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Abstract 36 

The development of multicellular tissues requires both local and global coordination of cell polarization, 37 

however, the mechanisms underlying their interplay are poorly understood. In Arabidopsis, leaf epidermal 38 

pavement cells (PC) develop a puzzle-piece shape locally coordinated through apoplastic auxin signaling. 39 

Here we show auxin also globally coordinates interdigitation by activating the TIR1/AFB-dependent 40 
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nuclear signaling pathway. This pathway promotes a transient maximum of auxin at the cotyledon tip, 41 

which then moves across the leaf activating local PC polarization, as demonstrated by locally uncaged auxin 42 

globally rescuing defects in tir1;afb1;afb2;afb4;afb5 mutant but not in tmk1;tmk2;tmk3;tmk4 mutants. Our 43 

findings show that hierarchically integrated global and local auxin signaling systems, which respectively 44 

depend on TIR1/AFB-dependent gene transcription in the nucleus and TMK-mediated rapid activation of 45 

ROP GTPases at the cell surface, control PC interdigitation patterns in Arabidopsis cotyledons, revealing a 46 

mechanism for coordinating a local cellular process with the development of whole tissues. 47 

 48 

Keywords 49 

Cell polarity, auxin transport, pavement cell morphogenesis, global coordination, local coordination, TMK, 50 

TIR1/AFBs 51 

Introduction  52 

Cell polarization along the plane of an organ’s surface, known as planar cell polarity (PCP), must 53 

coordinate signaling at two different functional levels; locally between adjacent cells and globally across 54 

the entire tissue 1. Despite the critical importance of PCP in various developmental processes in animals 55 

and human health 2,3, it remains poorly understood how the two scales of signaling are coordinated and 56 

linked to the regulation of tissue and organ development. In animals, including humans, PCP is modulated 57 

by peptidyl WNT signals via both cytoplasmic and nuclear signaling pathways 4. In plants, a key signal 58 

controlling pattern formation and morphogenesis is auxin 5. Auxin is polarly transported across cells, 59 

primarily via the PIN family of auxin transporters 6, giving rise to concentration gradients essential for 60 

many developmental processes such as establishment of the planar polarity during root hair initiation 7,8.  A 61 

long-range auxin gradient along the root was found to coordinate with a short-range auxin signal that 62 

promotes root hair initiation, but the underlying signaling pathways are not known 7,8. Auxin signal 63 

transduction is mediated by two main perception modules. The nuclear TRANSPORT INHIBITOR 64 

RESPONSE 1/ AUXIN-SIGNALING F-BOX (TIR1/AFB) module regulates nuclear gene expression 9, 65 

whereas a non-canonical perception module, which relies on the auxin-binding protein 1 (ABP1) and 66 
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ABP1-like (ABL) proteins and their interacting partners TRANSMEMBRANE KINASES (TMKs), 67 

typically regulates plasma membrane activities and cytoplasmic responses 10–16. Whether and how these 68 

two auxin signaling modules coordinately regulate a given auxin-mediated process remains unknown 17.  69 

Here, we investigate their functional relationship and connections to local and global coordination of cell 70 

polarization during the planar interdigitation to form the puzzle-piece-shaped pavement cells (PCs) in 71 

Arabidopsis embryonic leaves (cotyledons) 18,19. Our previous studies suggest that TMK-perceived auxin 72 

locally coordinates PC interdigitation by regulating Rho GTPase-based signaling pathways, leading to 73 

cytoskeletal re-organization and planar cell polarization 10,12,20–23.  In this study, we show that nuclear 74 

TIR1/AFB auxin receptors globally coordinate PC interdigitation throughout the cotyledon via the 75 

transcription-based auxin signaling pathway and act upstream of the TMK module by generating an auxin 76 

signal that activates TMKs. Thus, we propose a hierarchical self-organizing signaling system that controls 77 

pattern formation in Arabidopsis cotyledons by integrating the local, cellular-level coordination of cell 78 

polarity with its global coordination at the tissue level. This design principle may be analogous to the 79 

regulation of pattern formation by WNT signaling in animals, which involves gene activation as well as 80 

Rho GTPase-dependent signaling.  81 

 82 

Results 83 

 84 

The spatiotemporal wave of PC interdigitation correlates with the dynamic auxin distribution with a 85 

maximum at the cotyledon tip. 86 

To understand the global coordination of PC interdigitation, we monitored PC shape in the adaxial 87 

epidermis of expanding embryonic leaves (cotyledons) at 0, 24, 36, and 72 hours after plating seeds (HAP).  88 

Software-assisted quantification 24 of the Margin Roughness (MR), which accounts for early emerging lobes 89 

otherwise undetectable by currently automated approaches 24–26 (Figure 1A), revealed a dominant presence 90 

of cells with little or no lobes at 0 and 24 HAP (prior to seed germination) (Figure 1B, C). Then, PC 91 

interdigitation was initiated coinciding with germination, spreading from the apical region to upper-mid 92 
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regions at 36 HAP (Figure 1B, C, S1A) and finally reaching the base of the cotyledon at 72 HAP (Figure 93 

1B, C). These PC shape changes imply the existence of some global developmental signal(s), starting at 94 

the tip and spreading to the remaining parts of the cotyledon.  95 

We speculated that auxin might be such a global coordinator of PC interdigitation as it is the major 96 

morphogenetic signal, which forms concentration gradients and/or maxima 27 and is required and sufficient 97 

to promote PC interdigitation 20. Thus, we examined DR5::GUS expression, which reports auxin-responsive 98 

gene transcription.  At 24 HAP (prior to the initiation of PC interdigitation), DR5::GUS expression was 99 

first detected at the tip and marginal regions close to the tip of cotyledons, and at 36 HAP, the apical GUS 100 

signal became stronger. At 48-60 HAP GUS signal spreaded to a larger area from the tip, suggesting an 101 

auxin maximum at the tip (Figure 1D). The dynamic changes in GUS activity were corroborated by 102 

quantification of GUS activity in a fluorometric assay (Figure 1E). A tip-high auxin maximum is consistent 103 

with direct auxin measurements in tobacco leaves, which show an auxin maximum at the tip of the youngest 104 

leaves 28. Furthermore, imaging of DII-Venus, an auxin reporter based on the auxin-induced degradation of 105 

the DII domain found in the AUX/IAA transcriptional repressors 29, suggested the existence of a transient 106 

auxin maxima along the proximodistal axis of the cotyledon (Figure 1F, G). The reverse DII-Venus 107 

gradient was quite evident between 22 and 28 HAP (Figure 1G). After that, the DII-Venus signal was weak 108 

and no longer exhibited a gradient or maximum (Figure 1F, G). Altogether, we concluded that the 109 

progressive activation of PC interdigitation from the cotyledon tip towards the base is preceded by the 110 

formation of a transient auxin maximum at the tip of cotyledons. 111 

 112 

The auxin maximum and dynamic wave of PC interdigitation is modulated by cytokinin 113 

Both DR5::GUS and reverse DII-Venus signals indicate the existence of dynamic tip-high auxin 114 

maxima. However, the two reporters clearly exhibited different dynamics. The former persisted beyond 36 115 

HAP, whilst the latter was very transient, occurring between 22 and 28 HAP.  The difference might be 116 

explained by the nature of these two different reporters: DII-Venus more directly reflects the input of auxin 117 
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concentrations 29, whereas DR5::GUS indicates more downstream transcriptional output, thus also 118 

integrating auxin-independent signals such as cytokinins or brassinosteroids 30,31. 119 

Cytokinin acts in a manner opposite to auxin in many developmental processes 32,33 and suppresses 120 

PC interdigitation acting upstream of ROP signaling 34.  Thus, we hypothesized that cytokinin may suppress 121 

auxin-induced gene transcription explaining the difference between the DR5::GUS and DII-Venus 122 

reporters. Consistently, the cytokinin signaling marker ARR5::GUS 35 was excluded only from the apical 123 

and partially excluded from the marginal regions, an expression pattern complementary to DR5::GUS 124 

(Figure S1B). Indeed, the over-activation of cytokinin signaling by ARR20 overexpression dramatically 125 

reduced DR5::GUS expression in young cotyledons (Figure S1B). In contrast, DR5::GUS was ectopically 126 

activated throughout the un-germinated or 24-HAP  cotyledons, when cytokinin signaling was blocked by 127 

ARR7 overexpression or in the ahk3 cre1 mutant, which lacks the two redundant cytokinin receptors AHK3 128 

and CRE1 (Figure S1C). Ectopic DR5::GUS expression was associated with the premature activation of 129 

PC interdigitation throughout the cotyledon in un-germinated seeds (Figure S1C). Furthermore, exogenous 130 

auxin treatment increased PC interdigitation equally in Col-0 as in ARR20-OX plants (Figure S1D, E). 131 

These results suggest cytokinin signaling acts as a developmental brake to prevent premature activation of 132 

PC interdigitation in un-germinated cotyledon by suppressing nuclear auxin responses. 133 

Exogenous cytokinin treatment restricts the TIR1/AFB-based nuclear transcriptional auxin 134 

responses to the tip and margin of cotyledons at 24-72 HAP (Figure S1F). However, at this stage, 135 

endogenous cytokinin signaling did not suppress the tip-to-base progressive activation of PC interdigitation 136 

although it suppresses DR5::GUS expression in the center and base (Figure 1C, D). These results not only 137 

revealed a role of cytokinin in restricting the transcriptional auxin response gradient mediating PC 138 

interdigitation but also suggest that the PC interdigitation process in individual cells may be directly 139 

activated by auxin coming from the cotyledon tip. 140 

 141 

 142 

 143 
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Ectopically-generated local auxin maxima induce global changes in PC interdigitation. 144 

Based on the above observations, we hypothesized the auxin maximum at the tip of cotyledons acts 145 

globally to promote PC interdigitation throughout the entire cotyledon surface. To test this, we first 146 

conducted surgical removal of cotyledon tips from 24 HAP seedlings, and quantified interdigitation after 1 147 

day. The mTalin-GFP expression indicated that cotyledons remained viable after tip removal (Figure S2A). 148 

Tip removal greatly inhibited PC interdigitation in the central parts of cotyledons (Figure S2A, B), 149 

supporting the importance of the auxin maximum at the cotyledon tip.  150 

Given tight regulation of spatial distribution of auxin in plants, we were interested in whether the 151 

auxin maximum at the cotyledon tip acts globally to promote PC interdigitation. For this, we created ectopic 152 

local auxin maxima using UV light-sensitive caged auxins [caged NAA and IAA, (2,5-153 

dimethoxyphenyl)(2-nitrobenzyl), DMPNB-NAA and DMPNB-IAA, respectively] (Figure 2A, S2C). 154 

Carefully calibrated UV radiation generated no apparent cell damage or background fluorescence (Figure 155 

S2D). Localized UV irradiation generated a local auxin increase measured in 24 HAP cotyledons of the 156 

ratiometric auxin reporter R2D2 (Figure 2B, C). Nanomolar auxin concentrations were used for these 157 

experiments aimed to detect rapid protein degradation. Uncaged auxin is detectable even at a single-cell 158 

resolution (Figure S2E), and is consistent with previous reports in tobacco cells 36,37. Furthermore, the 159 

TIR1/AFBs inhibitor auxinole blocked the response to uncaged auxin 38, ruling out non-specific effects as 160 

the cause of DII-Venus degradation (Figure S2E). Importantly, DR5::GFP expression was induced in the 161 

entire cotyledon within 20 hours after the UV treatment (Figure S2F).  162 

We then performed auxin uncaging near the central portion of cotyledons overexpressing ARR20 163 

(ARR20-OX), which suppressed the initial auxin accumulation at the tip and PC interdigitation (Figure 164 

2D). The concentration of caged auxin used for these assays was in the micromolar range as older seedlings 165 

(3.5 DAP) already formed the epidermal cuticle and were much less permeable to DMPNB-NAA. This 166 

ectopically induced auxin maximum promoted the PC interdigitation in ARR20-OX cotyledons in the 167 

region contiguous with the uncaging (Figure 2D, E). The effects were detectable locally (within the UV-168 

treated region) as early as 15 h after uncaging (Figure S2G) and globally (outside the UV-treated region) 169 
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at 40 h after uncaging (Figure 2D, E). Cotyledons treated with locally uncaged auxin showed increased 170 

lobe number per cell and increased margin roughness (Figure 2F). These results indicate that a local auxin 171 

maximum promotes PC interdigitation in the entire cotyledon epidermis, supporting our hypothesis that a 172 

tip auxin maximum globally coordinates PC morphogenesis in cotyledons. 173 

 174 

TIR1/AFB-based nuclear pathway generates the auxin signal for the activation of PC interdigitation. 175 

Given the self-organizing nature of auxin 5, we speculated that TIR1/AFB-based transcriptional 176 

auxin signaling might be involved in the generation of the tip auxin maximum in cotyledons.  We analyzed 177 

PC phenotype in cotyledons of the quintuple loss-of-function mutant tir1-1 afb1-3 afb2-3 afb4-8 afb5-5 178 

(tir1Qt) 39 because AFB3 is the only member of the nuclear auxin receptor family with very low expression 179 

in the cotyledon epidermis (Figure S3A). Like previous findings in the tir1afb123 quadruple mutant 180 

(tir1Qm) 40, siblings from a homozygous tir1Qt line displayed variable seedling phenotypes, which we 181 

grouped into five classes (Figure S3B). Among them, class III (12%) persistently showed a distinctive 182 

aborted root and reduced PC interdigitation (Figure S3B). tir1Qt III cotyledons showed PC interdigitation 183 

defects similar to those in tmk1234 (tmkQ) (Figure 3A, S3C), a previously reported defect 10, which was 184 

partially rescued with TMK1-GFP (Figure S3D). Interestingly, tir1Qt III cotyledons responded to 185 

treatment with 20 nM NAA by increasing their lobe number per cell and margin roughness, same as in 186 

wild-type cotyledons (Figure 3A, B and S3E). The auxin responsiveness in the tir1Qt auxin receptor 187 

mutant is in sharp contrast to the tmk1234 (tmkQ) mutant, which is fully insensitive to auxin-induced PC 188 

interdigitation (Figure 3A, B and S3E).   189 

The responsiveness of tir1Qt to auxin could be due to the possible residual signaling activity from 190 

AFB3. To test this, we treated the tir1Qt mutant with auxinole, which interferes with the TIR1/AFB-191 

dependent degradation of AUX/IAA 38. Treatment of wild-type seedlings with auxinole fully reproduced 192 

tir1Qt class III PC phenotypes (Figure S4A) and completely blocked TIR1/AFB-dependent auxin 193 

responsiveness measured by histochemical assay using DR5::GUS and by fluorescence using DR5v2 194 

reporter (Figure S4B).  However, tir1Qt cotyledons treated with auxinole remained responsive to NAA-195 
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induced PC interdigitation (Figure S4C). Notably, tir1Qt cotyledons displayed an absence of interdigitation 196 

gradient along the proximodistal axis (Figure S4D), implying the importance of this auxin signaling 197 

pathway in the global coordination. Moreover, single-cell tracking showed that 100 nM NAA induced the 198 

formation of new lobes and increased margin roughness in tir1Qt PCs even in the presence of auxinole 199 

(Figure 3C, D). Taken together, our results indicate that TIR1/AFB-based signaling leads to the generation 200 

of an auxin signal that directly activates the TMK-dependent PC interdigitation (Figure 3E).  201 

The above results with auxinole treatment also suggest that TIR1/AFB-based signaling in PC 202 

interdigitation acts to regulate nuclear gene expression, independent of the non-transcriptional function of  203 

TIR1/AFBs 41. We further tested this by analyzing PC phenotypes in mutants affecting other nuclear 204 

components of the TIR1/AFB signaling pathway. By screening available mutations that stabilize Aux/IAA 205 

proteins, which repress TIR1/AFB-induced gene expression, we found that iaa18D (G99E) 42 showed very 206 

strong defects in PC shape formation compared to wild-type seedlings (Figure 4A and S4E). Similar to 207 

tir1Qt, the defects of PC interdigitation in iaa18D were restored by exogenously applied auxin (Figure 4B). 208 

This further corroborates the importance of TIR1/AFB-based transcriptional auxin signaling in promoting 209 

PC interdigitation.  210 

Finally, we asked if local auxin could overcome defects in TIR1/AFB-dependent global 211 

coordination of PC interdigitation, as we would expect if TIR1/AFB-dependent nuclear auxin signaling is 212 

needed to generate the tip-high auxin maximum. Thus, we locally increased auxin in Col-0 wild type and 213 

tirQt III cotyledons (Figure 4C), and in both genotypes observed that local uncaging of auxin significantly 214 

increased the lobe number per cell within and outside of the uncaging region (Figure 4D, E). This indicates 215 

a global response to local uncaging of auxin in the tir1Qt, but not in tmkQ cotyledons (Figure 4D, E). 216 

Altogether, our results suggest that the TIR1/AFB-based nuclear pathway generates an apical auxin 217 

maximum that acts globally in promoting PC interdigitation in Arabidopsis cotyledons. 218 

 219 
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The TIR1/AFB pathway activates the expression of auxin-biosynthetic genes. 220 

We next investigated how TIR1/AFB-based transcriptional signaling activates the formation of tip-221 

localized auxin maximum in cotyledons. Mutations in YUC or IBR genes, which are involved in the YUC-222 

TAA and indole-3-butyric acid (IBA) auxin biosynthesis pathways 20,43, respectively, cause defects in PC 223 

interdigitation. We examined whether the expression of these auxin-biosynthetic genes was affected in the 224 

tir1Qt mutant. Quantitative PCR analysis showed that mRNA levels for ECH2 and IBR10, which are 225 

functionally redundant and crucial for the IBA-to-IAA conversion pathway 44, were greatly reduced in 226 

tir1Qt young cotyledons (Figure 5A, S5A, B).  Furthermore, auxin-induced ECH2 and IBR10 gene 227 

expression was detected in Col-0 wild type but not in tir1Qt (Figure S5B, C). Consistently, the double 228 

mutant ech2-/-;ibr10-/- shows a strong defect in PC interdigitation. Notably, this strong PC phenotype can 229 

be rescued with either YFP-IBR10 or YFP-ECH2 (Figure S5D, E). Furthermore, DR5::GUS expression at 230 

the tip of cotyledons was essentially eliminated in the ech2-/-;ibr10-/- double mutant, consistently with 231 

their PC phenotype (Figure 5B).  Finally, exogenous auxin fully restores the PC interdigitation defect in 232 

the ech2-/-;ibr10-/- mutant (Figure 5C-D). These results indicate that the IBA-dependent auxin 233 

biosynthetic pathway is regulated by the TIR1/AFB-based transcriptional signaling and contributes to the 234 

tip-high auxin maximum. 235 

 236 

TIR1/AFB-dependent auxin signal locally activates ROP signaling and PC interdigitation. 237 

The auxin signal generated by the TIR1/AFB pathway may directly activate TMK-dependent ROP2 and 238 

ROP6 to establish PC interdigitation or may promote cell expansion resulting in mechanical stress, which 239 

has been proposed to activate PC interdigitation 45,46. As a first step in distinguishing these two possible 240 

models, we locally induce an auxin maximum and evaluated PC phenotypes. PCs from Col-0 and tir1Qt 241 

cotyledons responded to locally uncaged auxin, however, local auxin did not activate PC morphogenesis in 242 

tmkQ as measured by the lobe number per cell (Figure 4D, E). These results strongly suggest that TMK-243 

based auxin perception and signaling is required for local auxin-induced establishment of PC 244 

interdigitation, as previously reported 10,12. Thus, we propose that the TIR1/AFB-dependent auxin signal, 245 
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once reaching a specific cell, will locally activate the interdigitation of that specific cell. To further test this 246 

hypothesis, we examined changes in auxin-induced ROP2 and ROP6 activity after a prolonged auxinole 247 

treatments of wild-type Col-0 seedlings to eliminate the TIR1/AFB-based auxin signaling. We found that 248 

ROP2 and ROP6 activity was reduced by auxinole treatments, and that this reduction was reversed by 249 

exogenous auxin. More importantly, exogenous auxin activates ROP2 and ROP6 activity equally in mock 250 

as in auxinole treatments (Figure S6A, B). Consistently, rop2;rop4;rop6 mutants remain insensitive to 251 

exogenous auxin treatments in promoting lobe formation (Figure S6E, F). Altogether these results suggest 252 

that an upstream TIR1/AFBs-based nuclear auxin signaling pathway generates an auxin signal that locally 253 

activates PC interdigitation directly through the TMK-dependent ROP signaling pathways. 254 

 255 

Auxin establishes PC interdigitation decoupled from cell expansion-induced associated mechanical 256 

stress. 257 

We further investigated whether auxin directly activates cell polarization pathways or promotes PC 258 

interdigitation indirectly through cell expansion-derived mechanical stress.  In the latter case, cell 259 

expansion, either dependent or independent of auxin, is expected to promote PC interdigitation. Thus, we 260 

monitored the birth of the interdigitation period (0 - 48 HAP) along the proximo-distal axis of cotyledons 261 

(Figure S6C). We extracted three shape metrics: cell area, largest empty circle (LEC), and margin 262 

roughness (MR). LEC serves as a proxy for mechanical stress magnitude experienced by individual cells 263 

and is proposed to be low in cells with complex shapes 47,48. Local LEC (LLEC) 48 only differs from LEC 264 

once curvature is formed, thus, not appropriate for this analysis. Meanwhile, MR is a proxy for 265 

interdigitation status by measuring local curvature around the border 24.  If interdigitation is established 266 

from cell expansion-induced mechanical stress, LEC would be expected to correlate with MR in expanding 267 

cells. Interestingly, we found no correlation during 0-48 HAP between MR and LEC (R2 <0.02) (Figure 268 

6A, upper panel). Additionally, if mechanical stress were to activate PC interdigitation, greater expansion 269 

in expanding cells would be tightly linked with greater interdigitation. However, we found a very weak 270 

correlation between interdigitation and cell size or area (R2 <0.16) (Figure 6A, lower panel) in the 0-48 271 
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HAP period. Most of that positive correlation was contributed by cells at the tip in 48 HAP cotyledons 272 

coinciding with the auxin maximum (Figure S6D).  These results suggest that an increase in cell size and 273 

mechanical stress does not necessarily promote interdigitation.  274 

To further assess whether cell expansion is the cause of PC interdigitation, we synchronously 275 

increased cell sizes by treating cotyledons with 1 M brassinosteroids (BR).  This treatment increased cell 276 

size by 50% but decreased MR by 40% (Figure 6B, C), agreeing with a recent report 49. In contrast, NAA 277 

treatments greatly increased MR without increasing cell sizes (Figure 6B, C). Thus, we conclude that cell 278 

expansion-induced mechanical stress is unlikely the driving force for PC interdigitation induced by auxin. 279 

Finally, tracking of mock- or NAA-treated PCs with already consolidated interdigitation (Figure 6D, blue 280 

arrows) revealed that cells in both conditions exhibited a 4-fold increase in cell size in 2 days (Figure 6D), 281 

but only NAA-treated cells increased MR by 50% (Figure 6E). More importantly, only NAA-treated cells 282 

displayed new lobes after treatment (Figure 6D, orange arrows). Altogether, our results suggest that local 283 

auxin promotes PC interdigitation directly by activating the TMK-dependent formation of PC multi-polarity 284 

and not indirectly via auxin-induced cell expansion and the resulting mechanical stress.  285 

 286 

Conclusions and Discussion 287 

Here we show that two auxin signaling systems, a TIR1/AFB-based nuclear signaling and a TMK-288 

based cell surface signaling, coordinately control PC interdigitation in Arabidopsis cotyledons. Our findings 289 

suggest that they act at different functional scales and in a hierarchical manner (Figure 6F). At the whole 290 

organ level, TIR1/AFBs-based transcriptional signaling amplifies the initial auxin signal in part via 291 

activating the expression of auxin biosynthetic genes, leading to the generation of the auxin maximum at 292 

the tip of cotyledons (Figure 6F, red gradient). As auxin moves across the entire surface of the cotyledon 293 

from tip to base, auxin locally activates PC interdigitation via TMK-based cell surface signaling and ROP 294 

activation 10,12.  This hierarchical relationship between the two auxin signaling mechanisms integrates 295 

global coordination with local activation of PC interdigitation throughout the entire epidermis.   296 
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PC interdigitation is globally coordinated by TIR1/AFBs-based nuclear auxin signaling that is 297 

restricted to the cotyledon tip and margins by repressive cytokinin signaling. This global signaling is a self-298 

organizing process relying on the TIR1/AFB-activated transcription of genes involved in the synthesis of 299 

IBA-derived auxin (Figure 6E, purple dots), which together with base-to-tip auxin transport along the 300 

cotyledon’s margins generates a transient tip-high auxin maximum 50. Time-lapse imaging shows that auxin 301 

at the cotyledon tip rapidly propagates to the rest of the cotyledon, but the mode of this propagation remains 302 

to be determined. The tip-derived auxin appears to override local auxin gradients observed around stomata 303 

cells 51, because spch mutants, which lack the stomata cell lineage, display the same tip-to-base 304 

interdigitation gradient observed in wild type 52. 305 

PC interdigitation is locally coordinated by a TMK-based auxin signaling module for lobe 306 

formation (Figures 3 and 4). This local activation of PC interdigitation is also a self-organizing process. 307 

ROP2-dependent polarization of the PIN1 auxin efflux carrier generates local extracellular auxin that 308 

coordinately activates ROP2 and ROP6 between neighboring cells 20,23. Thus, this local auxin signaling 309 

mechanism generates differential features along the PC contour, such as differential pectin accumulation 310 

and differential cell wall strength, which is accompanied by and may be reinforced by mechanical signals 311 

(Figure 6) 45,53–56. 312 

The hierarchical self-organizing morphogenetic mechanism we reveal here for the Arabidopsis 313 

cotyledon may also be controlling planar polarity in roots 7,8 and is analogous to WNT signaling regulating 314 

planar cell polarity (PCP) in animal systems. Similar to TIR1/AFB nuclear auxin signaling, the canonical 315 

WNT11 signaling pathway activates the transcription of genes proposed to instruct global coordination of 316 

PCP-mediated processes such as body axis formation and orientation of hairs 1,57,58. Similar to the TMK-317 

ROP signaling, WNT11 also activates the Rho GTP-dependent pathway, which locally coordinates PCP 318 

establishment that is required for myocyte orientation and elongation of embryonic muscle fibers 59.  319 

Therefore, the control of these developmental processes in plants and animals appears to share general 320 

design principles, although the details of the molecular mechanisms are quite different.   321 
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It remains to be seen whether such hierarchically coordinated self-organizing auxin signaling 322 

systems also regulate other developmental and morphogenetic processes in plants. Nonetheless, the 323 

TIR1/AFB-based nuclear auxin signaling and the TMK-based cell surface auxin signaling appear to 324 

coordinately regulate other auxin-dependent processes such as pH-mediated hypocotyl elongation, root 325 

growth, and lateral root formation 13,15,60–62. Furthermore, auxin regulates the polarization of PIN proteins 326 

and the activity of auxin biosynthetic through these two different pathways 14,63. Hence investigating the 327 

biological significance and the mechanisms behind the coordination between these two distinct auxin 328 

signaling pathways will be an exciting and fertile field of inquiry in the years to come. 329 

 330 

Limitations to the study 331 

As discussed above, our study described here strongly indicates that that the TIR1/AFB pathway 332 

underlies the global coordination of pavement cell morphogenesis in Arabidopsis cotyledons. However, our 333 

study does have a limitation in that the siblings of the tir1Qt mutant exhibit highly variable phenotypes, 334 

making it extremely difficult to perform clonal analysis that would provide additional support for this 335 

conclusion. This limitation also hinders a genetic experiment that could further test the functional 336 

relationship between the TIR1/AFB and TMK pathways. Additionally, our study did not address the 337 

mechanistic details of the auxin dynamics in the cotyledon. In this work, we propose a tip-to-base apoplastic 338 

auxin diffusion; however, auxin movement mediated by auxin transports could not be excluded. 339 
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Figure 1. The progressive activation of pavement cell (PC) interdigitation follows a similar pattern 543 

of increase in auxin levels that begins at the tip of young Arabidopsis cotyledons. 544 

(A) Schematic of PC metrics quantification for margin roughness (MR) and lobe count (Lobes). (B) 545 

Heatmap of MR shows that PC interdigitation first occurs in the tip and progressively spreads to the middle 546 

and basal regions of expanding cotyledons. At the indicated hours after plating (HAP), wild-type (Col-0) 547 

cotyledon PCs were imaged using laser scanning confocal microscopy, and the degree of MR was computed 548 

per cell and color-coded as shown in the color scale. Scale bars = 50 μm. Yellow dashed lines separate the 549 

top and bottom half of the early expanding cotyledons. (C) Quantification of MR of pavement cells at the 550 

cotyledon’s base and tip, defined as the top and bottom half of early expanding cotyledons, analyzed with 551 

the software PaCeQuant 24. Cell borders were obtained by staining with propidium iodide. Cotyledons were 552 

dissected before imaging: swollen seed (0 HAP), ruptured seed testa (24 HAP), emerged radicle (36 HAP), 553 

greening cotyledons (48 HAP), green opening cotyledons (60 HAP) and green open flat globular cotyledons 554 

(72 HAP). Box plot inside each violin plot depicts four quartiles and the median. Red dot depicts the 555 

average. n=231-368 cells, t-test ***p<0.001. (D) GUS histochemical assay in the cotyledons of a 556 

DR5::GUS line suggests an apparent tip-high auxin maximum at 24 HAP, a clear apical margin-high 557 

maximum at 36 HAP, and a conspicuous tip-high maximum at 48 and 60 HAP. Scale bar = 150 μm. (E) 558 

This is confirmed by GUS activity quantification in cotyledons at the same developmental time points 559 

shown in D by fluorometric detection of 4-methylumbelliforone (4-MU), n=24 cotyledons, t-test, *p<0.05, 560 

**p<0.01, ****p<0.0001. Note that GUS activity at 24 HAP was significantly higher than at 0 HAP. (F) 561 

Representative images from a time-lapse of cotyledons in plants expressing DII-Venus (upper row) or 562 

mDII-Venus (lower row, a mutation in DII that makes it insensitive to auxin). (G) Quantitative analysis of 563 

Venus signal intensity in cells on the tip, middle, and base of cotyledons, defined as shown by the dashed 564 

boxes in F, 18 HAP. In DII-Venus (DII) cotyledons, tip cells (black) show a reduction in signal intensity as 565 

early as 22 HAP. Reduction of signal intensity was then observed in cells in the middle (gray) and, finally, 566 

in the base (white). In contrast, signal intensity was unchanged in mDII-Venus (mDII) cotyledon for all 567 
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regions. Plot shows mean + standard error. n=20-22 cotyledons, each from different seedlings from 3 568 

experimental replicates. 569 
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Figure 2. Ectopic local auxin maximum globally activates PC interdigitation.  594 

(A) Auxin uncaging reaction. UV light breaks caged DMPNB-NAA/IAA into uncaged active auxin and the 595 

cage, see also Figure S2C. UV treatment of DMPNB-AcOH (mock) allows the release of acetic acid to 596 

emulate auxin acidity without auxin response. (B) Schematic representation of auxin uncaging experiment 597 

testing the efficacy of uncaging in the UV-treated area and the adjacent, and more distal areas. (C) Efficacy 598 

of auxin uncaging by quantification of the auxin reporter R2D2 fluorescence after UV irradiation as shown 599 

in B. Nuclear signal intensity in channels for DII-Venus and mDII-ntTomato was measured from cotyledon 600 

areas UV-treated (UV) and non-UV-treated (adjacent and distal).  n = 28 cells per zone from 4 cotyledons. 601 

Representative results from 4 experimental replicates. Plot shows mean (dots) + SEM (dashed lines). (D) 602 

Schematic representation of auxin uncaging experiment to investigate the induction of pavement cell 603 

interdigitation by uncaged auxin in the region outside of the uncaging site (red square box).  UV light 604 

indicates the site of uncaging (red oval).  This experiment was conducted in 3.5-day-old seedlings 605 

overexpressing ARR20-OX to suppress the production of endogenous auxin.  (E) Pavement cell phenotypes 606 

outside of the UV-treated area, as indicated by a red square box in D, were imaged. Scale bar = 50 µm. (F) 607 

Quantitative analysis of pavement cell phenotype shown in E.  Violin plot of lobe number per cell (Left) 608 

and margin roughness (Right).  Box plot inside each violin plot depicts four quartiles and the median. Red 609 

dot depicts the mean value. Raw images were auto segmented and analyzed with PaCeQuant. Eight different 610 

cotyledons, each from different seedlings, were analyzed in each treatment. n = 157 cells in mock, n = 187 611 

cells in auxin uncaged. Similar results were obtained in 3 experimental replicates. t-test, ****p<0.0001. 612 
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Figure 3. Auxin-induced PC interdigitation in the absence of TIR1/AFBs-based auxin signaling. 620 

(A) Exogenous auxin rescues PC interdigitation defects in tir1Qt but not in tmkQ.  Shown are representative 621 

images of pavement cells from Col-0, tir1Qt, and tmkQ seedlings cultured in liquid media with either 0.01% 622 

DMSO (mock) or 20 nM auxin NAA (auxin) for 5 days after planting seeds. Scale bar = 50 µm. (B) 623 

Quantification of lobe number per cell from images in A. Split violins for each genotype show values 624 

obtained from mock (opaque) and NAA-treated (translucent) cotyledons. Box plot inside each violin plot 625 

depicts four quartiles and the median. Red dot depicts the average. n is indicated below each plot, with data 626 

from at least 8 different cotyledons, each from a different seedling. Similar results were obtained in 5 627 

independent experiments. t-test, ns = non-significance, ****p<0.0001. (C) Single-cell tracking experiment 628 

showing exogenous auxin-induced lobing in tir1Qt seedlings treated with Auxinole. Cotyledons from 3-629 

day-old tir1Qt seedlings with existing lobes (blue arrowheads) were treated with 20 µM for 0.5 h before 630 

being transferred to a new liquid medium with either 20 µM Auxinole or 20 µM Auxinole +100 nM auxin 631 

NAA. The same cells were imaged at the time of mock or NAA treatment and 2.5 days later. Auxin-induced 632 

new lobes are indicated with orange arrowheads. (D) Quantitative analysis of PC interdigitation for the 633 

single cell tracking experiment described in D.  Shown is lobe number per cell before (3 days after plating 634 

(DAP), light gray) and after treatment (+2.5 days, dark gray). t-test, *p<0.05, ****p<0.0001. (E) Schematic 635 

view of the hierarchical auxin system where TIR1/AFBs-dependent auxin synthesis acts as the source for 636 

the auxin perceived by TMK-dependent cell-surface auxin signaling. 637 
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Figure 4. Local auxin uncaging globally rescues defects in pavement cell interdigitation resulting 646 

from disruption of the TIR1/AFB signaling pathway.  647 

 (A) Exogenous auxin treatments restore defects in PC interdigitation observed in iaa18D.  The gain-of-648 

function mutant iaa18D results from a point mutation in domain II of AUX/IAA protein causing their 649 

stabilization and inhibition of auxin transcriptional responses.  Seedlings were grown in the absence or 650 

presence of 20 nM NAA for 4 days. Scale bars = 50 μm. (B) Quantitative analysis of the PC interdigitation 651 

phenotype in iaa18D mutant as shown in panel B. Statistical analysis showed that the mean lobe number 652 

per cell in wild-type cotyledon PCs was significantly greater than in iaa18D PCs (purple opaque) but not 653 

different from iaa18D PCs treated with NAA (purple translucid). n=250-388 cells from 8 different 654 

cotyledons, each from different seedlings. Results representative from 4 experimental replicates.  (C) 655 

Schematics of the local auxin uncaging protocol. 3.5-days-old seedlings were soaked in either caged-mock 656 

(100 μM DMPNB-AcOH) or caged auxin (100 μM DMPNB-NAA) for 5 h. Then, seedlings were UV-657 

treated for 30 sec (25% laser, 60 mW) and placed back in semi-solid medium to grow for 2 days. Cotyledons 658 

were then excised and stained to analyze cell shape outside of the UV-treated area. (D) Local auxin 659 

uncaging globally induced lobing in tir1Qt but not in tmkQ mutants. Representative images from seedlings 660 

treated as shown in C. Scale bar = 50 µm. (E) Quantitative analysis of PC interdigitation as shown in D.  661 

Lobe number per cell is shown.  For each genotype, split violins show the mock (opaque) and NAA 662 

treatment (translucent) values. Box plot inside each violin plot depicts four quartiles and the median. Red 663 

dot depicts the average. n = 305-335 cells from 8 different cotyledons, each from different seedlings. Similar 664 

results were obtained in 5 independent experiments. t-test, ***p<0.001, ****p<0.001. 665 
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Figure 5. The TIR1/AFB-based nuclear pathway is required for the expression of the IBR auxin-672 

biosynthetic genes that contribute to auxin maxima at the tip of cotyledons. 673 

(A) Induction of ECH2 and IBR10 gene expression by auxin was compromised in tir1Qt.  Auxin treatment 674 

and qRT-PCR analysis of ECH2 and IBR10 expression in wild type Col-0 and tir1Qt III as described in 675 

Methods.   The graph informs 3 biological replicates, each reaction is performed with 3 technical replicates. 676 

t-test, *p<0.05. (B) Tip-high DR5::GUS expression in 48 HAP cotyledons was greatly reduced in the ech2-677 

/-;ibr10-/- double mutant.  (C) Auxin restored the PC interdigitation defect in the ech2-/-;ibr10-/- mutant.  678 

Seedlings were grown for 4 days in 20 nM NAA. Scale bar = 50 µm. (D) Lobes per cell of cotyledons 679 

shown in C. Split violins show mock (opaque) and NAA treatment (translucent) values, for each genotype. 680 

Box plot inside each violin plot depicts four quartiles and the median. Red dot depicts the average. Split 681 

violins for each genotype show values obtained from mock (opaque) and NAA-treated (translucent) 682 

cotyledons. n = 298-569 cells from 10 cotyledons. t-test, ****p<0.0001. 683 
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Figure 6. Auxin-induced PC interdigitation is decoupled from cell expansion-induced mechanical 698 

stress. 699 

(A) PC interdigitation does not correlate with mechanical stress or cell size in early-developing cotyledons. 700 

Shown are correlation plots between margin roughness (MR) and the largest empty circle (LEC, upper 701 

graph), which is indicative of the mechanical stress 47 and between MR and cell size/area (lower panel) at 702 

0 HAP, 24 HAP and 48 HAP and at different positions (tip, base, middle) in the cotyledon. Green line is 703 

the linear model. Gray shadows display the 95% confidence interval. R2 = correlation coefficient. (B) Cell 704 

expansion without PC interdigitation. 24 HAP wild-type seedlings were either mock-treated or treated with 705 

1 µM auxin NAA or 1 µM brassinolide for 4 days. Then, cotyledons were stained and imaged by confocal 706 

microscopy for posterior analysis with PaCeQuant. Growth for 1 day before treatment is crucial to avoid 707 

auxin-induced inhibition of germination. (C) Violin plot of cell size (left) and margin roughness (right) 708 

computed from images as shown in B. n > 51-109 cells from 9 cotyledons. Box plot inside each violin plot 709 

depicts four quartiles and the median. Red dot depicts the mean value. Wilcox test, *p<0.05, ****p<0.0001. 710 

(D) Auxin-induced de novo lobe formation without increasing cell size in single cell tracking experiments. 711 

Cotyledons (3 DAP) with formed lobes (blue arrowheads) were mock-treated (diluted DMSO) or treated 712 

with 20 nM auxin NAA for 2.5 days and analyzed as described in Figure 3C. (E) Percentage variation () 713 

in cell size (top) and margin roughness (bottom) calculated with pre/post treatment pairwise images. n = 15 714 

cells, from 5 cotyledons each from different seedlings. Same results were obtained in 3 independent 715 

experiments. t-test, ** p<0.01, ns = non-significance. (F) A model for a hierarchical global and local auxin 716 

signaling systems underlying the PC interdigitation pattern. A basal level of auxin, which self-amplifies via 717 

TIR1/AFB1-dependent auxin signaling to activate IBR-dependent auxin synthesis genes (purple dots). This 718 

is counteracted by cytokinin signaling, restricting auxin maxima (increased red color) to the tip of 719 

cotyledons. The auxin maxima act as a global signal by emanating to the remaining regions of the cotyledon 720 

epidermis (wavy black arrow) presumably via diffusion through the apoplastic space, which locally 721 

increases the level of auxin for a specific cell. The resultant local auxin (red dots) then triggers TMK/ROP-722 
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dependent cell polarization and cell-cell coordination by activating the feedback loop and the 723 

complementary ROP2/ROP6 pathways to coordinate lobe and indentation formation 10,16,20,21. 724 
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