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Abstract 

Fully capturing cellular state requires examining genomic, epigenomic, transcriptomic, 

proteomic, and other assays for a biological sample and comprehensive computational 

modeling to reason with the complex and sometimes conflicting measurements. Modeling these 

so-called multi-omic data is especially beneficial in disease analysis, where observations across 

omic data types may reveal unexpected patient groupings and inform clinical outcomes and 

treatments. We present Multi-omic Pathway Analysis of Cancer (MPAC), a computational 

framework that interprets multi-omic data through prior knowledge from biological pathways. 

MPAC uses network relationships encoded in pathways using a factor graph to infer consensus 

activity levels for proteins and associated pathway entities from multi-omic data, runs 

permutation testing to eliminate spurious activity predictions, and groups biological samples by 

pathway activities to prioritize proteins with potential clinical relevance. Using DNA copy number 

alteration and RNA-seq data from head and neck squamous cell carcinoma patients from The 

Cancer Genome Atlas as an example, we demonstrate that MPAC predicts a patient subgroup 

related to immune responses not identified by analysis with either input omic data type alone. 

Key proteins identified via this subgroup have pathway activities related to clinical outcome as 

well as immune cell compositions. Our MPAC R package, available at 

https://bioconductor.org/packages/MPAC, enables similar multi-omic analyses on new datasets. 
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Introduction 

            Cancer is a complex set of diseases with a great diversity of genomic aberrations and 

altered signaling pathways (Hanahan, 2022). The Cancer Genome Atlas (TCGA) generated 

data spanning copy number alteration (CNA), DNA mutation, DNA methylation, mRNA 

expression, microRNA expression, and protein expression for thousands of tumor samples, 

leading to many insights into the cancers that were profiled (Hoadley et al., 2018). In addition, 

this extensive multi-omic data provides clues to tumor regulation, which have led to the 

development of many computational methods to integrate multi-omic data to obtain 

comprehensive views on cancer (Picard et al., 2021; Maghsoudi et al., 2022; G. L. Stein-O’Brien 

et al., 2018).  

            In particular, biological pathway-based approaches have been demonstrated as a 

powerful way to integrate multi-omic data (reviewed in Maghsoudi et al. 2022). Altered 

expression or function of different genes in the same pathway can have similar impacts on 

overall pathway activity. Similarly, diverse alterations of expression or function of the same gene 

or its protein product—e.g. through DNA mutations, CNAs, or changes in epigenetic 

modifications, transcript expression, or protein translation, stability, or post-translational 

modifications—can also suppress, stimulate, or otherwise modulate a particular pathway. These 

properties allow modeling based on multi-omic inputs to infer pathway activity to more 

accurately reflect underlying biology than modeling based on a narrow, incomplete view from a 

single genomic data type. Accordingly, whereas a single data type rarely contains the full 

explanation for oncogenesis, pathway-based approaches are a particularly advantageous way 

to understand cancer mechanisms.  

            Several notable pathway-based methods have demonstrated the benefits of multi-omic 

data integration for cancer interpretation. For example, Multi-omics Master-Regulator Analysis 
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identified 112 distinct tumor subtypes and 24 conserved master regulator blocks across 20 

TCGA cohorts (Paull et al., 2021). OncoSig delineated tumor-specific molecular interaction 

signaling maps for the full repertoire of 715 proteins in the COSMIC Cancer Gene Census 

(Broyde et al., 2021). COSMOS combined signaling, metabolic, and gene regulatory networks 

to capture crosstalks within and between multi-omics data (Dugourd et al., 2021). PAthway 

Recognition Algorithm using Data Integration on Genomic Models (PARADIGM) integrates 

multi-omic data via a factor graph to infer activities of all the proteins in a pathway network 

(Sedgewick et al., 2013; Vaske et al., 2010). Initially, PARADIGM was successfully applied to 

breast cancer and glioblastoma patients using CNA and gene expression microarray data to find 

clinically relevant groups and associated pathways. It was further applied to reveal multiple low-

frequency, but high-impact mutations in glioblastoma, ovarian, and lung cancers (Ng et al., 

2012) and was incorporated into the standard TCGA analysis pipeline (Hoadley et al., 2018, 

2014). 

Despite such successes, there are still opportunities to further improve multi-omic 

modeling. Multi-omics Master-Regulator Analysis and OncoSig focused on direct interactions 

around master regulators for transcription. The indirect effects of proteins further downstream of 

the master regulators in biological pathways were not considered. PARADIGM’s application 

across many cancer types focused on grouping patients by their inferred pathway levels or 

enriched pathways (Hoadley et al., 2018; Berger et al., 2018). But in-depth analysis on the 

molecular basis of patient grouping, careful interpretation of associated inferred pathway levels 

(which are abstract quantities that represent neither protein abundance nor any particular post-

translational modification and cannot be experimentally measured), and an end-to-end 

computational process are lacking. Other existing patient stratification methods by multi-omic 

data either do not utilize biological pathway information (Duan et al., 2021) or rely on 
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unrealistically small pathways (Zhao et al., 2021). As a result, it is hard to identify key proteins 

from a broad perspective with meaningful biological interpretation and clinical implication. 

Here, we develop a computational framework, named Multi-omic Pathway Analysis of 

Cancer (MPAC), to integrate multi-omic data for understanding cancer mechanisms. It is built 

upon the PARADIGM method with notable improvements including providing enhanced insights 

to the molecular basis and clinical implications of pathway-based patient groups as well as 

streamlining the whole computational process. In this work, we apply MPAC to Head and Neck 

Squamous Cell Carcinoma (HNSCC), which accounts for ~500,000 deaths per year worldwide 

(Mody et al., 2021). First, we describe how MPAC improves upon PARADIGM. Next, we apply 

MPAC to TCGA HNSCC data and group patients by their significantly altered pathways. Among 

other results, MPAC predicts a patient group that is enriched with immune response pathways, 

and this group cannot be predicted from the individual omic data types alone. Investigating this 

group identifies seven proteins that have activated pathway levels correlated with better overall 

survival. These findings are validated by a holdout set of TCGA HNSCC samples. Lastly, we 

present an interactive R Shiny app that lets users explore all the results generated from this 

work.  

  

Results 

An overview of MPAC and its improvements upon PARADIGM  

We developed MPAC to integrate multi-omic data to identify key pathways and proteins 

with biological and clinical implications, and to predict new patient groups associated with 

distinct pathway alterations. MPAC’s workflow contains eight steps (Figure 1; see also 

Methods): (Step 1) From CNA and RNA-seq data, determine genes’ CNA and RNA ternary 

states (i.e., repressed, normal, or activated). CNA and RNA-seq data are selected as the input 
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multi-omic data because PARADIGM had shown success with them (Vaske et al. 2010; 

Sedgewick et al. 2013; Hoadley et al. 2018); (Step 2) Use CNA and RNA state together with a 

comprehensive biological pathway network from TCGA (Hoadley et al., 2018) to calculate 

pathway levels with PARADIGM’s factor graph model. The TCGA pathway network 

characterizes interactions at both transcriptional and post-transcriptional levels. PARADIGM’s 

inferred pathway levels are calculated not only for proteins, but also for several other types of 

pathway entities, such as protein complexes and gene families; (Step 3) Permute input CNA 

and RNA data for filtering inferred pathway level in the next step. CNA and RNA states are 

permuted randomly between genes in each patient. Inferred pathway levels for each pathway 

entity are calculated with PARADIGM from 100 sets of permuted data to build a background 

distribution representing inferred pathway levels observed by chance; (Step 4) Inferred pathway 

levels computed from real data are compared with those from permuted data to filter out inferred 

pathway level changes that could be observed by chance. Because both the real and permuted 

pathway levels are different between patients, this filtering step creates a patient-specific set of 

inferred pathway levels representing each patient’s unique pathway alteration profiles; (Step 5) 

From the remaining pathway networks, retain the connected component that contains the 

largest number of connected pathway entities. This focuses on the main subset of entities that 

are connected in the pathway network and presumably lead to similar functional alterations; 

(Step 6) Build patient pathway profiles and predict patient groups. Each patient’s pathway profile 

contains a selected set of 2,085 cancer- and general biology-relevant Gene Ontology (GO) 

terms (Gene Ontology Consortium et al., 2023; Kuenzi et al., 2020). Each GO term is 

characterized by an over-representation test p-value on entities selected from the previous step. 

P-values for all the GO terms are adjusted for multiple hypothesis testing and log-transformed to 

group patients (Lun et al., 2016); (Step 7) Identify key proteins that all have activated or 
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repressed inferred pathway levels between patients from the same group; (Step 8) Compare 

data on key proteins with patients’ clinical data to evaluate potential impact of protein inferred 

pathway levels on patients’ clinical outcomes. 

MPAC makes multiple improvements over PARADIGM (Vaske et al., 2010), which 

MPAC runs as a subroutine in Steps 2 and 3. PARADIGM simply divided all the genes into 

three states with an equal number of entries. In contrast, in Step 1, MPAC defines a gene’s 

RNA state as normal, activated or repressed for each patient by testing the level of the relevant 

RNA in that tumor sample for significant increase or decrease (two standard deviations from the 

mean) of that RNA’s expression distribution in normal tissue samples. In Steps 3 and 4, as 

noted above, MPAC filters pathway entities for significant inferred pathway level differences 

from randomly permuted input. Although some PARADIGM applications also used 

permutations, permutations were not implemented as part of the software, nor were their results 

used for downstream analysis (Vaske et al., 2010; Sedgewick et al., 2013). In Step 5, MPAC 

focuses on the largest patient-specific pathway network subset. This improvement removed 

from consideration entities in tiny pathways, which were assumed to have less impact on patient 

pathway alterations and may contribute more noise than signal when predicting patient groups. 

In Steps 6–8, MPAC provides comprehensive downstream analysis functions to define patient 

pathway alterations, predict patient groups, and identify key proteins with potential clinical 

implications. MPAC is available as an R package on Bioconductor 

(https://bioconductor.org/packages/MPAC) to streamline the whole process from preparing the 

omic input data to identifying key proteins for a patient group.  
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MPAC predicted an immune response HNSCC group not found by CNA or RNA-seq data 

alone  

            We applied MPAC to TCGA HNSCC patients to predict patient groups by their pathway 

alterations. We selected the 492 patients that had CNA, RNA-seq, and overall survival data 

available. Of these 492 tumors, 89 carried human papillomavirus DNA (HPV+) and 403 did not 

(HPV-), a distinction linked to major differences in HNSCC tumor biology and clinical treatment 

response (Powell et al., 2021). We further randomly divided patients into exploratory sets (71 

HPV+ and 322 HPV-) and validation sets (18 HPV+ and 81 HPV-). Our goal was to first tune 

MPAC and identify pathway-based patient groups in the exploratory set and then test our 

discoveries in the validation set. We applied MPAC separately to the HPV+ and HPV- 

exploratory set patients and identified five groups from each based on the patient pathway 

profiles (Figure 2 and Supplementary Figure 1A). For HPV+ patients (Figure 2), four of the five 

groups had distinct pathway features. Group I patients had alterations mainly in immune 

response pathways, groups II and IV in cell cycle pathways, and group V in morphogenesis 

pathways. Group III had pathway alterations in some patients but did not show an obvious 

biologically meaningful consensus profile. For HPV- patients (Supplementary Figure 1A), three 

of the five patient groups had distinct pathway alterations: groups I and IV in cell cycle pathways 

and group III in immune response pathways. Groups II and V did not show obvious consensus 

pathway features. The distinct pathway features for many of the patient groups suggested that 

MPAC is capable of building biomedically relevant patient pathway profiles and predicting 

patient groups. 

MPAC predicted the above patient groups with distinct pathway profiles by integrating 

multi-omic data. We found that the same groups and pathways cannot be found by examining 

individual omic data types alone. Starting from either CNA or RNA-seq data, we conducted two 
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tests: one performing GO enrichment on each single omic data type and then grouping enriched 

GO terms, like the MPAC workflow, and the other by grouping patients via their single omic data 

first and then finding commonly enriched GO terms within each group. In the first test, HPV+ 

patients’ CNA data had very few GO terms enriched, and even these were only enriched in a 

small number of patients (Supplementary Figure 2A). As a result, no group prediction could be 

made. RNA-seq data was more informative than CNA data, and four patient groups could be 

predicted (Supplementary Figure 2B). Groups III and IV were related to cell cycle and 

morphogenesis pathways, respectively, both of which had also been observed in the MPAC 

results. The immune response patient group predicted by MPAC, however, was not observed 

from CNA or RNA-seq data, indicating a unique insight from MPAC. For HPV- patients, CNA 

data did not lead to any patient groups due to insufficient significantly enriched GO terms 

(Supplementary Figure 1B). RNA-seq data led to six groups. Two of them were related to cell 

cycle and immune response (Supplementary Figure 1C), which were also observed in MPAC 

results.  

To demonstrate the robustness of this result, we performed another test by grouping 

patients first and followed by GO enrichment. We applied K-means clustering to the RNA-seq 

data and divided HPV+ patients into two to six groups. The cluster membership remained stable 

under different numbers of groups (Supplementary Figure 3A). Therefore, we used six groups 

(Supplementary Figure 3B) for GO enrichment analysis. Groups I, II, IV, and V did not have any 

top GO terms related to immune response (Supplementary Figure 3 C–D and F–G). Group III 

was predominantly enriched with cell cycle-related GO terms with only one GO term 

(lymphocyte activation) related to immune response (Supplementary Figure 3E). Moreover, this 

single term was less consistently enriched than the >20 immune response GO terms from 

MPAC (Figure 2A). Group VI contained only one patient and was skipped. We performed the 
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same analysis on CNA data. Stable grouping membership was observed (Supplementary 

Figure 4A), and the six-groups result was used for GO enrichment analysis (Supplementary 

Figure 4B). No GO term was significantly over-represented in groups I or II, while all the other 

four groups contained only one patient each and were skipped. In summary, by jointly modeling 

both CNA and RNA-seq data, MPAC identified a large and unique HPV+ patient group related 

to immune response that could not be recovered from either individual omic data type alone.  

 

Proteins from the HPV+ immune response group correlated with patient overall survival 

Given that MPAC discovered an immune response patient group that could not be found 

by CNA or RNA-seq data alone, we were interested in pathway submodules and key proteins 

shared by the eleven patients in this group. We defined a pathway submodule as a pathway 

subset containing ≥ 5 entities, at least one of which was a protein with input omic data. We 

required that all submodule entities must have activated or repressed inferred pathway levels in 

the eleven patients. Four such submodules were identified (Figure 3A). They contained five to 

twelve entities and collectively eight proteins (Figure 3A, red ovals). Seven of these proteins, 

CD28, CD86, TYK2, IL12RB1, LCP2, FASLG, and CD247, had activated inferred pathway 

levels in all eleven group I patients (Figure 3B), suggesting a consensus functional role across 

patients within this immune response group. Interestingly, prior studies collectively showed that 

gene expression levels of the seven proteins except for LCP2 are correlated with immune 

infiltration in HNSCC (Zhu et al., 2022; Wang et al., 2022; He et al., 2022; Chi et al., 2022; Chen 

et al., 2022; de Vos et al., 2020). Below we show a similar correlation for the patient group 

analyzed here.  

To understand what factors determine pathway levels of these seven proteins, we 

developed an approach for pathway state visualization in MPAC. We transformed the 
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continuous-valued inferred pathway levels to discretized pathway states with the values 

activated, normal, or repressed. The resulting plots presented a protein’s direct pathway 

network interaction partners and all associated pathway state information for that protein and its 

partners, under the reasoning that a determinant of a functionally-implicated protein’s pathway 

state would have correlated states across all patients (Supplementary Figures 5-7). For 

example, in all 11 patients, CD86’s pathway states agreed with its RNA states as well as with 

six of its seven downstream interacting complexes (Supplementary Figure 5B), indicating their 

parallel roles in determining CD86’s pathway states. In contrast, CD86’s two downstream gene 

families and one downstream complex had states that disagreed with CD86 in one or three 

patients, respectively (Supplementary Figure 5B), suggesting a less influential role. CD86’s 

CNA states, to the other extreme, did not agree with CD86’s pathway state in any patient 

(Supplementary Figure 5B). In one patient, TCGA-CR-6487, CD86’s CNA state is repressed 

and its RNA state is activated (Figure 3C). If studying CD86 from individual genomic datasets 

without any pathway information, it would be hard to determine CD86’s functional protein state, 

illustrating the advantages of our pathway-based approach. Another feature of MPAC’s 

visualization function was showing patient-to-patient variations on pathway determinants. 

FASLG, for instance, had many upstream and downstream neighbors, of which only two 

upstream and one downstream complexes had pathway states correlated with FASLG, while all 

the other neighbors had various states across the eleven patients (Supplementary Figures 7B 

and 8). Such diverse states of FASLG’s neighbors likely reflected subtle cancer mechanism 

differences within this patient group and MPAC can highlight these differences. 

To examine potential clinical implications of these seven proteins, we evaluated their 

correlation with the patients’ overall survival. For proteins from the same submodule, we used 

their inferred pathway levels to divide the 71 HPV+ exploratory patients into two groups: those 
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with all relevant proteins in activated pathway levels and those that were not. The overall 

survival distributions of patients from the two groups were compared and evaluated by a log-

rank test. For every submodule, although the improvement was not always statistically 

significant, the set of patients with proteins with activated pathway levels always had a better 

survival distribution than the set that did not (Supplementary Figure 9A). In particular, when 

patients had both CD247 and FASLG with activated pathway levels, their overall survival was 

significantly better than those that did not (log-rank P=0.00098). Moreover, dividing the same 

set of patients by the activation of all seven proteins (Figure 3D) or individual proteins 

(Supplementary Figure 9B) also produced overall survival advantages in all cases but with log-

rank P ranging from 0.0033 to 0.17. Similar analysis revealed the same trend using the measure 

of progression-free survival (Supplementary Figure 10). The good correlation with patient overall 

survival and reduced tumor progression indicated potential clinical implications of these seven 

proteins individually and collectively.  

Since the seven implicated proteins were identified from the immune response patient 

group, we explored the relationship between these proteins and immune response. We used a 

bulk RNA-seq deconvolution method, CIBERSORT in absolute mode (Newman et al., 2015), to 

estimate immune cell composition for the 71 HPV+ exploratory patients and correlate them with 

inferred pathway levels of the seven proteins. CIBERSORT-inferred cell composition was 

comparable across cell types within the same patient as well as across patients for the same 

cell type. As in the survival analysis shown in Figure 3D, patients were stratified by whether or 

not they had all seven proteins with activated pathway levels. For patients in this ‘activated 

group’, the tumor sample always had substantially higher compositions of T follicular helper 

cells, CD8+ T cells, regulatory T cells, and M1 and M2 macrophages (Figure 3E; 

Supplementary Figure 11A). Thus, similar to the prior results cited above, this correlation 
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indicates that patients with the seven proteins with activated pathway levels usually had higher 

levels of immune cell infiltration and further suggests that inferred pathway levels of the seven 

proteins can serve as indicators for immune infiltration. 

  

Independent validation set confirmed MPAC’s immune response group and key proteins 

We used the independent validation set of eighteen HPV+ patients that was held out 

during MPAC model development and exploratory set analysis to further assess the generality 

of the seven key proteins identified from the immune response patient group. Thus, we repeated 

the same MPAC analysis on this validation set, splitting the eighteen validation set patients into 

two groups. The six patients in the resulting validation group II again had many significantly 

enriched GO terms related to immune response (Figure 4A). None of the patients with the 

originally implicated submodule proteins with activated pathway levels died in the interval of 

record, a notably better overall survival record than those with submodule proteins in normal or 

repressed pathway levels (Supplementary Figure 12A). Similarly, the overall survival rate of the 

three patients with all seven proteins in activated pathway levels was always better than the 

other fifteen patients in the validation set (Figure 4B). The same trend was observed when 

stratifying patients by individual proteins (Supplementary Figure 12B). The lack of statistically 

significant differences between two patient groups was due to the small number of patients 

(Figure 4B; Supplementary Figure 12). 

We further examined if the activated pathway levels of the seven proteins also correlated 

with immune cell infiltration, using the same analysis as for the exploratory set. Validation set 

patients with the seven proteins in activated pathway levels often had higher fractions of T 

follicular helper cells, CD8+ T cells, regulatory T cells, M1 and M2 macrophages (Figure 4C), 

the same as we observed in the exploratory set, although the difference was not significant 
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most likely due to the small sample size (Supplementary Figure 11B). Altogether, the 

independent validation set supported MPAC’s predictions in the exploratory set and greatly 

reduced the possibility of bias from using the exploratory set alone. 

  

An interactive MPAC Shiny app supports visualization of results and new analyses 

We built an R Shiny app (https://github.com/pliu55/MPAC_Shiny) to display all the 

results generated from this work and support new analyses of the data. It shows enrichment 

results from 2,805 pathways, inferred pathway levels of 19,477 pathway entities, CNA and RNA 

states of 6,251 pathway proteins, and overall survival and immune cell compositions of 492 

HNSCC patient samples. Moreover, it illustrates a protein’s pathway membership and network 

neighbors. On the landing page’s sidebar, users can choose one of the four TCGA-HNSCC 

datasets: HPV+ or HPV- combined with an exploratory or validation set. The MPAC app 

presents results at both the pathway- and protein-level. On the pathway-level page (Figure 5A), 

Shiny app Panel A displays pathway enrichment results similar to the ones shown in Figure 2, 

Figure 4A, and Supplementary Figure 1A. Users can enter any pathway(s) of interest to look at 

their enrichments in MPAC-defined patient groups. To understand which proteins lead to a 

pathway enrichment, Panel B shows inferred pathway levels of all the proteins from a pathway. 

For example, in the pathway ‘positive regulation of interleukin-2 biosynthetic process’, CD28, 

CD3E, CD4, CD80, CD86, and PTPRC have positive inferred pathway levels in a majority of 

group I HPV+ exploratory patient samples (Figure 5A), suggesting they are the determinants 

resulting in this pathway’s enrichment in group I patients. 

In Panel B, users can enter or select any pathway of interest to examine their proteins’ 

inferred pathway levels. At the protein-level page (Figure 5B), Panel C contains results for a 

group of user-specified proteins. It has three tabs displaying proteins’ inferred pathway levels, 
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overall survival and immune cell composition of patients stratified by proteins’ inferred pathway 

levels. These figures are similar to Figures 3B, 3D, 3E, 4B, and 4C; Supplementary Figures 9, 

11, and 12, with the flexibility of showing the results for any user-specified protein(s) on any of 

the four TCGA-HNSCC datasets. Panel D shows a heatmap of the CNA, RNA, and pathway 

states for any user-entered protein as well as pathway states of this protein’s pathway network 

neighbors. It is similar to Supplementary Figures 5-7 with the same flexibility as Panel C. In 

addition to the interactive data display, this app also contains documentation regarding re-

generating figures presented in this manuscript, related papers, future developments, and 

acknowledgement. In summary, the MPAC Shiny app provides a convenient way to explore all 

the results generated from this work, especially those not presented as figures in this 

manuscript.  

   

Discussion 

We presented MPAC as a computational framework for calculating inferred pathway 

levels, predicting patient groups with biologically meaningful pathway profiles, and identifying 

key proteins with potential clinical associations. One group of HNSCC patients was predicted to 

have alterations in immune response pathways, and this group could not be identified from CNA 

or RNA-seq data alone. This finding illustrates the advantages of our pathway-based multi-omic 

approach. MPAC can use prior knowledge of pathway interactions in the form of a pathway 

network to integrate CNA and RNA-seq data and infer proteins’ pathway behavior. A protein’s 

pathway behavior from MPAC was not solely inferred from its CNA or RNA but also its pathway 

neighbors (Figure 3C; Supplementary Figures 5-8). Analysis based on CNA and RNA-seq data 

alone would miss this important biological principle. 
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Our analysis showed that MPAC can predict patient groups with potentially relevant 

clinical properties by their pathway profiles. The results presented above (Figure 2 and 

Supplementary Figure 1) identified an immune response patient group in both HPV+ and HPV- 

HNSCC, which echoes a new subtype defined by recent studies. One study (Huang et al., 2021) 

applied a proteogenomic approach on 108 HPV- HNSCC patients. By considering CNA, RNA, 

miRNA, protein, and phosphopeptide data, the authors defined three subtypes of HNSCC: 

chromosome instability, basal, and immune. These subtypes mirrored the immune response 

patient groups MPAC identified in both HPV+ and HPV- patients. Moreover, the authors 

analyzed immune-hot tumors and revealed the presence of both cytotoxic immune cells (e.g., 

CD8+ T cells and M1 macrophages) and immunosuppressive cells (e.g., regulatory T cells and 

M2 macrophages). This is consistent with our analysis of HPV+ tumors stratified by inferred 

pathway levels of the seven proteins identified from the immune response patient group. Tumor 

samples with activated pathway levels of any of the seven proteins always had a higher fraction 

of CD8+ T cells, regulatory T cells, and M1 and M2 macrophages in both the exploratory and 

validation sets (Figures 3E and 4C). Second, a multi-omic analysis of thirty-three TCGA cancer 

types (Tiong et al., 2022) identified gene groups enriched by immune response as well as cell 

cycle, which were also observed in MPAC’s results (Figures 2 and 4A; Supplementary Figure 

1A). The agreement between these two studies supports MPAC’s discovery of the immune 

response patient group. 

Further, not only did the seven proteins identified by MPAC correlate with immune cell 

composition, but their activated pathway levels also correlated with better overall survival. This 

was demonstrated in our exploratory patient set (Figure 3D and Supplementary Figure 9) and 

confirmed by our validation set (Figure 4B and Supplementary Figure 12). The corroboration by 

the validation set illustrates a major strength of MPAC. To understand these seven proteins’ 
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clinical values and whether they could serve as biomarkers would require a prospective patient 

cohort, which is not available to us currently (As of May 6, 2024, according to cBioportal (de 

Bruijn et al., 2023), https://www.cbioportal.org/), the only HNSCC dataset that has both CNA 

and RNA-seq data available is from TCGA, which is used in this work). However, the analyses 

here demonstrated how the MPAC software could be applied in a prospective setting. 

MPAC has several advantages over the PARADIGM algorithm that it calls as a 

subroutine. MPAC uses a data-driven approach to define each genes’ genomic states based on 

both tumor and normal tissue samples, whereas PARADIGM arbitrarily assigns the top, middle 

and lower third of omic-ranked genes as activated, normal and repressed (Vaske et al., 2010). 

MPAC also provides downstream analyses on inferred pathway levels, including built-in 

permutation testing, defining altered pathways, predicting patient groups, and identifying key 

proteins with potential clinical implications. All of these functions have been implemented in an 

R package available through Bioconductor making it easier for others to use in their studies. 

The MPAC R Shiny app also supports convenient visualizations of the MPAC predictions. 

Multi-omic integration methods have been developed for diverse applications 

(Maghsoudi et al., 2022; Zitnik et al., 2023), such as embedding single-cell data (Ashuach et al., 

2023; Argelaguet et al., 2020), clustering cancer samples (Chauvel et al., 2020; Wang et al., 

2014), and pathway reconstruction (Tuncbag et al., 2016; Winkler et al., 2022; Paull et al., 

2013). Multi-omics analyses have been particularly prominent in cancer, with pathway 

enrichment (Paczkowska et al., 2020), representation learning (Leng et al., 2022), supervised 

prediction of cancer subtypes or patient outcomes (Poirion et al., 2021; Choi and Chae, 2023), 

and biologically interpretable neural networks (Wysocka et al., 2023) as representative areas of 

study. MPAC’s unique role in this methodological landscape is that through PARADIGM it 
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directly uses pathway interactions to combine information across omic data types, learn protein 

activities, and conduct downstream analysis with those protein activities.    

In this work, we limited the input multi-omic data to CNA and RNA-seq, given 

PARADIGM’s previous success with these two data types. With the availability of many other 

types of omic data from TCGA and the Clinical Proteomic Tumor Analysis Consortium (Huang 

et al., 2021) on large cohorts of cancer patients, time course multi-omic data (G. Stein-O’Brien 

et al., 2018), single-cell RNA-seq (Puram et al., 2017), spatial transcriptomics (Li et al., 2024; 

Lee et al., 2024), and spatial proteomics (Causer et al., 2023), one of our future goals is to 

make MPAC compatible with as many omic data types as possible. This requires extending the 

MPAC software as well as the input biological pathways to include knowledge on the relevant 

molecules and associated regulatory mechanisms. 

  

Methods 

Genomic and clinical datasets 

            We downloaded the TCGA HNSCC genomic datasets (Cancer Genome Atlas Network, 

2015) from NCI GDC Data Portal version 29.0 (https://portal.gdc.cancer.gov/), which was 

released on March 31, 2021. Gene-level copy number scores were used for CNA and 

log10(FPKM+1) values were used for RNA-seq. Patients’ HPV status was obtained from their 

biospecimen manifest files. Patients’ clinical data was downloaded from TCGA Pan-Cancer 

Atlas (Liu et al., 2018) via https://api.gdc.cancer.gov/data/1b5f413e-a8d1-4d10-92eb-

7c4ae739ed81. 492 HNSCC patients that had CNA, RNA-seq, and clinical data available were 

stratified by HPV status and then randomly divided into exploratory sets (71 HPV+ and 322 

HPV-) and validation sets (18 HPV+ and 81 HPV-). Importantly, only the exploratory set was 

used for all MPAC algorithm development and refinement. 
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MPAC’s pathway definitions were taken from the TCGA Pan-Cancer Atlas (Hoadley et 

al., 2018), which compiled interactions from NCI-PID (Schaefer et al., 2009), Reactome 

(Gillespie et al., 2022), and KEGG (Kanehisa et al., 2023) and superimposed them into a single 

network. The network included 19,477 entities, including 7,321 proteins, 9,349 complexes, 

2,092 families, 591 abstract processes, 15 miRNAs, 82 RNAs, and 27 other types of entities. It 

also included 45,313 interactions containing 2,133 activations and 401 repressions at the 

transcript-level, 7,723 activations and 1,083 repressions at the protein-level, 24,870 and 9,103 

memberships for complexes and families, respectively. The 2,085 BIological Process GO terms 

(Gene Ontology Consortium et al., 2023) for characterizing patient or cell line pathway alteration 

were downloaded from the DrugCell (Kuenzi et al., 2020) GitHub repository 

(https://github.com/idekerlab/DrugCell/blob/public/data/drugcell_ont.txt). GO terms from 

DrugCell had more distinct genes between parental and offspring terms because it required a 

parent to have ≥ 10 genes distinct from all child terms and have ≥ 30 genes more than any 

child. The root GO term (i.e., the ancestor of all the other GO terms), ‘biological process’, was 

not used in this study because it was not a specific functional description.      

  

MPAC workflow 

            For TCGA data, the signs of CNA focal scores were used to define activated, normal 

(i.e., focal score is exactly zero), or repressed CNA state as the input for MPAC. To define input 

RNA state, a gene’s RNA-seq expression levels from normal patient samples were fit to a 

Gaussian distribution. If a gene’s expression levels in tumor samples fell within two standard 

deviations from the mean of this distribution, the gene’s RNA state was defined as normal. 

Otherwise, its RNA state was repressed or activated depending on whether its expression level 

was below or above the two standard deviations from the mean. 
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MPAC ran PARADIGM in the default configuration (Vaske et al., 2010) except with a 

more stringent expectation-maximization convergence criteria of change of likelihood < 10-9 

under a maximum of 104 iterations. To prepare permuted input, paired CNA and RNA states 

were randomly shuffled between all the genes within the patient. 100 permuted samples were 

prepared per each real tumor sample resulting in 49,200 permuted samples in total for the 492 

patients. This large number of computational jobs were processed through UW-Madison’s 

Center for High Throughput Computing (Center for High Throughput Computing, 2006) with 

HTCondor (Thain et al., 2005). 

A pathway entity’s inferred pathway level from a real tumor sample was set to NA if it fell 

within three median absolute deviations of the inferred pathway levels from the corresponding 

100 permuted samples. This filtering helped to remove inferred pathway levels that could be 

observed by chance. Entities with non-NA inferred pathway levels were mapped to the input 

 pathway network. The largest connected subset of the pathway network with non-NA 

inferred pathway levels was kept for downstream analysis. Other entities not in this largest 

subset had their inferred pathway levels set to zero. This allowed us to focus on the entities that 

act together in pathways. 

After the filtering by permuted samples and the largest pathway subset, an entity’s 

pathway state was defined by the sign of its inferred pathway level, where a positive or negative 

inferred pathway level corresponded to an activated or repressed state, respectively, and a zero 

inferred pathway level corresponded to a normal state. Based on normal or altered pathway 

states, GO enrichment was calculated by Fisher’s exact test, and the p-values were adjusted by 

the Benjamini and Hochberg procedure. Similarly, GO enrichment was calculated for the CNA 

and RNA inputs by their normal or altered states.  
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Patients were grouped by their adjusted p-values from GO enrichment based on CNA, 

RNA, or inferred pathway levels. A clustering method originally designed for single-cell RNA-seq 

analysis was adapted, where a patient tumor sample was treated as a cell and the 

|log10(adjusted P)| was treated as a gene’s expression level. Gene variance was modeled by the 

modelGeneVar function from the scran package (Lun et al., 2016) (version 1.20.1), and the top 

100 genes were selected. Patients were grouped by the Louvain method from the igraph R 

package (Csárdi et al., 2024) (version 1.2.11) with 10 or 20 nearest neighbors for HPV+ or 

HPV-, respectively. 

Changes in newer versions of the igraph R package affected the reproducibility of our 

results but not the main conclusions from our analyses. Starting in igraph version 1.3, the 

Louvain method is no longer deterministic and different runs may generate different clustering 

results (https://github.com/igraph/rigraph/issues/539). To evaluate the impact of non-

deterministic clustering, we executed three independent batches of 10,000 random Louvain 

clustering runs. We used the Adjusted Rand Index (ARI) to measure the difference between 

groups from these random runs with the original groups from igraph version 1.2.11. The median 

ARIs were 0.92, 1.00, and 0.78 for the HPV+ exploratory set, HPV+ validation set, and HPV- 

exploratory set, respectively, (HPV- validation set groups were not used in this analysis), 

indicating small variations in the patient cluster membership. The 11- and 6-patient immune 

groups in the HPV+ exploratory and validation set were largely unchanged (identical in >9,200 

and >8,800 out of 10,000 runs, respectively). For the HPV- exploratory set, the top five grouping 

results in each batch have either 30- or 32-patient groups and both groups are enriched with 

immune response GO terms. In summary, despite the randomness introduced in igraph version 

1.3, our findings are still maintained.    
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To summarize pathway features for a group, we plotted heatmaps of log10(adjusted P) 

values for GO terms with adjusted P < 0.05 in 100% of the patients from the same group (e.g., 

Figure 2 and Supplementary Figure 1A). When very few GO terms met this criterion, we 

lowered the percentage threshold (e.g., ≥ 80% in Figure 4A,  ≥ 60% in Supplementary Figure 

1C) or by specifying a minimum number (e.g., ≥ 3 in Supplementary Figure 1B) of patients in 

order to include more GO terms. 

For survival analysis, we used the inferred pathway levels of one or multiple proteins to 

stratify patients into two groups: those with all the protein(s) in activated pathway states (i.e., 

positive inferred pathway level values) and those not. A log-rank test p-value was calculated to 

compare the survival distribution of the two groups.  

  

Software and data availability 

The MPAC package is available at Bioconductor (https://bioconductor.org/packages/MPAC) and 

archived on Zenodo (https://doi.org/10.5281/zenodo.10805479). MPAC’s Shiny app is 

accessible at https://connect.doit.wisc.edu/content/122/. The source code for MPAC’s Shiny app 

is available at GitHub (https://github.com/pliu55/MPAC_Shiny) and archived on Zenodo 

(https://doi.org/10.5281/zenodo.11623974). Both the R package and Shiny app are available 

under the GPL-3.0 license. 
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Figure legends 

Figure 1. Overview of the MPAC workflow. MPAC calculates inferred pathway levels (IPLs) 

from real and permuted CNA and RNA data. It filters real IPLs using the permuted IPLs to 

remove spurious IPLs. Then, MPAC focuses on the largest pathway subset network with filtered 

IPLs to compute Gene Ontology (GO) term enrichment, predict patient groups, and identify key 

group-specific proteins. 
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Figure 2. MPAC predicted functionally distinct patient groups in the HPV+ exploratory 

set. Patient groups were derived from GO term enrichment based on inferred pathway levels 

(IPLs).   

  

Figure 3. Seven proteins identified in the immune response patient group from HPV+ 

exploratory set correlated with patient overall survival. (A) Consensus pathway 

submodules in the eleven immune response patient samples from group I. Proteins are colored 

in red and other pathway entities are black; (B) inferred pathway levels (IPLs) of submodule 

proteins in the 71 HPV+ exploratory set samples. Except for CD3G, which had both positive and 

negative IPLs (denoted by *) in group I, the other seven proteins had positive IPLs; (C) CNA, 

RNA, and pathway states of CD86 as well as pathway states of its pathway network neighbors 

in a group I patient sample TCGA-CR-6487. B7-1 homodimer/B7-2 (family), B7 family (family), 

and phospho CD28 B7-1/B7-2 (complex) do not have activated pathway state in all the eleven 

group I patients (Supplementary Figure 5B) and thus are not included in Figure 3A; (D) Overall 

survival of the HPV+ exploratory set stratified by IPLs of the seven proteins combined; (E) 

HPV+ exploratory set immune cell compositions stratified by IPLs of all seven proteins 

combined. 

  

Figure 4. Independent validation set confirmed MPAC’s immune response group and key 

proteins. (A) Grouping of HPV+ validation set patient samples. The selection threshold was 

lowered to ≥80% in order to include more GO terms; (B) Overall survival of the HPV+ validation 

stratified by the inferred pathway levels (IPLs) of all the seven submodule proteins combined; 

(C) HPV+ validation set immune cell compositions stratified by the IPLs of all the seven proteins 

combined.   
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Figure 5. Screenshots of an R Shiny app displaying MPAC results from the HPV+ 

exploratory set. (A)The upper panel shows enrichment of multiple user-selected pathways and 

the lower panel shows protein inferred pathway levels (IPLs) from a user-selected pathway; (B) 

The upper panel shows IPLs of multiple user-selected proteins and the lower panel shows the 

pathway states of a user-selected protein and its pathway neighbors as well as its CNA and 

RNA state.  

  

Supplementary figure legends 

Supplementary Figure 1. HPV- exploratory set patient samples grouped by GO term 

enrichment based on IPL (A), CNA (B), or RNA (C). The selection threshold was lowered to ≥ 

3 (B) or ≥ 60% (C) to include more GO terms to avoid bias.  

  

Supplementary Figure 2. HPV+ exploratory set patient samples grouped by GO term 

enrichment based on CNA (A) or RNA (B). The selection threshold was lowered to ≥ 2 (A) or 

≥ 60% (B) to include more GO terms to avoid bias.  

  

Supplementary Figure 3. HPV+ exploratory set patient samples grouped by MPAC’s input 

RNA states. (A) Clustering results by K-means under a pre-specified total number of groups 

ranging from two to six; (B) Clustering results by K-means with a pre-specified six groups; (C–

G) Top significantly enriched GO terms in group I (C), II (D), III (E), IV (F), and V (G). The 

selection threshold was lowered to ≥ 95% (F), ≥70% (G), or  ≥50% (C–E) in order to include 

more GO terms to avoid bias. 
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Supplementary Figure 4. HPV+ exploratory set patient samples grouped by MPAC’s input 

CNA states. (A) Clustering results by K-means under a pre-specified total number of groups 

ranging from two to six; (B) Clustering results by K-means with a pre-specified six groups. 

Group III, IV, V, and VI contained one sample each. 

 

Supplementary Figure 5. CNA, RNA, and pathway states of CD28 (A), CD86 (B), and LCP2 

(C), as well as pathway states of their pathway network neighbors in the eleven group I 

patients.  

  

Supplementary Figure 6. CNA, RNA, and pathway states of TYK2 (A) and IL12RB1 (B), as 

well as pathway states of their pathway network neighbors in the eleven group I patients.  

 

Supplementary Figure 7. CNA, RNA, and pathway states of CD247 (A) and FASLG (B), as 

well as pathway states of their pathway network neighbors in the eleven group I patients.  

 

Supplementary Figure 8. CNA, RNA, and pathway states of FASLG as well as pathway 

states of its pathway network neighbors in a group I patient TCGA-CR-7385.  

  

Supplementary Figure 9. Overall survival of HPV+ exploratory set patient samples 

stratified by the inferred pathway levels (IPLs) of proteins from the same submodule (A) 

or individual protein (B). Not all overall survival tests were statistically significant under a P < 

0.01 cutoff. 
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Supplementary Figure 10. Progression-free survival of HPV+ exploratory set patient 

samples stratified by the inferred pathway levels (IPLs) of all the seven proteins 

combined (A); proteins from the same submodule (B), or individual protein (C). Not all 

progression-free survival tests were statistically significant under a P < 0.01 cutoff. 

  

Supplementary Figure 11. Immune cell compositions stratified by the inferred pathway 

levels (IPLs) of all the seven proteins combined for HPV+ exploratory (A) and validation 

(B) set. Adjusted Wilcoxon test P on the cell composition difference between two groups of 

patient samples were shown for each cell type. Eosinophil was not found in either the 

exploratory or validation sets. T cell CD4+ naïve was not found in the validation set. 

  

Supplementary Figure 12. Overall survival of HPV+ validation set patient samples 

stratified by the inferred pathway levels (IPLs) of proteins from the same submodule (A) 

or individual protein (B). Not all overall survival tests were statistically significant under a P < 

0.01 cutoff. 
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Supplementary Figure 5

11 group I patient samples in HPV+ exploratory set
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Supplemental Figure 6

11 group I patient samples in HPV+ exploratory set
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Supplementary Figure 7
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Supplementary Figure 8
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