning techniques (Grover and Leskovec, 2016;

Dingwall and Potts, 2018), that given a set of graphs A = {A(1), . . . ,A(K)} with n nodes each, they create

a joint embedding space with K sets of n d-dimensional representations

bM (A) =
{

X(1), . . . ,X(K)
}
∈ Rn×d × · · · × Rn×d . (4)

Now given two graphs, A = {A(1),A(2)}, n2v2r ranks with

RbM
(A(1),A(2)) =

[
rbM
1 , rbM

2 , . . . , rbM
n

]
, (5)

where rbM
q is the node i that has the q-th largest disparity d(X

(1)
i ,X

(2)
i ) in the joint embedding space

generated by bM .

Ranking given Multiple Graphs

The ranking process can be naturally extended using vector arithmetic to account for applications with

K > 2 graphs, a situation that can occur when comparing multiple conditions or tracking the evolution of

a series of ordered graphs. In these instances, n2v2r first applies its multi-layer embedding algorithm and

then uses three comparison strategies to produce pairwise rankings. The one-vs-all strategy performs K

pairwise comparisons, comparing the embedding X(k) to the mean of the remaining embeddings such that

the ranking of node i between graph k ∈ [K] and the rest is a function of

d
(
X

(k)
i ,

1

K − 1

∑
` 6=k

X
(`)
i

)
. (6)

When an ordering for the graphs is available, the sequential strategy compares the embedding X(k) for

k ∈ [2,K] to the previous embedding X(k−1); an alternative one-vs-before strategy adopts a stricter notion
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of ordering (such as for longitudinal data) and compares the embedding X(k) with the mean of all previous

embeddings {X(1), . . . ,X(k−1)}

d
(
X

(k)
i ,

1

k − 1

k−1∑
`=1

X
(`)
i

)
. (7)

The former method highlights nodes with the largest transition between consecutive network states, while

the latter considers all previous graphs and focuses on unique differences for each graph in the ordered set.

Consensus and Stable Ranking

It should be noted that obtaining a “one true and meaningful” ranking is impossible in practice. One aspect

to consider is the complexity of the graphs as objects, as they can convey multiple truths depending on

the graph representation used (Priebe et al., 2019). Node ranking also depends on the choice of embed-

ding dimensionality and the disparity measure used, both of which can be non-trivial to set for real-world

data. These can be particularly problematic in Life Science applications where one wants to balance the pre-

dictability, computability, and stability of a method with the need to identify interpretable factors associated

with the various biological states under study (Yu and Kumbier, 2020).

In n2v2r, we address this by generating a diverse collection of rankings using the cross-product of different

choices for embedding dimensions and disparity functions. These rankings can then be aggregated into a

single stable consensus ranking. As an aggregate function, we use the Borda voting scheme that outputs

the mean rank of every node across all rankings. Note that the main requirement for enabling stability

given arbitrarily large graphs is computational efficiency, meaning that the individual applications of n2v2r

should be tractable. We present the n2v2r framework in Figure 1, where we simulated a case-control study

with two graphs.

Fitting Node2vec2rank with UASE

Reliable and effective tools for the analysis of complex scientific “big data” must be scalable with sound

theoretical performance. For graph differential analysis, we need guarantees that the method retrieves the

optimal ranking with mild assumptions and that the approach is scalable for multiple large graphs and

ensembles that enable stability. We achieve these by employing the unfolded adjacency spectral embedding

(UASE) as a multi-layer embedding algorithm (Gallagher et al., 2021), which we prove obtains the optimal

ranking under an appropriate statistical model for real-world weighted graphs.

Multi-Layer Latent Position Model

We assume there exists a latent space Z in which the latent position Z
(k)
i ∈ Z dictates how node i forms

edges in graph A(k). The weighted multi-layer latent position model assumes that the weight of an edge

(i, j) in A(k) depends only on the latent positions of nodes i, j. For all k ∈ [K] and i < j, we have

A
(k)
ij |Z

(k)
i ,Z

(k)
j

ind∼ H(Z
(k)
i ,Z

(k)
j ) , (8)

where H is a symmetric real-valued distribution function, H(Z1,Z2) = H(Z2,Z1) for all Z1,Z2 ∈ Z.

Under an approximate low-rank adjacency matrix assumption (see Appendix), valid for many real-world

networks (Udell and Townsend, 2019), there exists a map φk : Z → Rd representing the latent positions in

a d-dimensional space such that

Y
(k)
i = φk(Z

(k)
i ) . (9)

Under this assumption, this general model covers a range of graph types extending the weighted generalized

random dot product graph (Gallagher et al., 2023). For unweighted networks, H is a Bernoulli distribution

with some link probability function f(Z
(k)
i ,Z

(k)
j ), and the latent position model is a special case of the multi-

layer random dot product graph (Jones and Rubin-Delanchy, 2020; Gallagher et al., 2021). This includes

the stochastic block model as well as mixed membership and degree-corrected variants.
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Node2vec2rank with UASE

Given weighted adjacency matrices A(1), . . . ,A(K) ∈ Rn×n, we construct the unfolded adjacency matrix

using column concatenation

A =
(
A(1) | · · · | A(K)

)
∈ Rn×Kn . (10)

Given embedding dimension d, we compute the d-truncated singular value decomposition (SVD) of A ≈
UAΣAV>A, where UA,VA ∈ Rn×d are truncated left and right singular vectors, and ΣA ∈ Rd×d is the

diagonal matrix with the d largest singular values. Using row concatenation to the right singular vectors

corresponding to the K graphs, we have

VA = (V
(1)
A ; · · · ; V

(K)
A ) ∈ RKn×d , (11)

and the UASE for graph A(k) is defined by

Ŷ(k) =
(
V

(k)
A Σ

1/2
A

)>
∈ Rn×d . (12)

UASE is particularly attractive in our multi-layer setting as it offers longitudinal stability, meaning

that if a node has similar behavior in graphs A(k) and A(`), then the embeddings Ŷ
(k)
i and Ŷ

(`)
i will be

approximately equal (Gallagher et al., 2021). Moreover, SVD is a well understood, widely used, and scalable

algorithm with multiple implementations. Finally, as the UASE is derived from the SVD of the weighted

unfolded adjacency matrix representation, it is possible to derive statistical guarantees about the behavior

of the resulting embeddings. Towards this end, we contribute Theorems 1, 2, the proofs of which, together

with the necessary model assumptions, can be found in the Appendix.

Theorem 1 states that UASE Ŷ
(k)
i converges to the d-dimensional representation of the latent position

Y
(k)
i = φk(Z

(k)
i ) up to an orthogonal transformation, extending previous UASE results for multiple un-

weighted binary graphs (Gallagher et al., 2021; Jones and Rubin-Delanchy, 2020) and a single weighted

graph (Gallagher et al., 2023).

Theorem 1 (Uniform consistency of UASE). Under Assumptions 1, 2 and 3, there exists an orthogonal

matrix W ∈ O(d) such that, for all k ∈ [K],

max
i∈[n]

∥∥∥Ŷ(k)
i −Y

(k)
i W

∥∥∥→ 0 , (13)

with high probability as n→∞.

In the second part of n2v2r, we rank nodes based on node embedding disparities d(Ŷ
(k)
i , Ŷ

(`)
i ) which are

estimates of the latent position distances d(Y
(k)
i ,Y

(`)
i ). Theorem 1 shows that the latent position distance

estimate can only be consistent if the distance function is invariant up to orthogonal transformation, such

that for all W ∈ O(d), we have that

d(Y
(k)
i ,Y

(`)
i ) = d(Y

(k)
i W,Y

(`)
i W) . (14)

Theorem 2 shows that fitting n2v2r with UASE is consistent for the Euclidean and cosine distances, both

of which satisfy the invariance condition.

Theorem 2 (Uniform consistency of n2v2r). Under Assumptions 1, 2 and 3, for all k, ` ∈ [K],

max
i∈[n]

{
d
(
Ŷ

(k)
i , Ŷ

(`)
i

)
− d
(
Y

(k)
i ,Y

(`)
i

)}
→ 0 , (15)

with high probability as n→∞ for Euclidean distance, and cosine distance provided Y
(k)
i ,Y

(`)
i 6= 0.
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Figure 2: Recall violin plots for retrieving the nodes of the communities with the largest changes between two

graphs. The data follow a dynamic stochastic block model with six communities constructed such that the

community probabilities vary between the two graphs. The first row corresponds to degree-naive differences,

where we permute the probabilities of a community to simulate changing connections but not degree. The

second row corresponds to random differences, where we randomly change the probabilities of a community.

For each scenario, we generate 2000 pairs of graphs by randomly applying the interventions and adding

Gaussian noise. The number of nodes increases along the columns. The goal is to retrieve the nodes of the

intervened community. For a random subset of 100(5%) sampled graphs, we connect the corresponding recall

estimates for all methods. The solid and dotted lines in the violins correspond to the median and mean,

respectively. The three methods compared are the proposed Borda aggregated n2v2r b, the one-dimensional

n2v2r e1 with Euclidean distance, and the degree difference ranking DeDi.

Simulation Experiments

We assessed the ability of n2v2r to detect differences in networks generated with a known ground truth. We

explored network differences in two different regimes termed degree-naive and random. The first corresponds

to graph differences where the structure and connections can change, but the degrees of nodes vary little,

which is a key motivation for this work. In the second, we modeled random differences by allowing the

degrees to vary arbitrarily. For comparison, we considered the degree difference ranking (DeDi), n2v2r with

embedding dimension d = 1 and Euclidean distance as a baseline (n2v2r e1), as well as the resulting method

n2v2r with Borda aggregation (n2v2r b) for dimensionalities d = {4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24} with

Euclidean and cosine distances (aggregation over 22 different rankings). Note that the baseline n2v2r e1 can

be contrasted with DeDi to compare the performance of a one-dimensional bag-of-features approach against

learning a one-dimensional feature.

We simulated the differences by altering the probability matrices in a dynamic stochastic block model such

that the community probabilities vary between two graphs (see Methods). The task is to retrieve the nodes

of the community with the largest displacement in probability space. To cover a wide range of ratios, we

altered the number of communities in m ∈ {4, 6, 8, 10} and the number of nodes in n ∈ {50, 100, 500, 1000},
with the task becoming more challenging as the number of nodes decreases or as the number of communities

increases. For example, the combination m = 6 and n = 50 implies that there is an average of 8 nodes per

community. We sampled 2000 pairs of graphs for each combination of m,n, and graph difference regime and

generated violin plots for the mean recall in ranking the nodes of the community that changed the most

at the top. The results for m = 6 are shown in Figure 2 (results for all m and n are given in Appendix

Figures A1, A2).

In the first row of Figure 2 with the degree-naive networks, we observe that DeDi is unable to find the

target nodes as expected, the one-dimensional n2v2r has slightly better performance, and the aggregated
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n2v2r performs the best and exhibits the most stable performance, which improves with the number of nodes.

For the random-difference networks in the second row of Figure 2, all methods exhibit improved performance

since degree-naive is a harder case. We observe that the aggregated n2v2r has the best performance, while

the one-dimensional DeDi and n2v2r exhibit large variability, with n2v2r performing slightly better. Overall,

these results demonstrate that the statistical methods can indeed better adapt to the data, while a single

dimension performs poorly at capturing complex graph differences.

We also evaluated performance as a function of dimension, distance metric, and aggregation (Figures A3,

A4, A5, A6). We found that both Euclidean and cosine distances perform well, with Euclidean having an

advantage because the networks were generated as stochastic block models. Increasing the dimensionality

also improved performance in the random differences case, while that is not entirely true for the degree-naive

differences, where performance can decline due to overfitting, particularly for a small number of communities.

Biological Applications

To demonstrate the utility of node2vec2rank on real-world data, we performed graph differential analysis

using gene regulatory and correlation-based networks. We considered the three biological questions of char-

acterizing the differentiating processes of luminal A breast cancer subtype, studying cell-cycle transitions

in single-cell data, and searching for sex differences in lung adenocarcinoma. The data analysis pipelines

involved collecting, pre-processing, and integrating biological data, inferring gene interaction networks in

different biological states, performing graph differential analysis, and using the ranking with downstream

applications such as functional enrichment analysis and plotting. We used the Borda aggregated n2v2r

with dimensionalities d = {4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24} and using Euclidean and cosine distances (22

rankings in total).

Luminal A Breast Cancer

From the Cancer Genome Atlas (TCGA) we identified 60 individuals for whom expression profiling had

been performed on both luminal A tumor and matched normal adjacent tissue (Cancer Genome Atlas

Research Network et al., 2013). We downloaded the corresponding uniformly normalized and standardized

gene expression data from Recount3 (Wilks et al., 2021) and inferred a pair of tumor and normal PANDA

gene regulatory networks (see Methods). PANDA is a regulatory network inference method that integrates

transcription factor motif and protein-protein interactions prior knowledge with gene expression to create

bipartite transcription factor-to-gene regulatory networks (Glass et al., 2013). We transformed the bipartite

graphs to unipartite by projecting them to gene-by-gene matrices that represent co-regulation. We then

performed graph differential analysis with n2v2r and DeDi, selecting the top 2% (roughly 500) genes from

each method to perform over-representation analysis using the biological processes gene ontology database

(GOBP) (Ashburner et al., 2000). The runtime for n2v2r was approximately 5 minutes on a c5.12xlarge

AWS EC2 instance. Figure 3 shows the top 30 FDR-adjusted pathways of n2v2r, with bold font indicating

those found also by DeDi (Appendix Figure A7).

Many of the GOBP terms found to be significant are associated with metabolic processes, concordant

with the hypothesis that a driver of luminal A breast cancer is the alteration of metabolic processes (Prat

et al., 2015; Lunetti et al., 2019). We also found processes associated with the mitochondria, including ox-

idative phosphorylation (OXPHOS), consistent with reports that luminal A breast tumors exhibit increased

OXPHOS activity relative to basal-like breast cancer and other subtypes (Cappelletti et al., 2017; Ortega-

Lozano et al., 2022), and that OXPHOS activity is predictive of outcomes in estrogen receptor (ER) positive

breast cancer (El-Botty et al., 2023; Koc et al., 2022). Changes in OXPHOS and mitochondrial functions

more generally can alter how breast cancer cells adapt their metabolism to support rapid growth, survive

under various conditions, and evade therapeutic interventions (Avagliano et al., 2019).

Increased regulatory connectivity of metabolically relevant genes for lumA can also be seen in the network

comparison in Appendix Figures A8, A9. For example, the NDUFA9 and SDHA genes are common between

multiple GO pathways. NDUFA9 is a component of complex I in the respiratory chain and its downregulation
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Figure 3: Over-representation analysis with GOBP annotations for the top 2% of genes (roughly 500) of

n2v2r on BRCA TCGA when comparing luminal A patients against matched adjacent normal samples using

PANDA regulatory networks. We present the top 30 results ranked by adjusted p-values that pass a 0.1

FDR cutoff (equivalent to − log padj = 1). Bold indicates pathways common with DeDi when performing

the same analysis. The size of the points indicates the overlap of the input gene set with the pathways. Long

pathway names have been trimmed.

has been reported to promote metastasis by mediating mitochondrial function (Stroud et al., 2012; Li et al.,

2015). SDHA, which is known to be a tumor suppressor gene, encodes one of the four subunits of the succinate

dehydrogenase (SDH) enzyme, which plays a critical role in both OXPHOS and the Krebs cycle (Rutter

et al., 2010); SDHA has also been identified as a marker for breast tumor progression and prognosis (Kim

et al., 2013).

In contrast, differential gene expression analysis using DESeq2 followed by over-representation analysis for

GOBP terms found only enrichment for general development processes that do not speak to the mechanisms

that are altered in a disease-relevant manner (Appendix Figure A10), demonstrating the importance of

network analyses.

Cell Cycle with Single-Cell RNA-seq

We investigated cell cycle transitions in single-cell data. Cells undergo the four phase transitions G1→S→G2→M

when they grow and divide as part of the cell cycle. G1 is the first growth phase, which is followed by S, the

synthesis phase where the cell replicates its DNA. Then, the cell enters a second growth phase G2, which will
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Figure 4: Single-cell cell cycle transitions analysis. In panel a, the HeLa S3 cell line is processed using

Seurat, with the cells being aggregated to create metacells from which four networks are being generated

using hdWGCNA. The four networks correspond to the cell cycle phases G1, S, G2, and M (panel a).

The two transitions that are being analyzed are G1 to S (green) and G2 to M (purple). In panel b, gene

set enrichment analysis with the Reactome database and Kolmogorov–Smirnov test is performed to study

the G1 to S transition, showing the top 30 results ranked by adjusted p-values that pass FDR 0.1 cutoff

(equivalent to − log padj = 1). For this, we used the function prerank of GSEApy. The x-axis represents

the normalized enrichment score, and color the − log padj value. The size of the points indicates the overlap

of the leading gene sets with the pathways. Bold color indicates common top pathways that DeDi found on

the same networks. The pathways that explicitly mention terms related to the G1 to S transition are placed

in green boxes. The same procedure with purple boxes for the G2 to M transition is displayed in panel c.

Long pathway names have been trimmed. In panel d, we plot the average scaled and normalized expression

for the top 20 genes in the ranking of the G1 to S transition according to each method (n2v2r top, DeDi

bottom). The x-axis represents the cell cycle pseudotime ordering of the cells using Revelio. The vertical

lines represent the 0.9 quantile of pseudotime for G1 (left, green) and G2 (right, purple, dotted) cells, acting

as proxies for the time the transitions occur. The black curve is a 5-th order polynomial fit to the data.

Similarly, in panel e for the G2 to M transition.

be followed by mitosis (M) where the cell physically divides into two daughter cells, after which the process

repeats for the daughters. We used combined data from wild-type and AGO2 knock-out HeLa S3 human cell

lines comprising 1477 unsynchronized cells (Schwabe et al., 2020). We integrated the data using Seurat (Hao

et al., 2021) and aggregated single-cells to create “metacells” that represent the four cell-cycle states from

which we constructed four topological overlap networks of dimensions 2420× 2420 using hdWGCNA (Mora-

bito et al., 2023) (see Methods). We applied n2v2r jointly on all networks using the sequential strategy of

computing pairwise rankings of networks against the next in the cycle. To facilitate validation, we studied
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the well-known G1→S and G2→M transitions where the Reactome database contains explicitly annotated

pathways (Gillespie et al., 2021). Runtime on a c5.12xlarge AWS EC2 instance was roughly 10 seconds.

An overview of the data integration and network inference process is given in Figure 4a. Figure 4b,

shows the top 30 FDR adjusted gene set enrichment analysis (GSEA) results based on Kolmogorov–Smirnov

testing using the function prerank of GSEApy (Fang et al., 2022) for annotation based Reactome pathways

(see Methods). The green boxes indicate pathways that explicitly refer to the G1→S transition, and bold

text indicates results also found using DeDi (corresponding enrichment results can be found in Appendix

Figure A11). We see that n2v2r identifies at least 3 exclusive pathways that are related to G1→S while

DeDi finds none. We also see that both methods pick up common pathways related to the G2→M transition.

Panel c shows the top 30 GSEA results for the G2→M transition, with purple boxes indicating Reactome

pathways explicitly annotated to this transition. We see that n2v2r finds pathways related to G2→M and

with large enrichment scores while DeDi finds no significant results.

Since the analysis here fundamentally represents a time course captured in individual cells, we wanted

to understand the overall profiles of genes found by n2v2r and DeDi during cell cycle phase transitions.

Figure 4d,e, shows the average gene expression of the top 20 genes in all cells identified by n2v2r (top)

and DeDi (bottom) for the two transitions; cells are ordered according to cell cycle pseudotime assigned

using Revelio (Schwabe et al., 2020). It is interesting to note that the number of unique molecular identifiers

(nUMI), corresponding to the number of distinct mRNA transcripts, increases with pseudotime and then

drops after G2, which is where cell division occurs (Appendix Figure A12). Given the cellular processes

active during the cell cycle, we expect the number of transcripts to track with marker genes that indicate

the cell cycle phase. In panel d, with marker genes selected for the G1→S transition, we see that n2v2r

identifies genes with a steep transition between these phases. In panel e, for the G2→M transition, n2v2r

again retrieves genes that sharply decline in expression after entry into M, correctly capturing the point of

mitosis. In contrast, the DeDi genes for both transitions were lowly expressed without marker behavior,

thus failing to capture relevant cell cycle processes.

Sex Differences in Lung Adenocarcinoma

Lung cancer manifests differently in males and females, where both prognosis and response to therapy differ

between the sexes (Reddy and Oliver, 2023; Silveyra et al., 2021) but mechanistic causes for these differences

remain largely unknown (Legato et al., 2016; Özdemir et al., 2018). We explored differences in male and

female gene co-expression patterns in lung adenocarcinoma (LUAD) using data from TCGA. We used the

weighted correlation network analysis (WGCNA) R package (Langfelder and Horvath, 2008) to construct two

sex-specific 26000×26000 co-expression networks (see Methods). The runtime for n2v2r was approximately 1

minute on a c5.12xlarge AWS EC2 instance. Lastly, we removed the Y chromosome genes from the rankings

of both methods.

Figure 5 shows the top 30 enriched KEGG pathways based on gene set enrichment analysis using the

ranked list from n2v2r; bold font indicates pathways also found using DeDi (Appendix Figure A13). We

found a 60% overlap (18 out of 30) between the enriched pathways identified using n2v2r and DeDi. Not

surprisingly, many of the common pathways are related to immune processes, such as the T cell receptor and

Toll-like receptor signaling, which are known to be sex-biased in LUAD (Klein and Flanagan, 2016). In ad-

dition, pathways such as spliceosome, endocytosis, ubiquitin mediated proteolysis, and cell cycle, correspond

to sex-biased cellular processes (Rubin et al., 2020; Rubin, 2022).

The enriched pathways that are exclusive to the DeDi ranking include many related to neurodegener-

ative disorders, other cancer types, and broad cellular pathways such as ribosome and DNA replication

(Figure A13) that provide little insight into sex-specific LUAD mechanisms. In contrast, the exclusive

pathways of n2v2r allowed identification of specific cancer-related processes that include the MAPK and

phosphatidylinositol pathways known to be regulated by sex hormones with their disruption leading to

propagation of non-small cell lung cancer cells and tumor growth (Fuentes et al., 2021). Another example

is B-cell receptor signaling, with B-cell related genes reported as significantly upregulated in the LUAD

tumors of females, which also have a higher number of infiltrating B-cells (Klein and Flanagan, 2016); this

sex-specific B-cell difference has also been reported in the TCGA LUAD samples (Li et al., 2023).
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Figure 5: Gene set enrichment analysis with KEGG annotations and Kolmogorov–Smirnov test for the entire

n2v2r ranking on LUAD TCGA when comparing male against female PANDA regulatory networks. We

present the top 30 results ranked by adjusted p-values that pass a 0.1 FDR cutoff (equivalent to − log padj =

1). Bold indicates pathways common with DeDi when performing the same analysis. The x-axis represents

the normalized enrichment score, and color the − log padj value. The size of the points indicates the overlap

of the leading gene sets with the pathways. Long pathway names have been trimmed.

Furthermore, among the exclusive pathways found with n2v2r is the JAK/STAT signaling, a crucial

cellular communication pathway involved in the regulation of various physiological processes, including

immune responses, cell growth and differentiation, and identified as playing a role in lung cancer development

and progression (Thomas et al., 2015; Hu et al., 2021). To explore further the putative sex bias of this

interesting pathway, we first recovered from GSEApy the subset of genes from the n2v2r ranking that are

most responsible for the pathway to be deemed significantly sex-biased. Then we plotted the subgraph

of Afemale–Amale, focusing on those leading genes as central nodes (with larger font) and their top 500

connections. We present the subgraph in Figure 6a, with blue and red edges indicating higher co-expression

in males and females, respectively. Node size reflects the degree difference, and color denotes whether the gene

is significantly differentially expressed between males and females based on DESeq2 tabular analysis (Love

et al., 2014).

We observe that the majority of the leading genes do not exhibit sex differences with gene expression and

node degree. However, we found significant sex differences in drug responses. In particular, we considered the

PRISM (Yu et al., 2016) and GDSC (Yang et al., 2012) databases that contain results of small molecule drug

treatments of LUAD cell lines derived from both male and female donors and found significant sex-based
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Figure 6: Probing the leading genes of the JAK/STAT signaling pathway for sex differences. Panel a

shows the top 500 edges of the differential network Afemale–Amale centered on the n2v2r leading genes of

the JAK/STAT pathway as returned by GSEApy, shown here with larger fonts. Red edges mean greater

co-expression in females, and blue edges greater in males. The size of the nodes is the absolute degree

difference. Nodes are colored according to the adjusted p-value from differential gene expression analysis

with DESeq2: white is not significant, yellow to red is significant between 0.1 and 0. Panel b shows significant

sex-biased drug responses (lower more sensitive) by inhibiting JAK/STAT genes in LUAD cell lines that

are not differential in node degree and gene expression. The EP300 is from the GDSC repository, the

rest from PRISM.

differences for compounds targeting genes in the JAK/STAT signaling pathway (see Methods). Figure 6b

shows that inhibitors targeting five JAK/STAT pathway genes, EP300, JAK1, JAK2, TYK2, and AKT2,

exhibit significant sex-biased responses. For JAK1, JAK2, TYK2, and AKT2, we found a strong female bias

in correlation network connectivity (only red edges) and that this corresponded with inhibitory drugs being

more effective for females; inhibitors of EP300 produced a better response in males. These results suggest

that n2v2r can capture sex differences in co-expression networks that transcend gene expression and degree.

One additional gene, IL5RA, also exhibited substantial sex-biased differences in correlation patterns

(Figure 6). The IL5RA, a protein, is involved in the IL-5 signaling pathway, which plays a key role in

regulating immune responses and particularly in the activation of eosinophils. IL5RA has been implicated in

multiple pulmonary diseases, including COPD and asthma, as well as lung adenocarcinoma (Fan et al., 2021;

Sibille et al., 2022). Little is known, however, regarding the role of IL5RA in LUAD sex differences. A recent

meta-analysis of GWAS data found IL5RA to be significantly sex-biased in lung epithelial tissue (Gautam

et al., 2019), consistent with our observation of a male bias in the differential network (more blue edges).

This suggests that sex-specific differences in the immune microenvironment, including the presence of specific

immune cells such as eosinophils, may influence the course of the disease and possibly influence response to

immunotherapy checkpoint inhibitors in a sex-biased manner.

Lastly, the results for differential gene expression analysis with DESeq2 (Appendix Figure A14) are

focused specifically on well-known sex-biased metabolic processes and less so on other cancer related pro-

cesses (Krumsiek et al., 2015). Here, we observe the synergistic yet distinct contributions of both tabular

and graph-based analyses within the same data analysis pipeline.

Overall, the three biological questions with real-world data we considered show that node2vec2rank

can effectively compare high-dimensional networks to produce biologically meaningful results and clearly

demonstrate its advantages over alternative methods such as DeDi and tabular analysis.
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Discussion

Computational methods in Life Sciences are now commonly used to infer increasingly accurate and detailed

graph representations for the various phenomena under investigation. Comparing the networks correspond-

ing to different system states is therefore a key application for uncovering novel system-driving factors.

Identifying the key features that distinguish a set of graphs is, however, a challenging task since graphs can

be arbitrarily complex in terms of size and the higher-order associations they represent. Towards this end, we

developed node2vec2rank (n2v2r), a multi-layer node embedding method that effectively utilizes the rich rep-

resentation power of graphs to perform graph differential analysis. In contrast to bag-of-features approaches

that consider user-defined node summary statistics, n2v2r infers node representations in a data-driven man-

ner that go beyond connectivity proxy measures such as node degree for which simulations validated their

sub-optimal performance. Based on the unfolded adjacency spectral embedding (UASE) algorithm and

singular value decomposition, n2v2r is an efficient, stable, and transparent method that provably identifies

the correct ranking of differences given multi-layer weighted networks, producing an output that is readily

available for well-established data analysis pipelines; aspects critical for veridical data science applications

in the Life Sciences.

Applying n2v2r to three biological applications allowed us to identify key features that were not detected

with differential expression tabular analysis with DESeq2 or graph-based degree difference analysis with

DeDi. In characterizing the luminal A breast cancer subtype with gene regulatory networks and bulk data

from the Cancer Genome Atlas project (TCGA), we showed that both n2v2r and DeDi rankings were able

to identify key metabolic processes such as oxidative phosphorylation (OXPHOS), surpassing DESeq2. In

the cell cycle analysis with single-cell data gene co-expression networks, n2v2r identified multiple biological

processes that are known to be activated during the respective cell-cycle phases, and found marker genes that

exhibit meaningful oscillatory expression patterns over the entirety of the cell cycle, clearly outperforming

DeDi. In searching for sex differences in lung adenocarcinoma (LUAD) using bulk TCGA data and co-

expression networks, n2v2r found known sex-biased pathways in LUAD, including B-cell associated processes

and other aspects of immune response that can provide insights into LUAD development and progression

and cancer immunotherapy. In an exploratory setup, n2v2r led us to investigate genes in the JAK/STAT

signaling pathway that are neither differentially expressed nor differential in their node degree. We found that

inhibition of the proteins encoded by these genes in lung cancer cell-lines results in sex-biased drug responses,

meaning that n2v2r recovered actionable regulatory patterns that are invisible to standard analysis methods.

We were further able to generate research avenues for the sex-biased role of IL5RA in LUAD, with recent

studies investigating its clinical significance in LUAD and confirming the significant sex bias in lung epithelial

tissue with a genome-wide association meta-analysis.

A challenge in developing n2v2r was the choice of embedding dimensionality. It is common for machine

learning methods to use a large number of dimensions such as 64, 128, 256, etc, but measuring distances in

these embedding spaces tends to become meaningless as the dimensions grow. The exact number of dimen-

sions where this occurs, especially for graphs with different characteristics, is difficult to establish. The Borda

aggregation helps to average and stabilize the performance, which is beneficial in cases of misspecification.

We opted for the default number of dimensions to be moderate, aiming for 4 to 24 with an increment of 2,

for a total of 22 rankings (11 with cosine distance and 11 with Euclidean distance). This showed consistently

good results in three widely different real-world data applications. Another more informed option would be

to consider the singular values and amount of variance explained and to place a window around the elbow

point in the scree plot.

Overall, and to the best of our knowledge, node2vec2rank is the first method that provides an effective

and theoretically justified method to compare networks, validating its performance through a diverse set of

applications. Although we limited our analysis to unipartite networks, we believe that the method can be

extended to multipartite networks that more accurately represent processes such as gene regulation. While

spectral embedding is applicable to such networks in single graph analysis (Modell et al., 2022), the extension

to multiple graphs is less clear. Knowing which graph is affected the most by differences in node and pathway

may allow the identification of directionality between related networks. One possible approach would be to

consider the sign of the difference in node embedding norms with a larger norm implying a more active

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2024. ; https://doi.org/10.1101/2024.06.16.599201doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.16.599201
http://creativecommons.org/licenses/by-nc/4.0/


node in the comparison. Lastly, considering non-linear interactions and node disparities as functions of local

neighborhood, as well as incorporating node and edge features, all while maintaining theoretical guarantees,

interpretability, and efficiency, will enable the discovery of more complex differential patterns.

Finally, although biological applications motivated the development of n2v2r, the framework is general,

and the method can easily be applied to graph comparison problems that arise in other disciplines.

Methods

Simulated Network Generation

We generate pairs of binary graphs A(1),A(2) ∈ {0, 1}n×n following two stochastic block models with m

communities and community probability matrices B(1),B(2) ∈ Rm×m. Each node is assigned to one of the

m communities uniformly at random, the same in both graphs Z
(1)
i = Z

(2)
i ∈ [m]. For convenience, we drop

the unnecessary superscript for community assignments.

First, we generate the adjacency matrix A(1) by independently sampling Bernoulli edges for each pair of

nodes according to their community assignments,

A
(1)
ij |Zi,Zj

ind∼ Bernoulli(B
(1)
Zi,Zj

), (16)

as given by the multi-layer latent position model in Equation 8. However, the method for generating the

adjacency matrix A(2) will differ from this latent position model to provide a better test of the n2v2r

framework.

To generate A(2) we adjust the first graph to satisfy the correct community probabilities given by B(2),

P(A
(2)
ij = 1 |Zi,Zj) = B

(2)
Zi,Zj

. (17)

We consider two possible cases for the pair of nodes i and j:

• if B
(1)
Zi,Zj

> B
(2)
Zi,Zj

, we delete the edge (i, j) if it exists with probability

P(A
(2)
ij = 0 |A(1)

ij = 1) = 1−
B

(2)
Zi,Zj

B
(1)
Zi,Zj

.

• If B
(1)
Zi,Zj

< B
(2)
Zi,Zj

, we add the edge (i, j) if it does not exist with probability

P(A
(2)
ij = 1 |A(1)

ij = 0) = 1−
1−B(2)

Zi,Zj

1−B(1)
Zi,Zj

.

In all other cases, the adjacency matrices remain the same. Under this sampling method, Equation 17 is

satisfied.

Simulated Network Differences and Ground Truth Assignment

Both regimes are simulated by intervening on a randomly sampled community probability matrix B(1) to

create the second B(2). For the degree-naive differences, we sample a B(1) uniformly at random with values

ranging in [0, 0.5]. Then, to create B(2) we “flip” the first row vector and column vectors of B(1) while

maintaining B
(1)
1,1 as is. The effect of this transformation is that the community represented by the first row

and column will have its connections with the rest of the communities re-assigned, but the overall degree

remains the same. An example of this operation with four communities is the following, highlighting with

bold the elements to be flipped:

B(1) =


a b c d

b e h i

c h f j

d i j g

 B(2) =


a d c b

d e h i

c h f j

b i j g

 .
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Finally, we proceed to add noise to the remaining of B(2) with 50% probability following a normal distribution

N (0, 0.5/10).

For the second regime of random differences, we follow a similar scheme. First, we sample a B(1) uniformly

at random with values ranging in [0, 0.5]. Then we create B(2) by completely re-sampling the first row and

column of B(1) with another set of values in [0, 0.5]. Then, we proceed to add noise to the remaining of B(2)

with 50% probability following a normal distribution N (0, 0.5/10).

Note that the Gaussian noise added can cause the intervened community to fall in ranks, which would

invalidate its ground truth assignment as the most changing. To overcome this, we introduce a rejection

sampling scheme where we reject a pair of B(1),B(2) matrices if the community-wise Borda aggregated

Euclidean, cosine, and Chebyshev distances between B(1) and B(2) do not rank the intervened community

as the most changing.

Single-cell Cell Cycle Network Generation and Analysis

We used the single-cell data of Schwabe et al. (2020) available with GEO accession number GSE142277

that corresponds to 1477 cells from HeLa S3 wild-type and AGO2 knock-out (AGO2KO) cell lines (Schwabe

et al., 2020). We used the Seurat v4.3.0.1 pipeline to remove cells with fewer than 200 genes detected and

greater than 5% mitochondrial ratio, arriving at 1282 cells. We used SCTransform to regress out the two

batches, wild-type and AGO2KO.

With the processed HeLa S3 data, we used hdWGCNA (Morabito et al., 2023) v0.2.26 to create gene

correlation networks from metacells. The metacells are created with the MetacellsByGroups function that

performs KNN on PCA space with number of neighbors k = 20, maximum number of shared cells between

two metacells set to 10, and grouped by the four stages. We used this setting to get a reasonable amount

of metacells, amounting to 792 in total (out of 1282). Then, with functions SetDatExpr and PlotSoftPowers

with default settings, we tested for soft-thresholds for each network and used 5 on all networks, which was

the most common value to avoid any imbalances; soft-thresholding affects the mean connectivity of the

networks. We then constructed four topological overlap matrices (TOM) using function ConstructNetwork.

The TOM is a similarity matrix based on the number of genes two genes have in common after thresholding.

We drop all genes which are not common to all networks, ending up with 2420. For the plots in panels d

and e, we used the functions getPCAData and getOptimalRotation from Revelio v0.1.0 to retrieve the cycle

pseudotime and order the cells.

Bulk Data Network Generation

Biological networks have been built by using the transcriptomic profiling data collected by The Cancer

Genome Atlas (Cancer Genome Atlas Research Network et al., 2013) and subsequently reprocessed and made

available by the Recount3 project (Wilks et al., 2021) (downloaded on 02 Nov 2022). We used established

gene expression pre-processing protocols: counts were logTPM transformed, and genes that have less than

1 TPM in more than 90% of the samples were removed. We also remove samples that have less than 30%

tumor purity using the consensus method from (Aran et al., 2015). We end up with 1201 samples and 25687

genes for BRCA, and 574 samples and 26000 genes for LUAD.

For the luminal A (lumA) versus adjacent normal comparison, we filtered the processed data for lumA

patients for which adjacent normal tissue samples exist, resulting in 60 patients. We also removed four

genes with constant values for a total of 25683 genes. We used the 60 tumor samples and the 60 adjacent

normal samples to compute two PANDA networks (Glass et al., 2013) with netZooPy v0.9.13 (Ben Guebila

et al., 2023). PANDA requires as input both a transcription factor (TF)-to-gene motif binding prior and a

TF-to-TF prior protein-protein interaction (PPI) network. Following (Lopes-Ramos et al., 2020), we gener-

ated the TF-to-gene prior network with putative motif targets using FIMO (Grant et al., 2011). First, we

downloaded the Homo sapiens TF motifs with direct or inferred evidence from the Catalog of Inferred Se-

quence Binding Preferences (CIS-BP) Build 2.0 (http://cisbp.ccbr.utoronto.ca). FIMO then maps the

position weight matrices (PWM) to the human genome (hg38) and we retained only the significant matches

(threshold: p ≤ 10−5) occurring within the promoter regions of Ensembl genes (Gencode v39 (Frankish
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et al., 2020), downloaded from http://genome.ucsc.edu/cgi-bin/hgTables). The promoter regions in-

clude [−750; +250] base pairs upstream and downstream the transcription start site (TSS). We were then

able to retrieve a network of 997 transcription factors targeting 61485 genes. For the TF PPI networks, we

retrieved data from the StringDB database (version 11.5) (Szklarczyk et al., 2021), downloaded with the

associated Bioconductor package. We kept only the TFs present in the motif prior, and we normalized them

by dividing each score by 1000, thereby restricting the values between 0 and 1. We also transformed the

PPI networks into symmetric networks with self-loops. After running PANDA on both lumA cancer and

control populations, we obtained two bipartite networks of 997 TFs and 25410 genes. We then transformed

each PANDA bipartite network W to a gene-by-gene unipartite network that represents co-regulation with

the transformation WTW , resulting in two 25410 by 25410 networks.

For the LUAD male versus female comparison we used 238 and 277 male and female tumor samples,

respectively. From gene expression, we computed two WGCNA unsigned networks (version 1.72.1) with

soft-threshold 10 using the functions pickSoftThreshold and adjacency.

Over-representation and Gene Set Enrichment Analysis

For over-representation and gene set enrichment analyses, we used the GSEApy Python package (Fang

et al., 2022). With function enrichr we performed over-representation analysis with a hypergeometric test

that tests whether an input set of genes is significantly associated with a database of pathways. Similarly,

with function prerank we performed gene set enrichment analysis with a Kolmogorov–Smirnov test to test

whether a ranked list of genes is significantly associated with the database. We used the unweighted version

with 1500 permutations. We used three gene pathway annotation databases, namely GOBP (Ashburner

et al., 2000), KEGG (Kanehisa and Goto, 2000), and Reactome (Gillespie et al., 2021), versions v7.5.1

downloaded from the Molecular Signatures Database (MSigDB) (http://www.broadinstitute.org/gsea/

msigdb/collections.jsp). We filtered pathways with less than 5 genes and with more than 1500 genes.

We used an FDR cutoff of 0.1 and ranked results based on their p-adjusted values.

Differential Graph Plotting and Gene Expression Analysis

To plot the differential graphs in the TCGA BRCA and LUAD analyses, we used Cytoscape (Shannon et al.,

2003). For differential expression analysis, we used the R package DESeq2 (Love et al., 2014) v1.36.0 with

the original RNA-seq data (un-normalized counts) for the same genes and samples we used to build the

networks. The ranking of genes is based on the adjusted p-values.

LUAD Drug Responses

To validate the predictions of n2v2r, we utilized drug response data from GDSC (Yang et al., 2012) and

PRISM (Yu et al., 2016), specifically concentrating on LUAD cell lines obtained from both male and female

donors. We conducted a comparison of drug response outcomes between male and female LUAD cell lines for

each drug, targeting n2v2r JAK/STAT leading genes that were not differentially expressed. We performed a

non-exhaustive search through the leading genes, aiming to find a small set of significant results for which we

employed the Wilcoxon rank sum test. For many genes, including IL10RA, IL2RA, PIAS1, PIAS4, SOS2,

we did not find entries in both databases. EP300 was significantly biased in GDSC but not in PRISM, while

AKT2, JAK1, JAK2, were significantly biased in PRISM but not in GDSC. TYK2 had no drug response

in GDSC but was significantly biased in PRISM. Lastly, IL5RA had no entries in GDSC, and was not

significantly biased in PRISM.

Reproducibilty Statement and Data Availability

Tool versions are mentioned in their respective sections. Notebooks to recreate the biological experiment

bubbleplots and subgraphs are available at https://github.com/pmandros/n2v2r; the yaml file reproduces

the exact python environment we used. The scripts to generate the single-cell, bulk, and simulated networks,
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as well as the drug responses, are available at Zenodo 10.5281/zenodo.10558426. Also, in the same repository

we uploaded the biological networks and gene expression used in the three real-world analyses.

We used seed 42 in our n2v2r python code (random.seed, numpy.random.seed, controlling the the simu-

lated network generation and the prerank function of GSEApy. We found that the prerank function does not

produce consistent GSEA plots despite the seed, and different runs can produce slightly different p-values.

This can affect the order of the top pathways in bubble plots, as well as some of the bottom pathways can

be exchanged with pathways that were not in the top 30 but have near identical adjusted p-values. Gene ex-

pression pre-processing and network inference for both bulk and single-cell data follow standard protocols as

provided by the respective tools. The parameters were the default, except for the single-cell metacell creation

where we had to ensure enough metacells for hdWGCNA. For soft-thresholding in WGCNA we used 10 as it

was the middle value in the [1, 20] range used by the function pickSoftThreshold. For soft-thresholding using

hdWGCNA we used 5 as it was the most common value between all networks for function TestSoftPowers.
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Appendix

Assumptions and Proofs

In this section, we outline the necessary model assumptions then provide a sketch proof of Theorem 1 covering

the main steps rather than going into the technical details. The proof follows a similar argument to the

consistency proof from the original generalized random dot product graph model paper (Rubin-Delanchy

et al., 2022). This proof was separately modified to allow for weighted networks (Gallagher et al., 2023)

and multi-layer networks (Jones and Rubin-Delanchy, 2020), and combining these two sets of adjustments

proves the consistency of unfolded adjacency spectral embedding.

Model Assumptions

We introduce three assumptions on the weighted multi-layer latent position model to enable sensible node

embeddings into low-dimensional space.

Assumption 1 (Low-rank expectation). There exists maps φ : ZK → Rd and φk : Z → Rd for k ∈ [K]

such that

E
(
A

(k)
ij |Z

(k)
i ,Z

(k)
j

)
= φ(Zi)φk(Z

(k)
j )> .

Assumption 1 is not a practical restriction on the multi-layer graph model as many real-world networks

have low rank (Udell and Townsend, 2019). We define the output of the latent position maps from Assump-

tion 1 by the matrices X and Y(k) with rows given by

Xi = φ(Zi) ∈ Rd ,

Y
(k)
i = φk(Z

(k)
i ) ∈ Rd .

One possible choice for the maps φk, which defines a choice for the map φ, is based on the mean unfolded

adjacency matrix P = E(A). The low-rank assumption states that the d-truncated SVD P = UPΣPV>P is

exact. Using these left and right singular vectors, we can define a canonical choice for the maps,

Xi = φ(Zi) =
(
UPΣ

1/2
P

)
i
∈ Rd ,

Y
(k)
i = φk(Z

(k)
i ) =

(
V

(k)
P Σ

1/2
P

)
i
∈ Rd ,

where VP = (V
(1)
P ; · · · ; V

(K)
P ) ∈ RKn×d divides the right singular vector VP into blocks corresponding

to the K graphs using row concatenation. Other choices for the maps φk are possible but these ultimately

represent orthogonal transformations of the embeddings Y(k). This will get absorbed into the orthogonal

transformation W ∈ O(d) in Theorem 1.

Assumption 2 (Exponential tails). There exists constants α, γ > 0 such that

P
(
|A(k)

ij | > x |Z(k)
i ,Z

(k)
j

)
≤ exp(−γx1/α) .

Assumption 2 states that the edge weights are bounded with high probability. This is necessary to

prevent very large edge weights in the networks, which would otherwise ruin the structure in an embedding.

It is satisfied trivially for bounded distributions like the Bernoulli and beta distributions, and many other

common distributions like the exponential distribution (α = 1) and the Gaussian distribution (α = 1/2). This

is a rephrasing of the condition from the weighted generalized random dot product graph model (Gallagher

et al., 2023).

Assumption 3 (Singular values of P). The d non-zero singular values of mean unfolded adjacency matrix

P = E(A) satisfy

σi(P) = Ω(n) for all i ∈ [d] with high probability as n→∞.
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Assumption 3 is usually written as a condition on the joint distribution of the latent positions {Z(1)
i , · · · ,Z(K)

i } ∈
ZK controlling how the matrices X>X and Y(k)>Y(k) deviate from their corresponding second moment ma-

trices (Rubin-Delanchy et al., 2022; Jones and Rubin-Delanchy, 2020; Gallagher et al., 2023). However, the

goal of this assumption is always the same; regulating the growth of the singular values of the matrix P as

n → ∞. In our analysis, we directly assume this condition, rather than introducing distributions for the

latent positions Z
(k)
i .

Proof of Theorem 1

We now outline a sketch proof of Theorem 1 using the model assumptions given by Assumptions 1, 2 and 3.

Proof outline. The starting point of the theorem revolves around the difference between the unfolded adja-

cency matrix A and its unfolded mean matrix P. Under Assumption 2 the spectral norm of their difference

has the following asymptotic bound,

||A−P|| = O(K1/2n1/2 logα+1/2 n) with high probability as n→∞. (A1)

This is a consequence of the matrix analog of the Bernstein inequality. Using this result the probability

P(||A−P|| ≥ t) can be controlled using the edge weight moments upper bounds,

|A(k)
ij −P

(k)
ij | ≤ 2β logα n ,

Var(A
(k)
ij ) ≤ β2 log2α n ,

with high probability as n→∞. From this property, both the singular value matrices ΣA and ΣP, and the

subspaces spanned by VA and VP, are approximately equal. The first is a consequence of Weyl’s inequality,

||ΣA −ΣP|| = max
i
|σi(A)− σi(P)| ≤ ||A−P||

= O(K1/2n1/2 logα+1/2 n) with high probability as n→∞.

The second is derived from the Davis-Kahan sin θ theorem (Yu et al., 2015) using Assumption 3 about the

size of σd(P),

||VA −VPW|| ≤ 23/2d1/2(2σ1(P) + ||A−P||)||A−P||
σ2
d(P)

= O(K1/2n−1/2 logα+1/2 n) with high probability as n→∞.

The orthogonal matrix W here solves the one-mode orthogonal Procrustes problem that aligns the left and

right singular vectors of the matrices A and P,

W = arg min
Q∈O(d)

{
||UA −UPQ||2F + ||VA −VPQ||2F

}
,

where || · ||F denotes the Frobenius norm. Using this orthogonal matrix W, we can compare how the UASE

over all graphs Ŷ = VAΣ
1/2
A behaves in relation to the canonical choice Y = VPΣ

1/2
P defined by the maps

φk. The proof uses the decomposition

Ŷ −YW = (A−P)>UPΣ
−1/2
P W + R ,

for some residual matrix R ∈ Rn×d, which implies that, for all k ∈ [K],

||Ŷ(k) −Y(k)W|| ≤ σd(P)−1/2||(A(k) −P(k))>UP||+ ||R|| . (A2)

Using the asymptotic behaviour of ||A − P|| from Equation A1, the first term is controlled asymptotically

by the bound,

σd(P)−1/2||(A(k) −P(k))>UP|| = O(n−1/2 logα+1/2 n) with high probability as n→∞.
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The majority of the proof is to show that the residual matrix R is well-behaved starting from the

spectral norm properties described above. This is a technical exercise in matrix perturbation using the

existing techniques from the proofs for binary, weighted, and multi-layer graphs (Rubin-Delanchy et al.,

2022; Gallagher et al., 2023; Jones and Rubin-Delanchy, 2020). Applying the same approach in this setting

gives

||R|| = O(K3/2n−3/4 log3α+3/2 n) with high probability as n→∞.

This is the dominating term in Equation A2 meaning that

max
i∈[n]

∥∥∥Ŷ(k)
i −Y

(k)
i W

∥∥∥ = O(K3/2n−3/4 log3α+3/2 n) with high probability as n→∞.

This controls the rate of convergence although the statement in Theorem 1 is only concerned that this

converges to zero as n→∞.

Proof of Theorem 2

Proof. The proof uses invariance under orthogonal transformation and the triangle inequality of Euclidean

and cosine distance,

d
(
Ŷ

(k)
i , Ŷ

(`)
i

)
≤ d
(
Ŷ

(k)
i ,Y

(k)
i W

)
+ d
(
Ŷ

(`)
i ,Y

(`)
i W

)
+ d
(
Y

(k)
i ,Y

(`)
i

)
.

Alternatively, we could have started considering the distance between the latent positions and derived the

similar inequality,

d
(
Y

(k)
i ,Y

(`)
i

)
≤ d
(
Ŷ

(k)
i ,Y

(k)
i W

)
+ d
(
Ŷ

(`)
i ,Y

(`)
i W

)
+ d
(
Ŷ

(k)
i , Ŷ

(`)
i

)
.

Together these give the following inequality for the maximum possible error over all nodes for any distance

functions invariant under orthogonal transformation,

max
i∈[n]

∣∣∣d(Ŷ(k)
i , Ŷ

(`)
i

)
− d
(
Y

(k)
i ,Y

(`)
i

)∣∣∣ ≤ max
i∈[n]

d
(
Ŷ

(k)
i ,Y

(k)
i W

)
+ max
i∈[n]

d
(
Ŷ

(`)
i ,Y

(`)
i W

)
.

For Euclidean distance, Theorem 1 states that the two terms on the right-hand side tend to zero with

high probability as n→∞ giving the first result. For cosine distance, if a sequence of points converges with

respect to Euclidean distance to a non-zero limit, then the sequence also converges with respect to cosine

distance. Therefore, if both Y
(k)
i ,Y

(`)
i 6= 0, Theorem 1 states that the two terms on the right-hand side tend

to zero with high probability as n→∞ giving the second result.
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Figure A1: Recall violin plots for retrieving the most changing nodes between two graphs. We intervene

by permuting the community probabilities of a single community to simulate changing connections but not

degree, and then updating the second adjacency matrix accordingly. We generate 2000 pairs of graphs by

randomly applying this intervention and adding Gaussian noise. The goal is to retrieve the nodes of the

intervened community as the top most changing. The number of nodes increases along the columns, while

the number of communities increases along the rows. For a random subset of 100(5%) sampled graph pairs

we connect the corresponding method recall estimates. The solid and dotted lines in the violins correspond

to the median and mean, respectively.
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Figure A2: Recall violin plots for retrieving the most changing nodes between two graphs. We intervene

by randomly changing the community probabilities of a single community and then updating the second

adjacency matrix accordingly. We generate 2000 pairs of graphs by randomly applying this intervention

and adding Gaussian noise. The goal is to retrieve the nodes of the intervened community as the top most

changing. The number of nodes increases along the columns, while the number of communities increases

along the rows. For a random subset of 100(5%) sampled graph pairs we connect the corresponding method

recall estimates. The solid and dotted lines in the violins correspond to the median and mean, respectively.
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Figure A3: Violin plots for recall in retrieving the top most different nodes between two graphs for Euclidean

distance and increasing embedding dimensionality and Borda aggregation. We intervene by permuting

the community probabilities of a single community to simulate changing connections but not degree, and

then updating the second adjacency matrix accordingly. We generate 2000 pairs of graphs by randomly

applying this intervention and adding Gaussian noise. The goal is to retrieve the nodes of the intervened

community as the top most changing. For a random subset of 100(5%) sampled graph pairs we connect the

corresponding method recall estimates. The solid and dotted lines in the violins correspond to the median

and mean, respectively.
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Figure A4: Violin plots for recall in retrieving the top most different nodes between two graphs for Eu-

clidean distance and increasing embedding dimensionality and Borda aggregation. We intervene by ran-

domly changing the community probabilities of a single community and then updating the second adjacency

matrix accordingly. We generate 2000 pairs of graphs by randomly applying this intervention and adding

Gaussian noise. The goal is to retrieve the nodes of the intervened community as the top most changing.

For a random subset of 100(5%) sampled graph pairs we connect the corresponding method recall estimates.

The solid and dotted lines in the violins correspond to the median and mean, respectively.
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Figure A5: Violin plots for recall in retrieving the top most different nodes between two graphs for cosine

distance and increasing embedding dimensionality and Borda aggregation. We intervene by permuting

the community probabilities of a single community to simulate changing connections but not degree, and

then updating the second adjacency matrix accordingly. We generate 2000 pairs of graphs by randomly

applying this intervention and adding Gaussian noise. The goal is to retrieve the nodes of the intervened

community as the top most changing. For a random subset of 100(5%) sampled graph pairs we connect the

corresponding method recall estimates. The solid and dotted lines in the violins correspond to the median

and mean, respectively.
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Figure A6: Violin plots for recall in retrieving the top most different nodes between two graphs for co-

sine distance and increasing embedding dimensionality and Borda aggregation. We intervene by randomly

changing the community probabilities of a single community and then updating the second adjacency matrix

accordingly. We generate 2000 pairs of graphs by randomly applying this intervention and adding Gaussian

noise. The goal is to retrieve the nodes of the intervened community as the top most changing. For a random

subset of 100(5%) sampled graph pairs we connect the corresponding method recall estimates. The solid

and dotted lines in the violins correspond to the median and mean, respectively.
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Figure A7: Over-representation analysis with GOBP and hypergeometric test for the top 2% most changing

genes (roughly 500) of DeDi on the BRCA TCGA cohort when comparing luminal A patients against

matched adjacent normal samples using PANDA regulatory networks. We present the top 30 results ranked

by adjusted p-values that pass a 0.1 FDR cutoff (equivalent to − log padj = 1). Bold indicates common top

pathways with n2v2r. The size of the points indicates the overlap of the input gene list with the pathways

Long pathway names have been trimmed.
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Figure A8: The subgraph corresponding to the differential PANDA network GlumA–Gnormal focusing on the

genes of the cellular respiration GOBP pathway that are part of the input list, as returned by GSEApy

(shown here with larger fonts). For every such gene, we plot their top 5 neighbors (in absolute edge weight).

Red edges mean higher co-regulation in luminal A patients and blue edges in their adjacent normal samples.

The size of the nodes is the absolute degree difference. Nodes are colored according to the FDR adjusted

p-value from differential gene expression analysis with DESeq2: white is not significant, yellow to red is

significant between 0.1 and 0.
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Figure A9: The subgraph corresponding to the differential PANDA network GlumA–Gnormal focusing on

the genes of the oxidative phosphorylation GOBP pathway that are part of the input list, as returned by

GSEApy (shown here with larger fonts). For every such gene, we plot their top 5 neighbors (in absolute

edge weight). Red edges mean higher co-regulation in luminal A patients, and blue in their adjacent normal

samples. The size of the nodes is the absolute degree difference. Nodes are colored according to the FDR

adjusted p-value from differential gene expression analysis with DESeq2: white is not significant, yellow to

red is significant between 0.1 and 0.
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Figure A10: Over-representation analysis with GOBP and hypergeometric test for the top 2% most changing

genes (roughly 500) by using differential gene expression with DESeq2 on the BRCA TCGA cohort when

comparing luminal A patients against matched adjacent normal samples. We present the top 30 results

ranked by adjusted p-values that pass a 0.1 FDR cutoff (equivalent to − log padj = 1). The size of the points

indicates the overlap of the input gene list with the pathways. Long pathway names have been trimmed.
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Figure A11: Single-cell cell cycle transitions experiment Reactome results for DeDi. The HeLa S3 cell line is

integrated using Seurat, with the cells being aggregated to create metacells from which 4 networks are being

generated using hdWGCNA. The 4 networks correspond to the cell cycle phases G1, S, G2, and M. The

two transitions that are being analyzed are G1 to S and G2 to M. In this bubbleplot, gene set enrichment

analysis with the Reactome database is performed to study the G1 to S transition, showing the top 30

pathways ranked by adjusted p-values that survive FDR 0.1 cutoff (equivalent to − log padj = 1). The

x-axis represents the normalized enrichment score, and color the − log padj value. The size of the points

indicates the overlap of the leading gene sets with the pathways. Bold color indicates common pathways

with n2v2r. The pathways that explicitly mention terms related to the G1 to S transition are placed in green

boxes. The same procedure for the G2 to M transition was performed, but there were no significant results.

Long pathway names have been trimmed.
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Figure A12: Logarithm of number of unique molecular identifiers per cell sorted according to cell cycle

pseudotime and colored by cell cycle phase. The black curve is a 5-th order polynomial fit.
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Figure A13: Gene set enrichment analysis with KEGG and Kolmogorov–Smirnov test for the entire DeDi

ranking on the LUAD TCGA cohort when comparing male with female patient WGCNA networks. We

present the top30 results ranked by adjusted p-values that pass a 0.1 FDR cutoff (equivalent to − log padj =

1). Bold indicates common top pathways with n2v2r. The x-axis represents the normalized enrichment

score, and color the − log padj value. The size of the points indicates the overlap of the leading gene sets

with the pathways. Long pathway names have been trimmed.
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Figure A14: Gene set enrichment analysis with KEGG and Kolmogorov–Smirnov test for the entire DESeq2

ranking on the LUAD TCGA cohort when comparing male with female patient gene expression. We present

the top30 results ranked by adjusted p-values that pass a 0.1 FDR cutoff (equivalent to − log padj = 1).The

x-axis represents the normalized enrichment score, and color the − log padj value. The size of the points

indicates the overlap of the leading gene sets with the pathways. Long pathway names have been trimmed.
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