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Abstract 
Kidney disease is highly heritable; however, the causal genetic variants, the cell types in 

which these variants function, and the molecular mechanisms underlying kidney disease remain 

largely unknown. To identify genetic loci affecting kidney function, we performed a GWAS using 

multiple kidney function biomarkers and identified 462 loci. To begin to investigate how these loci 

affect kidney function, we generated single-cell chromatin accessibility (scATAC-seq) maps of the 

human kidney and identified candidate cis-regulatory elements (cCREs) for kidney podocytes, 

tubule epithelial cells, and kidney endothelial, stromal, and immune cells. Kidney tubule epithelial 

cCREs explained 58% of kidney function SNP-heritability and kidney podocyte cCREs explained 

an additional 6.5% of SNP-heritability. In contrast, little kidney function heritability was explained 

by kidney endothelial, stromal, or immune cell-specific cCREs. Through functionally informed fine-

mapping, we identified putative causal kidney function variants and their corresponding cCREs. 

Using kidney scATAC-seq data, we created a deep learning model (which we named ChromKid) 

to predict kidney cell type-specific chromatin accessibility from sequence. ChromKid and allele 
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specific kidney scATAC-seq revealed that many fine-mapped kidney function variants locally 

change chromatin accessibility in tubule epithelial cells. Enhancer assays confirmed that fine-

mapped kidney function variants alter tubule epithelial regulatory element function. To map the 

genes which these regulatory elements control, we used CRISPR interference (CRISPRi) to 

target these regulatory elements in tubule epithelial cells and assessed changes in gene 

expression. CRISPRi of enhancers harboring kidney function variants regulated NDRG1 and 

RBPMS expression. Thus, inherited differences in tubule epithelial NDRG1 and RBPMS 

expression may predispose to kidney disease in humans. We conclude that genetic variants 

affecting tubule epithelial regulatory element function account for most SNP-heritability of human 

kidney function. This work provides an experimental approach to identify the variants, regulatory 

elements, and genes involved in polygenic disease. 

 
INTRODUCTION 

Kidney function—the capacity of the kidneys to filter the blood—maintains water, solute, 

and metabolic waste homeostasis in vertebrates1. Chronic kidney disease, defined by persistent 

decreased kidney function, affects 9% of humans, is the twelfth leading global cause of death, 

and accounts for an increasing fraction deaths2. Lack of understanding of the mechanisms that 

contribute to kidney disease have hindered development of effective therapies. 

Kidney disease and function is highly heritable3–5. Genome-wide association studies 

(GWAS) have identified hundreds of loci associated with biomarkers of kidney function6–9. 

However, for most loci, the causal variants, affected genes, and cells through which the genetic 

effects are manifested remain unknown. 

Clinically, kidney function is estimated in humans using serum biomarkers, substances 

that are cleared by the kidney and accumulate in the blood when kidney function declines10. 

Genetic variants associated with serum creatinine levels (the most commonly used biomarker of 

kidney function) are enriched in kidney cCREs8,11 with recent work highlighting specific enrichment 

within kidney proximal tubule cCREs12,13. Because individual biomarkers like serum creatinine 

levels reflect both kidney function and creatinine metabolism, incorporating multiple biomarkers 

provide more accurate estimates of kidney function14,15.  

In this study, we systematically identify the cell types, variants, regulatory elements, and 

genes involved in kidney function. We conducted a GWAS using two serum biomarkers to more 

accurately estimate kidney function. We identified cCRES specific to different kidney cell types 

and used these data for functionally-informed variant fine-mapping and development of a 

sequence-to-accessibility machine learning model, ChromKid. Fine-mapping informed by cell 
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type-specific chromatin accessibility identified variants likely to affect kidney function. 

Interrogating how cell type-specific cCREs contribute to kidney function heritability indicated the 

relative contributions of multiple cell types to kidney function. Kidney function heritability was 

predominantly determined by variants in proximal tubule, distal tubule and podocyte cCREs. A 

combination of experiment and ChromKid-based prediction revealed that many of these variants 

affect tubule epithelial chromatin accessibility and regulatory element function. Targeting of 

regulatory elements containing fine-mapped kidney function variants using CRISPRi revealed 

regulation of genes not previously implicated in human kidney function. Thus, identification of 

trait-relevant cell type-specific cCREs, fine-mapping, machine learning, and regulatory element 

silencing revealed variants, cell types and genes underlying inherited differences in human kidney 

function. 

 
RESULTS 
Kidney function heritability is enriched in kidney candidate cis-regulatory elements 

Kidney function is measured using the glomerular filtration rate (GFR), which is estimated 

from the concentration of molecules cleared by the kidneys. Previous GWAS have been 

performed using a single biomarker to calculate estimated GFR (eGFR)6,7. eGFR based on both 

creatinine (cr) and cystatin C (cys) levels (eGFRcr-cys) more accurately reflects kidney function14,15. 

Therefore, we performed a GWAS of eGFRcr-cys in individuals of European ancestry within the UK 

Biobank. This GWAS identified 462 autosomal loci (Figure 1a, Supplementary Table 1). 27 of 

these loci were not identified through estimates of kidney function using either single biomarker. 

These 27 loci included FOXP1, RBPJ, APOC3, IRS2 and BDKRB2, genes previously shown to 

affect kidney injury or development in humans or model organisms16–21. 

We compared the effect of index variants on eGFRcr-cys to their effect on chronic kidney 

disease, as assessed by a GWAS performed in a distinct cohort6. Despite the chronic kidney 

disease GWAS having less power than the kidney function GWAS, the effects of variants on 

eGFRcr-cys and chronic kidney disease were highly correlated (r=-0.69, p < 10-64) and 88% of the 

eGFRcr-cys index variant alleles associated with decreased kidney function were associated with 

increased chronic kidney disease risk (Supplementary Figure 1a). Thus, kidney function variants 

affect chronic kidney disease risk. 

We hypothesized that many genetic variants that affect kidney function alter kidney 

regulatory elements. To identify human kidney candidate cis-regulatory elements (cCREs), we 

performed an assay for transposase-accessible chromatin with sequencing (ATAC-seq) of human 

kidney cortex (Figure 1b). We identified over 190,000 regions of open chromatin, with a mean 
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size of 523 bp, which we define as kidney cCREs. Kidney cCREs were strongly enriched for motifs 

of kidney transcription factors, such as HNF4A, HNF1B and TFCP2l1 (Supplementary Figure 1b).  

Using stratified linkage disequilibrium (LD) score regression of GWAS summary 

statistics22, we evaluated whether kidney cCREs contained variants which explain heritable 

differences in kidney function. Kidney cCREs were strongly enriched for kidney function variants 

affecting eGFRCr-Cys (as well as variants affecting individual biomarkers of kidney function 

including creatinine, cystatin C, and blood urea nitrogen levels, Figure 1c).  

 To better understand the relationship between genetic variants and kidney cCREs, we 

focused on loci where LD structure makes it possible to nominate a single variant as causal. One 

such locus included UMOD. Mutations in UMOD cause autosomal dominant tubulointerstitial 

kidney disease and variants proximal to UMOD have been associated with CKD and kidney 

function in multiple studies6,7,9. rs77924615 is a variant 5’ of UMOD that is strongly associated 

with kidney function and has low LD (r2 < 0.6) with any other variant in European populations. 

Notably, this variant falls within a kidney cCRE (Figure 1d). As additional examples, other 

individual putative causal variants identified from LD structure fell in kidney cCREs close to DDX1 

as well as TFEB and HOXD8, genes with known roles in kidney development and function 

Supplemental Figure 2a-c)23,24. Together, these findings suggest that many genetic variants that 

influence kidney function act by perturbing kidney cCREs. 

 

Identification of kidney cell type-specific regulatory elements 
 Genetic variants affecting kidney function could potentially affect the function of many cell 

types. As we found that variants affecting kidney function are highly enriched in kidney cCREs 

and many cCREs are cell type-specific, we reasoned that identification of cell type-specific cCREs 

could help identify which cell types are affected by kidney function variants. Therefore, we 

identified cCREs for each human kidney cell type using single-cell ATAC-seq (scATAC-seq).  

We performed scATAC-seq of cortex and medulla from three donors to construct a 

chromatin accessibility atlas of the human kidney. After quality control, we profiled 34,240 cells, 

which associated into 10 clusters. To identify the cell types present in the scATAC-seq data, we 

used gene activity scores, a measure of aggregate chromatin accessibility around each gene that 

correlates with gene expression25. By correlating gene activity scores and gene expression, we 

integrated the scATAC-seq data with single-cell RNA sequencing (scRNA-seq) data26. This 

correlation allowed us to assign the scATAC-seq clusters to the following cell types: podocytes, 

parietal epithelial cells, proximal tubule, loop of Henle, distal tubule, collecting duct intercalating 

cells, endothelial cells, stromal cells, T cells and other immune cells (Figure 2a,b). 
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To test the accuracy of cell type labels, we used gene activity scores to assess marker 

gene expression. High gene activity scores were observed for genes specifically expressed by 

cells of the corresponding clusters, including NPHS1 (encoding Nephrin) in the podocyte cluster, 

CUBN (encoding Cubilin) in the proximal tubule cluster, UMOD (encoding Uromodulin) in the loop 

of Henle cluster, FLT1 (encoding Vascular endothelial growth factor receptor 1) in the endothelial 

cell cluster, and CD247 (encoding T-cell surface glycoprotein CD3z chain) in the T cell cluster 

(Supplementary Figure 3). Thus, gene activity scores of marker genes confirm that clusters of the 

kidney cCRE atlas are accurately assigned to cell types. 

We assessed the enrichment of transcription factor binding motifs within cCREs of each 

cell type. The binding motif for HNF4A, a major transcriptional regulator of proximal tubule 

differentiation27, was enriched within cCREs accessible in proximal tubule cells (Figure 2c). 

Similarly, the binding motif for TFAP2B, which is necessary for differentiation of the distal tubule28, 

was enriched within cCREs accessible in distal tubule and loop of Henle cells (Figure 2c). And 

the binding motif for SPI1, necessary for immune cell differentiation29, was enriched for cCREs 

accessible in immune cells (Figure 2c).  

Interestingly, multiple cell type-specific cCREs resided near genes encoding the 

transcription factors whose binding motifs were enriched in those same cell types. For instance, 

multiple cCREs accessible specifically in proximal tubule cells were near HNF4A (Figure 2d), 

cCREs accessible specifically in distal tubule and loop of Henle cells were near TFAP2B (Figure 

2e), and cCREs accessible specifically in immune cells were near SPI1 (Figure 2f). Thus, we 

observed both cell type-specific correlation of cCREs likely to mediate expression of 

transcriptional regulators and the cCREs through which those transcriptional regulators may 

function.  

Genome-wide, we identified ~500,000 cCREs, 15% of which were accessible in all 

assayed cell types (Figure 3a). However, most kidney cCREs were accessible in a single cell type 

or specifically in a few related cell types. For example, 9% of kidney cCREs were accessible in 

all tubule epithelial cells, but not other kidney cell types, another 8% were accessible specifically 

in proximal tubule epithelial cells, and another 12% were accessible specifically in distal tubule 

epithelial cell types (Figure 3a). 

 

Heritable differences in kidney function reflect differences in tubule epithelial cells and 
podocytes 

To identify which cell types contribute to kidney function, we used stratified LD score 

regression to assess whether kidney function variants were enriched in cCREs of specific cell 
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types (Figure 3b). Surprisingly, cCREs specifically accessible in endothelial cells, fibroblasts, or 

immune cells were not enriched for kidney function heritability. In marked contrast, cCREs 

accessible in specific kidney tubule epithelial cell types were 10-15-fold enriched for kidney 

function heritability and cCREs accessible in all kidney tubule epithelial cell types were 30-fold 

enriched for kidney function heritability. In addition, cCREs specific to podocytes were 12-fold 

enriched for kidney function heritability. These data implicate tubule epithelial cells and podocytes 

(and not endothelial cells, fibroblasts, or immune cells) as the major cell types affected by genetic 

variants that determine kidney function. 

We also examined whether heritability of single kidney biomarkers (i.e., serum creatinine, 

blood urea nitrogen, and cystatin C levels) were enriched in cCREs of specific cell types 

(Supplementary Figure 4a-c). Serum creatinine level is affected by proximal tubule secretion of 

creatinine and its heritability was more strongly enriched in proximal tubule-specific cCREs than 

was blood urea nitrogen or cystatin C heritability. In contrast to creatinine, blood urea nitrogen 

level is regulated by both kidney function and reabsorption in the distal tubule. Consistent with 

this additional dependence on distal tubule function, blood urea nitrogen heritability was more 

strongly enriched in distal tubule-specific cCREs than was serum creatinine level heritability.  

Podocytes form the filtration barrier that excludes large proteins from the urine30. In 

contrast to kidney function heritability, heritability of the marker of glomerular dysfunction—urine 

albumin—was most enriched in podocyte-specific cCREs (Figure 3c). We also noted enrichment 

of urine albumin heritability in tubule-specific cCREs, which we hypothesize is related to tubule 

reabsorption of filtered albumin31. Thus, the differences in the enrichment of blood urea nitrogen, 

serum creatinine and urine albumin-associated heritability were consistent with the specific 

biology of these biomarkers. These analyses further suggest that variants within regulatory 

elements affect kidney function through specific cell types and underscores the value of assaying 

kidney function using eGFRCr-Cys rather than single biomarkers.  

To understand what fraction of kidney function heritability localized to kidney tubule 

epithelial regulatory elements, we used stratified LD score regression22. More specifically, we 

assessed the fraction of heritability of eGFRcr-cys attributable to variants in cCREs accessible in 

the proximal tubule, loop of Henle, distal tubule or collecting duct. We found that variants in kidney 

tubule epithelial cell cCREs account for ~58% of kidney function heritability (Figure 3d). Coding 

region variants accounted for an additional ~10% of kidney function heritability. Thus, tubule 

epithelial cCREs and coding regions account for most kidney function common variant heritability. 

Podocyte specific-cCREs were also enriched for kidney function heritability; addition of 

podocyte cCREs to tubule epithelial cCREs and coding variants increased the explained fraction 
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of kidney function heritability to 75% (Supplementary Figure 4d). Together, these data 

demonstrate that the majority of kidney function SNP-heritability lies in tubule epithelial cCREs, 

with smaller contributions from coding regions and podocyte cCREs. 

To complement the stratified LD score regression analysis of kidney function heritability, 

we analyzed the likely causal variants identified from LD structure, discussed above. Most of 

these likely causal variants were found in tubule-specific cCREs. For instance, the UMOD-

associated variant rs77924615 fell within a tubule-specific cCRE (Figure 3e).  

 

Distinguishing variants affecting kidney function from those affecting biomarker 
metabolism 
 We hypothesized that some loci identified in the eGFRcr-cys GWAS reflected, not kidney 

function, but effects on individual biomarkers. For example, CST3, detected in the eGFRcr-cys 

GWAS (Figure 1a), encodes cystatin C, one input into eGFRcr-cys. Therefore, it is likely that the 

effect of the CST3 locus on eGFRcr-cys is mediated by variants affecting cystatin C expression 

rather than kidney function (Figure 1A, Supplementary Table 1). In support of this possibility, the 

CST3 locus is not associated with eGFR estimated from creatinine alone (Figure 1A, 

Supplementary Table 1). 

We reasoned that loci which affect both creatinine and cystatin C are more likely to affect 

kidney function than loci which affect only a single biomarker6. Therefore, we assessed the effect 

of each eGFRcr-cys index variant on eGFR estimated by either serum creatinine or cystatin C levels 

individually (Figure 4a). We identified 385 index variants which had the same direction of effect 

on serum creatinine and cystatin C and had significant effects (Bonferroni corrected p-value<0.05) 

on both biomarkers (Figure 4b, Supplementary Table 2). We refer to these variants as kidney 

function index variants. For example, index variants near UMOD and SOX9 have consistent 

effects on both creatinine and cystatin C and these loci therefore likely affect kidney function. This 

possibility is bolstered by prior work demonstrating that UMOD is a monogenic kidney disease 

gene and SOX9 is a critical regulator of kidney development and injury response32–34. 

77 index variants including 2 index variants near CST3 affected only one biomarker (i.e., 

Bonferroni corrected p-value>0.05 for one biomarker) or exhibited discordant directions of effect 

(Figure 4b, Supplementary Table 3). Among index variants associated only with serum creatinine 

levels, several were at loci with plausible connections to known non-GFR determinants of serum 

creatinine levels. For instance, an index variant associated only with serum creatinine levels 

occurred in GATM, which encodes the rate-limiting enzyme in creatinine synthesis35. Similarly, an 

index variant associated only with serum creatinine levels occurred in SLC47A1, which 
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participates in creatinine secretion36,37. Thus, determining which loci affect both creatinine and 

cystatin C is likely to distinguish loci that affect kidney function from those that affect biomarker 

metabolism. 

 

Functionally informed fine-mapping of kidney function variants 
Within the GWAS-identified loci, which genetic variants affect kidney function? To begin 

to identify the causal variants, we applied functionally informed fine-mapping using PolyFun38 to 

1 Mb centered around each kidney function index variant. PolyFun is a fine-mapping approach 

that can incorporate multiple genome-wide functional annotations to inform prior causal 

probabilities and improve fine-mapping power. We performed fine-mapping both with and without 

annotation of conservation, genes, as well as the kidney tubule epithelial cell and podocyte cCREs 

that we had defined. Inclusion of these functional annotations in fine-mapping identified 65 more 

variants with posterior inclusion probability >0.7 and 138 more variants with a posterior inclusion 

probability >0.3, corresponding to a 47% improvement in the number of fine-mapped variants 

relative to standard fine-mapping (Figure 4c). These fine-mapped variants were highly enriched 

for missense variants, conservation, and presence in tubule epithelial-specific cCREs (Figure 4d 

and Supplementary Figure 5a). For instance, at the SHROOM3 locus9, three fine-mapped variants 

(PIP>0.4) occurred within tubule epithelial-specific cCREs (Figure 4e). 

 

Identification of candidate genes involved in human kidney function 
 Many of these fine-mapped variants implicate specific genes in human kidney function. 55 

of these variants (PIP>0.4) were missense variants within coding sequence. These fine-mapped 

missense variants implicate 50 genes in kidney function (Supplementary Table 4). Ten of these 

50 genes are associated with monogenic kidney phenotypes in humans39–49 (Table 1). An 

additional seven of these genes cause kidney phenotypes when mutated in model organisms50–

56 (Table 1). Many of the genes were associated with primary cilia, regulation of mTOR, glucose 

metabolism, and regulation of calcium and phosphorous, biological processes with recognized 

links to kidney pathology57–59. 

 To identify target genes whose expression may depend on noncoding fine-mapped 

variants, we evaluated a nearest gene approach, a gene similarity-based approach—the 

Polygenic Priority Score (PoPS)60, and an integration of these two orthogonal approaches. 

To assess the performance of these gene prioritization strategies for kidney function, we 

constructed gold-standard kidney function gene sets comprised of: 1) genes containing rare 
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variants detected by exome sequencing in the UK Biobank (Supplementary Table 5) and 2) genes 

containing a high-confidence (PIP>0.7) fine-mapped missense variant (Supplementary Table 4).  

Using these gold-standard gene sets, we evaluated three gene prioritization strategies: 1) 

the gene with the top PoPS score within 500kb of the variant, 2) the nearest gene, and 3) 

integration of PoPS and the nearest gene, in which a gene is prioritized only if the top PoPS gene 

and nearest gene are the same. The nearest gene approach had a precision and recall of over 

60%, PoPS had a precision and recall of 40-60%, and combining the PoPS and nearest gene 

approach gave a precision of 100% with a recall from 30-50% (Supplementary Figure 5b,c). As 

combining the PoPS score with analysis of the nearest gene identified targets more precisely than 

competing GWAS-based gene prioritization methods60, we used this integrated approach to 

identify a set of 67 genes that may be regulated by 80 noncoding fine-mapped kidney function 

variants (Supplementary Table 6). In total, we identified 111 putative kidney function genes by 

integrating the 67 predicted targets of fine-mapped noncoding variants with the 50 genes 

containing fine-mapped missense variants (Supplementary Table 7).  

Gene enrichment analysis of kidney function genes revealed enrichment for tube 

development (Padj<10-9) and epithelium development (Padj<10-8) (Supplementary Table 8). In 

addition, genes encoding transcriptional regulators were enriched (Padj <10-11), including a subset 

with previously described roles in kidney development (e.g., HNF4A, MECOM, TFAP2B, 

TFCP2L1, and NFIA) and tubule epithelial response to stress (e.g., FOXO3 and NFATC1) 27,61–

68. Specifically enriched pathways included AMPK signaling (Padj <10-2) and HIF-1 signaling (Padj 

<10-2). Together, these results highlight the importance of genes involved in tubule epithelial cell 

development and response to tubule stress for variation in human kidney function. 

 

Kidney function variants affect tubule epithelial chromatin accessibility 
 As the genetic variants within kidney tubule epithelial cCREs explain ~58% of eGFRcr-cys 

SNP-heritability (Figure 3d), we sought to assess how variants in these cCREs might affect kidney 

function. One potential mechanism is altering tubule gene expression by changing chromatin at 

regulatory elements. ATAC-seq can detect the effect of variants on local chromatin accessibility69. 

To identify variants that affect chromatin accessibility, we performed allele-specific mapping of 

our scATAC-seq data and identified heterozygous variants at which there was a significant 

difference in accessibility between the reference and alternate allele.70 We refer here to such 

variants as displaying chromatin accessibility allelic imbalance (CAAI). 2,305 variants displayed 

CAAI in proximal tubule cells, 1,251 variants displayed CAAI in loop of Henle cells, and 5,852 

variants displayed CAAI in jointly analyzed tubule epithelial cells (FDR <0.05, Figure 5a). 
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We hypothesized that a mechanism by which variants affect chromatin accessibility is by 

perturbing the binding of transcription factors. Consistent with this hypothesis, CAAI sites were 

enriched in transcription factor binding motifs of transcription factors expressed in the relevant 

cell type (Figure 5b). For instance, proximal tubule CAAI sites were enriched for binding motifs 

for HNF1B and HNF4A, two proximal tubule transcriptional regulators. 

An additional hypothesis is that transcriptional activators increase the chromatin 

accessibility of alleles which more closely match their consensus binding motifs (Supplementary 

Fig 6a). As hypothesized, alleles that more closely approximated HNF1B and HNF4A binding 

motifs were associated with increased chromatin accessibility in proximal tubule cells 

(Supplementary Fig 6b). In contrast, alleles that more closely match the consensus transcription 

factor binding motif of transcriptional repressors CUX1 and YY1 were associated with less 

chromatin accessibility (Supplementary Fig 6b). Thus, CAAI analysis of scATAC-seq data can 

reveal how variants affect regulatory elements within specific cell types and implicate specific 

transcriptional regulators in their function. 

A limitation of CAAI analysis is that it depends on the presence of heterozygous alleles 

represented in the scATAC-seq data. In an attempt to overcome this hurdle, we developed 

ChromKid, a convolutional neural network (CNN), to predict chromatin accessibility in each kidney 

cell type from DNA sequence (Figure 5c). More specifically, ChromKid is a multitask CNN trained 

on our kidney scATAC-seq data to predict chromatin accessibility in each of 10 kidney cell types. 

ChromKid’s predictions of chromatin accessibility correlated with measured accessibility (R=0.73 

for proximal tubule, Figure 5d). The strength of the correlation between predicted and measured 

chromatin accessibility varied depending on kidney cell type, with the highest correlation in tubule 

epithelial cell types and lowest correlation in podocytes (Supplementary Figure 6c). These 

differences in degree of correlation were explained by differences in the number of cells present 

in the training data for each cell type (Supplementary Figure 6c). 

 Since ChromKid only uses DNA sequence to predict chromatin accessibility, it can predict 

the effect of any variant on local chromatin accessibility. To assess the accuracy of ChromKid 

variant effect predictions, we compared ChromKid predictions to experimental CAAI data. 

ChromKid predictions of variant effects in proximal tubule accurately discriminated whether a 

variant increased or decreased proximal tubule chromatin accessibility (AUROC 0.93, Figure 5e). 

ChromKid’s proximal tubule predictions more accurately discriminated variants effects on 

proximal tubule chromatin accessibility than ChromKid’s predictions for other kidney cell types 

(AUC 0.84-0.91), with the degree of inaccuracy correlating with the distance of the lineage 
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relationship to proximal tubule cells (Figure 5e). Thus, ChromKid learns cell type-specific 

information regarding how variants affect chromatin accessibility.  

 In addition to predicting whether variants increased or decreased chromatin accessibility, 

we assessed whether ChromKid could distinguish which variants affect chromatin accessibility. 

We used the experimental CAAI data to identify sets of variants that did or did not affect chromatin 

accessibility in proximal tubule cells and assessed whether ChromKid could accurately distinguish 

CAAI variants. Indeed, ChromKid identified many of the variants that affect proximal tubule 

chromatin accessibility (AUROC 0.77, Supplementary Figure 6d). ChromKid’s proximal tubule 

predictions more accurately discriminated which variants affect proximal tubule chromatin 

accessibility than ChromKid’s predictions for other kidney cell types, again with the degree of 

inaccuracy correlating with the distance of the lineage relationship (Supplementary Figure 6d). 

Together, these data indicate that ChromKid predicts how genetic variants affect chromatin 

accessibility in different cell types. 

To begin to test the possibility that CAAI and ChromKid may help identify how noncoding 

genetic variants affect kidney function, we examined rs12509595, a fine-mapped variant for 

eGFRcr-cys. rs12509595 is in a proximal tubule cCRE near FGF5. This variant displayed CAAI in 

proximal tubule cells, with the alternate allele exhibiting more accessibility than the reference 

allele (Figure 5f). Correspondingly, ChromKid predicted that the alternate allele would increase 

chromatin accessibility in proximal tubule cells (Figure 5f). The concordance of the measured and 

predicted effects on chromatin accessibility increased confidence that this variant (and not a 

distinct linked variant) was responsible for the effect on chromatin accessibility. 

Can CAAI and ChromKid also help illuminate how rs12509595 might affect FGF5 

expression? RXRA is a transcription factor expressed in the proximal tubule and helps regulate 

response to kidney injury71,72. We found that RXRA-binding motifs are enriched at CAAI sites, 

including that containing rs12509595 (Figure 5b). Within RXRA-binding motifs, the allele that 

better matched the RXRA-binding consensus sequence was associated with increased chromatin 

accessibility in proximal tubule cells (Supplementary Figure 6b). The alternate rs12509595 allele 

more closely matches the RXRA-binding consensus, suggesting that this allele may increase 

chromatin accessibility in proximal tubule cells by increasing binding to RXRA. This example 

illustrates how CAAI and ChromKid can identify mechanisms by which variants may affect 

chromatin architecture and kidney function. 

 

Kidney function genetic variants affect tubule epithelial regulatory element function  
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 We hypothesized that many genetic variants affect kidney function by altering tubule 

epithelial regulatory element function. To test this hypothesis, we employed ChromKid to predict 

the effect of tubule epithelial cCRE variants on chromatin accessibility. Notably, fine-mapped 

tubule epithelial cCRE variants had larger predicted effects on chromatin accessibility than other 

tubule epithelial cCRE variants (Figure 6a), consistent with the proposal that many genetic 

variants affect kidney function by altering tubule epithelial chromatin accessibility.  

 To test whether kidney function variants alter tubule epithelial cell regulatory element 

function, we performed enhancer assays in tubule epithelial cells. More specifically, we measured 

the effects of fine-mapped kidney function variants on the activity of three cCREs (5’ of NDRG1, 

in the promoter of CYP24A1, and in an intron of PRKAG2) in cultured primary human tubule 

epithelial cells (PHTE). For the NDRG1-associated cCRE, the alternative allele of rs10283362 

increased enhancer activity (Figure 6b). Similarly, the other fine-mapped variants affected the 

activity of their associated enhancers (Figure 6c,d). Moreover, the alleles with increased enhancer 

activity were also predicted by ChromKid to increase chromatin accessibility. Together, these data 

support the hypothesis that many variants affect kidney function via effects on tubule epithelial 

regulatory elements. 

 

CRISPRi enhancer-gene mapping links genes to kidney function 

Linking variants and cCREs to the genes they regulate remains a major challenge. 

Measuring the effect of cCREs on gene expression can identify which genes those cCREs control. 

To begin to map cCREs harboring kidney function variants to kidney function genes, we deployed 

CRISPRi enhancer-gene mapping (Figure 7a).  

Complicating the functional analysis of variants, most cCREs harboring fine-mapped 

kidney function variants were not accessible in immortalized kidney epithelial cell lines 

(Supplementary Figure 7a). Therefore, we assessed cCRE function in PHTEs (Figure 7a). We 

designed dual sgRNAs vectors targeting 17 tubule cCREs, each of which contained a fine-

mapped kidney function variant. For positive and negative controls, we generated sgRNAs 

targeting 6 previously identified enhancers, 6 transcriptional start sites, 4 gene deserts, 4 regions 

of closed chromatin, and 4 nontargeting controls (Supplementary Table 9).  

We identified cCRE target genes by measuring the effect of cCRE silencing on gene 

expression. More specifically, we used scRNA-seq to measure the effect of cCRE silencing on 

gene expression in over 24,000 HRCEs from four donors. scRNA-seq revealed that the HRCEs 

were primarily proximal tubule and distal tubule cells with a small number of parietal epithelial 

cells (Figure 7b and Supplementary Figure 7b). After lentiviral transduction with CRISPRi and 
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sgRNAs, a median of 1,257 cells expressed each guide and these cells expressed a median of 3 

guides (Supplementary Figure 7c). 

 All guides directed against previously identified enhancers73 and TSSs downregulated the 

associated gene, as expected (Supplementary Figure 7d,e). CRISPRi-mediated silencing of two 

kidney function-associated cCREs downregulated a nearby gene (Figure 7c). Guides directed 

against a cCRE containing a kidney function variant in the first intron of RNA-binding protein with 

multiple splicing (RBPMS) downregulated RBPMS (Figure 7c). Similarly, guides directed against 

a cCRE containing a kidney function variant 5’ of N-Myc downstream regulated 1 (NDRG1) 

reduced NDRG1 expression (Figure 7d). Effects were consistent across all 4 donors 

(Supplementary Figure 8a,b). In addition, the regulatory element which regulates NDRG1, 

contains rs10283362, the fine-mapped kidney function variant that affects tubule epithelial cell 

enhancer function (Figure 6b). These data indicate that variants in regulatory elements controlling 

NDRG1 and RBPMS expression in tubule epithelial cells affect human kidney function. 

 
Discussion 
 To identify cellular and molecular mechanisms that affect kidney function in humans, we 

performed a GWAS of kidney function, identified likely causal variants, and determined how 

variants affect chromatin accessibility, regulatory element function and gene expression. The 

pipeline of GWAS, cCRE-informed fine mapping, enhancer assays and CRISPRi enhancer-gene 

mapping overcomes the challenges posed by linkage disequilibrium to reveal how non-coding 

variants affect the cells and genes involved in kidney function. Thus, in addition to identifying 

variants and genes involved in human kidney function, this work illustrates a strategy for moving 

from GWAS to variants, regulatory elements, and genes extensible to other polygenic traits. 

Variants in kidney podocyte, proximal tubule, and distal tubule-specific cCREs were 

enriched for kidney function heritability. Strikingly, variants in tubule epithelial cell cCREs 

accounted for the majority of kidney function heritability. As kidney function and chronic kidney 

disease GWAS were highly correlated, we propose that differences in tubule epithelial cell biology 

are major drivers of human chronic kidney disease risk. 

Heritability of serum creatinine level reveals a quantitatively larger role for the proximal 

tubule than other tubule cell types and prior studies have highlighted the involvement of the 

proximal tubule in kidney function heritability12,13,74,75. Because the proximal tubule actively 

secretes creatinine and therefore has a unique filtration-independent role in creatinine clearance, 

focus on serum creatinine as a sole measure of GFR likely overestimates the role of the proximal 

tubule in kidney function. Inclusion of kidney function biomarkers beyond creatinine including 
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cystatin C and blood urea nitrogen revealed that heritability of kidney function is distributed 

between podocytes, proximal tubule-specific cCREs, distal tubule specific cCREs, and most 

strikingly in cCREs shared by all tubule epithelial cell types. 

A corollary of the finding that differences in tubule epithelial cells drive differences in kidney 

function is that tubule-directed therapies may be useful for treating many types of kidney disease. 

Additional support for this possibility comes from inhibitors of sodium-glucose transporter 2 

(SGLT2). Inhibitors of SGLT2, which reabsorbs glucose in the proximal tubule, are effective for a 

variety of kidney diseases76,77. Our genetic data are consistent with a central role for proximal 

tubule cells in diverse kidney diseases and suggest that therapies targeting other tubule epithelial 

cells or other aspects of proximal tubule biology may be clinically effective. 

To dissect how variants affect regulatory elements, we measured how variants affect 

chromatin accessibility. We used allele-specific scATAC-seq data to measure how variants impact 

chromatin accessibility (CAAI). CAAI is limited to variants that are heterozygous in the profiled 

cells. Moreover, interpretation is complicated by the potential effect of other variants in the 

haplotype. To address these limitations, we developed ChromKid, a deep learning model for 

predicting kidney cell chromatin accessibility from DNA sequence. These complementary 

biological and computational approaches revealed that many kidney function variants affect 

chromatin accessibility in tubule epithelial cells. 

Identification of the cells and regulatory elements affected by causal variants helps identify 

the genes affected by those variants73,78,79. For the fine-mapped variants identified in our study, 

we nominated associated genes using a combination of computational and experimental 

approaches. The computational methods integrated nearest-gene assessment and gene 

similarity-based predictions60. The experimental methods made use of enhancer assays and 

CRISPRi enhancer-gene mapping. Many of the predicted kidney function genes are involved in 

tubule development, emphasizing that developmental effects are likely to be important 

determinants of adult kidney function. 

CRISPRi enhancer-gene mapping identified NDRG1 and RBPMS as kidney function 

genes. NDRG1 is expressed during kidney tubule differentiation and was recently demonstrated 

to participate in hypoxia resistance within the zebrafish pronephros80,81. RBPMS encodes a 

regulator of translation and alternative splicing linked to dedifferentiation in multiple cell types82,83. 

It will be interesting to assess whether RBPMS participates in tubule cell dedifferentiation, which 

in animal models is involved in the development of chronic kidney disease following injury84. 

Two of the seventeen kidney function cCREs assessed using CRISPRi enhancer-gene 

mapping affected expression of genes. This proportion is consistent with a prior CRISPRi-based 
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assessment of cCREs73. We hypothesize that many cCREs at which perturbation did not identify 

affected genes in cultured tubule epithelial cells may still regulate tubule gene expression in vivo. 

We suspect that improving the power of CRISPRi screens to identify enhancer-gene pairs will 

require cellular models that better recapitulate in vivo gene regulation, increased sensitivity for 

detecting changes in genes expressed at moderate and low levels, and more potent CRISPR 

effectors85. 

Our approach had several limitations. First, cCREs of cell types or states that were absent 

or rare in the adult human kidneys would be poorly detected. Undetected cCREs would include 

those only accessible during kidney development or following injury. These undetected cCREs 

are likely to account for some of the kidney function heritability not explained by cCREs identified 

in this study. 

Second, while our study uses functionally informed fine-mapping to identify genetic 

variants likely to influence kidney function, there is no established means of validating which 

variants are causal. However, several lines of evidence indicate that our fine-mapping identified 

many of the functional variants: 1) fine-mapped cCRE variants had larger predicted effects 

onchromatin accessibility than other cCRE variants, 2) fine-mapped variants affected enhancer 

function, and 3) variants fine-mapped without the use of functional annotation were enriched for 

missense variants, in kidney tubule cCREs and in conserved regions (Supplementary Figure 5a). 

Third, our study focuses on genetic variants associated with kidney function biomarkers 

used to diagnose kidney disease, but not on kidney disease itself. GWAS of kidney disease have 

less power than GWAS of kidney function because kidney disease is a binary outcome, in contrast 

to the continuous variable of eGFRcr-cys
6. Using a GWAS performed in a separate cohort, we found 

that kidney function variants were associated with chronic kidney disease. This association 

between kidney function and chronic kidney disease is consistent with prior work showing that 

loci associated with kidney function biomarkers and chronic kidney disease overlap6,86. Thus, the 

kidney function variants identified in this study are likely to be relevant to chronic kidney disease 

risk. 
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METHODS 
Bulk ATAC-seq 
2g of fresh kidney cortex fragments were homogenized in buffer (250mM sucrose, 10mM Tris pH 

7.5, 3mM MgCl2, 0.1% NP40) using a gentleMACS M Tube (Miltenyi Biotec, 130-093-237) and 

gentleMACS dissociator program E.01. The homogenate was filtered through a 200µm filter, 

100µm filter, pelleted by centrifugation, and treated according to the Omni-ATAC protocol87, with 

the following exceptions. Homogenate from 2g of tissue was resuspended in 1ml of ATAC-

Resuspension Buffer (RSB) containing detergents. Detergents were diluted with 15ml RSB with 

0.1% Tween. Nuclei were passed through a 40µm filter and subsequently counted. 100µl of nuclei 

were used for the transposition reaction which was performed in 105µl with 10µl of transposase 

(Illumina, 20034197). The library was sequenced on an Illumina NovaSeq 6000 System on an SP 

flow cell with paired-end 50-bp reads. 

 Bulk ATAC-seq alignment to hg38 and peak calling were performed using PEPATAC88 

(https://pepatac.databio.org/en/latest/). Motif enrichment within ATAC-seq peaks was calculated 

using HOMER89 (http://homer.ucsd.edu/homer/motif/). 

 

Single-cell ATAC-seq 
Libraries were generated with the Chromium Next GEM Single Cell ATAC Library & Gel Bead Kit 

v1.1 (10x Genomics, 1000176) with the following modifications. Kidney cortex or kidney medulla 

were dissected and 2 grams of tissue were homogenized and lysed as described for bulk ATAC-

seq. Nuclei were either used immediately for scATAC-seq library generation or alternatively 10% 

DMSO was added to the nuclei suspension and nuclei were frozen in cryovials in a CoolCell 

Freezing Sytem (Corning) at -80C. To prepare libraries from frozen nuclei, nuclei were thawed at 

room temperature and immediately diluted 1:8 in diluted nuclei buffer (10x Genomics). To prepare 

libraries, 200,000 nuclei were pelleted (6 minutes at 500xg, 4C), resuspended in 50uL diluted 

nuclei buffer, and recounted. 15,000 nuclei were used for transposition and library generation 

according the manufacturers protocol. Libraries were sequenced on an Illumina NovaSeq 6000 

System with paired-end 50-bp reads. 

 Demultiplexing, read alignment, and cell calling was performed with the Cell Ranger ATAC 

Pipeline (v1.2, using hg38) to generate scATAC fragment files. Fragment files were loaded into 

R (3.6.1) using the createArrowFiles function in ArchR (v.0.9.5)90. TSS enrichment and number 

of unique fragments calculated on a per-cell basis were used to remove low quality cells, cutoffs 

were defined for each library (TSS enrichment >6-7, unique fragments <4000-6800).  
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 Dimensionality reduction, batch effect correction, clustering, integration with kidney 

scRNA-seq data26, and cluster-specific peak calling were performed using the addIterativeLSI, 

addHarmony, addClusters, adddGeneIntegrationMatrix, and addGroupCoverages functions in 

ArchR. Gene activity scores were calculated using the ArchR function getMarkerFeatures. Motif 

enrichment within cell type-specific peaks were identified using the addMotifAnnotations and 

peakAnnoEnrichment functions and Homo sapiens motifs from CIS-BP91. 

 To identify clusters of cell type-specific peaks, the cell type-by-peak matrix was 

normalized, log transformed, and k-means clustered with 12 clusters. Two clusters corresponded 

to ubiquitously accessible peaks and were combined.  

 

Tissue 
Deidentified, nontransplantable kidneys were obtained from a not-for-profit organization (DNW, 

San Ramon, CA, USA). The research protocol was approved by the DNW internal ethics 

committee (Research project UCSF-18-104). The Institutional Review Board at the University of 

California San Francisco determined that this project does not meet the definition of human 

subjects research.  

 

Chromatin accessibility allelic imbalance 
To assess chromatin accessibility allelic imbalance (CAAI), we remapped scATAC reads using 

WASP70, which removes read-mapping bias caused by challenges mapping reads generated from 

alternate alleles. Sample specific genotypes for using with WASP were generated using Omni 

2.5M arrays (Illumina) and imputed using the Michigan Imputation Server92,93 

(https://imputation.biodatacatalyst.nhlbi.nih.gov/), using TOPMed r294. For each cell type, within 

each sample reads aligning to heterozygous sites were counted with bcftools mpileup followed 

by bcftools call. Imputed genotypes were added using bcftools isec. To prevent contamination 

from incorrectly called heterozygous sites, sites with imputed genotype probability <0.9 and <2 

reads from either allele were filtered out. Allelic imbalance significance was assessed with a 

binomial test, comparing the number of reference reads versus total reads and adjusting for 

multiple hypothesis testing using the Benjamini-Hochberg method and using an FDR cutoff of 

0.01. 

To examine transcription factor motifs present at sites with chromatin accessibility allelic 

imbalance (CAAI), FIMO was used to scan the 20 bp region surrounding each variant for matches 

in the JASPAR 2020 CORE non-redundant vertebrates database95,96. For each variant, we 

queried both the reference and alternate sequence, keeping matches with a p-value of less than 
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1e-3 for either the reference or alternate sequence. To identify motifs affected by variants, only 

matches satisfying !𝑙𝑜𝑔!"
#$%&'()!"#
#$%&'()$%&

 !   ≥  1 were analyzed. Enrichment of motifs affected by 

variants at CAAI variants was determined by comparing against variants without CAAI using a 

hypergeometric test. P-values were corrected for multiple hypothesis testing using the Benjamini-

Hochberg procedure. To examine the direction of effect of motifs on chromatin accessibility, for 

each motif predicted to be affected at sites with CAAI, we determined the fraction of sites where 

the motif is predicted by FIMO to preferentially bind to the allele associated with higher chromatin 

accessibility.  

Only transcription factor motifs that correspond to one of the top 300 TFs expressed in the 

indicated cell type were plotted26.  

 

Partitioned Heritability Analyses 
Partitioned heritability analyses were performed using stratified LD score regression22 using 

baseline annotations (baselineLD_v2.2, https://alkesgroup.broadinstitute.org/LDSCORE/)97. 

 

GWAS 
The GWAS of eGFRcr-cys in the UK Biobank98 (release version 3) was performed in unrelated 
individuals of European ancestry using the inverse-rank normal transformation of eGFRcr-cys 

defined using the 2012 CKD-EPI equation14. Age, sex, and the fist 10 principal components were 

used as covariates. 

 To identify eGFRcr-cys loci, the variant with the lowest P value across the genome was 

defined as an index variant and a 1 Mb locus centered at the index variant was defined. This was 

repeated until no further variants with P values < 5x10-8 remained. Each locus was then classified 

in one of four categories to indicate whether it contained a genome-wide significant variant for the 

eGFRcr and eGFRcys phenotype: 1) contains a genome-wide significant variant for eGFRcr and 

eGFRcys, 2) contains a genome-wide significant variant for eGFRcr, 3) contains a genome-wide 

significant variant for eGFRcys, 4) locus unique to eGFRcr-cys. Overlapping loci within the same 

category were merged. The small number of overlapping loci within different categories were 

trimmed at the midpoint of the overlap. 

 

Gene prioritization 
We applied PoPS60 to the eGFRcr-cys GWAS to prioritize kidney function genes. We calculated 

per-gene association statistics using MAGMA99 with the 1000G EUR reference panel100 and 

Ensembl 107 gene coordinates. We then learned a gene prioritization score using PoPS from the 
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MAGMA statistics and 57,543 PoPS gene features (https://www.finucanelab.org/data). To 

prioritize genes, we selected the top PoPS scoring gene within 500kb of a fine-mapped variant 

(PoPS score), the nearest gene body to the fine-mapped variant (distance), or only selected the 

gene if the top PoPS scoring gene and closest gene were the same (PoPSxDistance). 

Gene prioritization was evaluated with two sets of gold-standard kidney function genes 1) 

genes with fine-mapped missense variants with PIP>0.7 from the eGFRcr-cys GWAS (an approach 

analogous to the one used in the original PoPS manuscript) and 2) genes with coding mutations 

associated with both creatinine and cystatin C levels from the UK Biobank exome data assessed 

by gene-based association testing101. To define the exome based set we used the gene-based 

association (SKAT-O test) between putative loss of function variants and both creatinine and 

cystatin C levels (https://genebass.org). To exclude genes associated only with either creatinine 

or cystatin C, we used the maximum(p-value creatinine, p-value cystatin C). These p-values were 

adjusted for multiple hypothesis testing (Benjamini-Hochberg). This procedure was repeated for 

the gene-based association for missense variants. Genes with FDR<0.1 from either the putative 

loss of function or missense tests were included in the gold standard set. 

 To evaluate gene prioritization approaches, we defined test loci as the 500kb region 

around each fine-mapped noncoding variant (PIP>0.4) that overlapped a gold-standard gene. If 

the locus for two fine-mapped variants overlapped, one was chosen randomly to be part of the 

test set. For each gold standard and gene prioritization metric, we quantified the precision and 

recall. Precision was defined as the proportion of prioritized genes that are in the gold standard 

set. Recall was defined as the number of gold standard genes in the tested loci that were 

prioritized. 
 

Functionally informed fine-mapping 
eGFRcr-cys loci for fine-mapping were identified by identifying by defining loci containing an index 

variant associated with both creatinine and cystatin C. Index eGFRcr-cys variants from the eGFRcr-

cys GWAS were identified using GCTA-COJO. Association of these index eGFRcr-cys variants with 

both creatinine and cystatin C was assessed using summary statistics from the GWAS for the 

individual biomarkers performed in UK Biobank. Fine-mapping was performed on 1 Mb loci 

centered on index eGFRcr-cys variants with nominally significant p-values for both individual 

biomarkers (Bonferroni corrected for the 522 tests, p<0.05) and the same direction of effects for 

both biomarkers. Fine-mapping of these loci was performed using Polyfun38 and Susie102 using a 

maximum of 3 causal variants per locus. Standard fine-mapping was performed using Susie, 
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functionally informed fine-mapping used prior causal probabilities calculated in Polyfun based on 

both a kidney epithelial regulatory element annotation and baseline annotations38.  
 
Deep learning prediction of chromatin accessibility from DNA sequence (ChromKid) 
We trained a set of multi-task convolutional neural networks (CNN), which we collectively refer to 

as ChromKid, to map 1344 bp DNA sequence regions across the genome to quantitative read 

outs of chromatin accessibility across 10 kidney cell types. For efficient training, we used a 

transfer learning procedure (see below) where we first trained a classification model to predict 

binary labels (accessible vs. not accessible) and then fine-tuned a regression model to predict 

quantitative read outs. We trained 23 CNNs using a leave-one-chromosome-out (LOCO) 

approach, described below, to prevent overfitting. 

 Model architecture: We used the Basenji repository (https://github.com/calico/basenji) and 

a variation of the previously optimized multi-task Basset CNN architecture for predicting genome-

wide chromatin accessibility from DNA sequence. The inputs to the model are 1344 bp long DNA 

sequences that are one-hot encoded. The model is composed of 8 convolutional layers followed 

by 2 fully connected layers.  

 The first convolutional layer has 288 filters with a kernel size of 17, and is followed by max 

pooling with size 3. The six subsequent convolutional layers each have consecutively increasing 

numbers of filters, beginning with 288 and ending with 512. The increasing number of filters in the 

convolutional layers are defined as 1.122 times the number of filters in the previous layer. Each 

of these six convolutional layers have a kernel size of 5 and are followed by max pooling with size 

2. The final convolutional layer has 256 filters with a kernel size of 1. Each convolutional layer is 

followed by batch normalization and a GELU non-linearity. 

 The convolutional layers are followed by a fully connected layer with 768 neurons. This 

layer is followed by batch normalization and a GELU non-linearity, and has a dropout probability 

of 0.2. 

The final fully connected layer is the output layer. This layer maps to 10 outputs (multi-

task output), each corresponding to a read out of chromatin accessibility in a particular cell type. 

We use binary or continuous output labels and associated loss functions in the multi-stage training 

(see below). When training on binary labels (accessible vs. not accessible), we use the binary 

cross-entropy loss function with sigmoid outputs. When training on continuous, quantitative 

measures of accessibility, we use the poisson loss function with softplus outputs. 

 Data processing: To train and evaluate the classification model, ATAC-seq peak calls 

were used. Genomic contigs containing a peak were binned into 1344 bp windows with a stride 
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of 192 bp. Binary labels were assigned corresponding to whether the central 192 bp of each 

window overlap an ATAC-seq peak by at least 25%. To train and evaluate the regression model, 

continuous, quantitative ATAC-seq values were used. Continuous valued labels were assigned 

by summing the read counts in the central 192 bp of each window. In both cases, genome 

assembly gaps and regions of the genome previously blacklisted owing to signal artifact are 

removed103. 

 Training & transfer learning procedure: We trained 23 CNNs with the architecture 

described above, using a LOCO approach to prevent overfitting. For each of the 23 CNNs, one 

chromosome was completely held out during training and validation. The X and Y chromosomes 

were grouped together and both held out from the same model. For all models where an odd 

numbered chromosome was held out, and for the model where the X and Y chromosomes were 

held out, chromosomes 2, 18, and 22 were used for validation. For all models where an even 

numbered chromosome was held out, chromosomes 5, 9, and 21 were used for validation. For 

each model, the same training, validation, and test split was used for both training stages to 

ensure that the test set was completely held-out throughout training.  

 For each of the 23 CNNs, we first train a multi-task classification model with the 

architecture and data described above. The models were trained using the Keras SGD optimizer 

(learning rate = 0.005), binary cross-entropy loss, and early stopping with patience of 3 epochs. 

We then fine-tune a set of multi-task regression models with the architecture described above. 

We begin by initializing each model with the parameters learned by the corresponding 

classification model. We “freeze” the parameters of the convolutional layers, such that parameters 

in the frozen layers cannot be altered during subsequent training. We fine-tune the parameters of 

the fully connected layers by training on the continuous valued data described above. The models 

were trained using the Keras SGD optimizer (learning rate = 0.005), Poisson loss, and early 

stopping with patience of 3 epochs. All models were trained on Nvidia 1080ti GPUs. 

 To evaluate the genome-wide performance of the models, we treat all genomic sequences 

processed using the procedure described above as our test set. For each sequence, we predict 

quantitative read outs of chromatin accessibility using the model where the relevant chromosome 

was held out from training. 

 Prediction of chromatin accessibility allelic imbalance: To quantify ChromKid variant effect 

performance, we identified variants with allelic imbalance in each of proximal tubule, loop of 

Henle, and distal tubule as described above. Non-allelic imbalance sets were constructed using 

variants where the p-value was greater than 0.1. The non-allelic imbalance sets were adjusted to 

be as large as possible while matching the read count distribution of the positive set variants on 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.18.599625doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599625
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

a log scale, resulting in a non-allelic imbalance set that was 7x the size of the allelic imbalance 

set in each of LOH, PT, and DT. 

 ChromKid predictions for the reference and alternate alleles in the 192 bp bin centered at 

the variant were defined as REF and ALT, and the predicted CAAI was computed as REF / (REF 

+ ALT). We evaluated how well predicted CAAI could classify whether a variant had CAAI (i.e., 

discriminate CAAI variants from non-CAAI variants) using the area under the receiver operating 

characteristic curve (AUROC). As an additional metric, among the variants in the CAAI set, we 

computed the AUROC for prediction of CAAI direction (REF>ALT vs ALT>REF) as measured by 

AUROC.  

 

SNP Activity Difference Tracks 
To quantify the predicted change in chromatin accessibility due to a single nucleotide variant 

(SNV), we calculated the SNV activity difference (SAD) score as the difference between the 

predicted ATAC-seq coverage in a 192-bp bin for the alternate and reference alleles103. To 

compute a SAD score track for a given SNV, we plotted the model’s predicted SAD score centered 

at every position for which the SNV falls within the model’s receptive field. This resulted in 

predictions for each cell type at 1344 positions, representing the model’s 1344-bp receptive field. 

 
Enhancer Assays 

Regulatory elements were amplified by PCR from human genomic DNA using primers listed in 

Supplementary Table 10 and cloned into the pGL4.23 Luciferase Reporter Vector (Promega, 

E8411) linearized with NheI and EcoRV (New England Biolabs) using In-Fusion Snap Assembly 

(Takara, 638949). To obtain regulatory elements with variant alleles not present in the genomic 

DNA used for amplification, site-directed mutagenesis was performed using In-Fusion Snap 

Assembly using primers listed in Supplementary Table 10. Sequences of all constructs were 

verified using long read sequencing (Primordium Labs), which confirmed that reference and 

alternate allele plasmids only different at the specified variant. Plasmids containing regulatory 

elements were transfected into Human Renal Cortical Epithelial cells (HRCE; Lonza, CC-2554). 

Specifically, 1.25 x 104 HRCE cells were plated in a 96-well plate in renal epithelial growth media 

(Lonza, CC-3190). 24 hours later cells were transfected with 50ng regulatory element plasmid 

and 50ng Renilla plasmid (pGL 4.74; Promega, E6921) using 0.3µL Fugene HD (Promega, 

E2311). 24h post-transfection, regulatory element activity was measured using the Dual-

Luciferase Reporter Assay (Promega, E1910) and a GloMax 96 Luminometer according to 
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manufacturer’s instructions. Regulatory element activity was plotted as the ratio of firefly to 

luciferase signal. 

 
CRISPRi enhancer-gene mapping 
sgRNAs were cloned into a BFP expressing dual guide expression vector, a modified version of 

PLGR002 which contains a second guide cassette (Addgene, 188320). Both guides within a 

vector were designed to target either: 1) A cCRE harboring a fine-mapped kidney function variant 

(17 cCREs, 2 plasmids per cCRE), 2) the transcription start site of a gene (6 TSS controls), 3) a 

known enhancer73 that we had previously validated in HRCEs (7 control enhancers, 2 plasmids 

per enhancer), or 4) a negative controls: gene desert, closed chromatin, or non-targeting (12 

negative controls). All guides were chosen using CRISPick104 with the exception of TSS guides 

which were chosen from a published guide library105. Lentivirus was produced from sgRNA 

plasmids by co-transfecting Lenti-X 293T (Takarabio, 632180) cells with the sgRNA plasmid 

library and packaging plasmids-psPAX2 and pMD2.G (Addgene, 12260 and 12259) using Trans-

IT-293 transfection reagent (Mirus, MIR2700). Media was collected on day 2 after transfection 

and the lentivirus was concentrated using Lenti-X Concentrator (Takarabio, 631232) and 

resuspended in renal epithelial growth media. The same protocol was used to generate lentivirus 

from the CBH-dCas9-mCherry-ZIM3 plasmid, which was generated using the ZIM3 sequence 

from pLX303-ZIM3-KRAB-dCAS9 (Addgene, 154472)106. 

 HRCEs (Lonza, CC-2554) from 4 donors grown in renal epithelial growth media (Lonza, 

CC-3190) were transduced with lentivirus encoding dCas9-mCherry-ZIM3. Three days later cells 

were transduced with lentivirus encoding the sgRNA library and blue fluorescent protein (BFP). 

Nine days after guide transduction mCherry, BFP double-positive cells from each donor were 

sorted. Equal numbers of double-positive cells from each donor were pooled and prepared for 

single cell RNA-sequencing, with 4 GEM groups each loaded with 20,000 cells, using the 

Chromium Next GEM Single Cell 3’ Kit 3.1 (10x Genomics, 1000268) according to the 10x 

Genomics protocol for Feature Barcode technology for CRISPR Screening. The resulting guide 

and expression libraries were sequenced on a Novaseq 6000 (Illumina).  

 Read alignment and cell assignment was performed using Cellranger count v7.0.0, the 

GRCh38-2020-A human reference transcriptome from 10x, and the protospacer sequences 

(Supplementary Table 9)107. Cell doublets were identified using Souporcell using the number of 

clusters argument -k 4108. Doublets were discarded.  

 Seurat v4.3.0 was used for subsequent analysis109. Cells with mitochondrial RNA 

percentage, RNA count, or number of detected genes outside three median absolute deviations 
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were filtered out. Seurat SCTransform v2 was used to normalize and scale the data as well as to 

find the variable features. The top 3000 highly variable genes were used for PCA and UMAP 

dimensionality reductions. Libraries from each screen were integrated using Seurat’s 

SelectIntegrationFeatures, FindIntegrationAnchors, and IntegrateData functions. Cells were 

clustered using FindClusters function and the Louvain algorithm.  

 Guide calling was performed using a Poisson-Gaussian caller110,111. Differential 

expression testing was performed using Seurat’s FindMarkers function and Logistic Regression 

test with library and donor as latent variables, and log fold change threshold of 0.03. Only genes 

within 1 Mbase up/downstream of the target (distal element or TSS) were considered for the test. 

Reported p-values were Bonferroni-corrected by the total number of neighbors of all targets in the 

experiment. MAST and Wilcoxon Rank Sum tests yielded similar results. 
 
Data Availability Statement 
Kidney ATAC-seq and scATAC-seq data is deposited with the Gene Expression Omnibus (GEO) 

(accession no. GSE262931). 

 

Code Availability Statement 
Code used for the analysis of scATAC-seq data, allelic imbalance, prediction of chromatin 

accessibility and variant effect from sequence (ChromKid), and benchmarking PoPS for kidney 

function are available at GitHub repository (https://github.com/ni-lab/kidney-finemapping). Code 

used for CRISPRi ehancer-gene mapping are available at GitHub repository 

(https://github.com/ucsf-lgr/ckd-workflow). 
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Figure 1: Kidney candidate cis-regulatory elements are enriched for kidney function 
heritability. 
a) Manhattan plot for the estimated GFR calculated from serum creatinine and cystatin C levels 
(eGFRCr-Cys) genome wide association study (GWAS) performed within the UK Biobank. 
Significant loci are colored to indicate whether they are unique to the eGFRCr-Cys GWAS or are 
found within indicated single biomarker GWAS. Labels at the top indicate the closest gene to the 
index variant. The y-axis is a -log10(P) scale up to 30, after which it switches to a -log10[-log10(P)] 
scale.  
b) ATAC-seq of human kidney cortex identifies kidney noncoding candidate cis-regulatory 
elements (cCREs). The contribution of kidney cCREs to human traits is evaluated by calculating 
trait heritability cCRE enrichment using stratified LD score regression. 
c) Fold enrichment of the SNP heritability of fifteen human traits within kidney cCREs calculated 
with stratified LD score regression. Error bars denote jackknife standard errors for the enrichment 
estimate. These errors were used to calculate P values, which were Bonferroni corrected. * 
P<0.05.  
d) Several kidney cCREs lie in introns of PDILT 5’ to UMOD, which encodes a mendelian kidney 
disease gene. rs77924615 is associated with kidney function (eGFRCr-Cys), is in a kidney cCRE, 
and has low LD with all other variants at the locus. Degree of LD to rs77924615 is indicated by 
variant color.  
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Figure 2: Single-cell ATAC-seq of human kidneys identifies cell type-specific cCREs. 
a) Schematic of the nephron, colored by major epithelial cell types. 
b) scATAC-seq UMAP of 34,240 kidney cells from 3 donors. 
c) Motifs of transcription factors expressed in the kidney are enriched in cCREs of specific kidney 
cell types. Chromatin accessibility for bolded transcription factors is shown in d-f. 
d-f) Chromatin accessibility maps for three cell type-specific genes: HNF4A, expressed in the 
proximal tubule; TFAP2B, expressed in the loop of Henle and distal tubule; and SPI1, expressed 
in immune cells. 
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Figure 3: Kidney tubule cCREs account for the majority of SNP heritability of kidney 
function biomarkers. 
a) Clustering of cCREs distinguishes cell type-specific and ubiquitously accessible cCREs. Each 
vertical line represents one cCRE. A total of 526,273 cCREs are depicted. IC, intercalated cell. 
b-c) Fold enrichment of SNP heritability of eGFRCr-Cys and albuminuria within cell type-specific 
and ubiquitously accessible cCREs calculated with stratified LD score regression. Error bars 
denote jackknife standard errors for the enrichment estimate. These errors were used to calculate 
P values, which were Bonferroni corrected for multiple hypothesis testing. * P<0.05. 
d) Fraction of heritability of eGFRCr-Cys explained by kidney tubule epithelial cell cCREs (blue), 
coding exons (beige), and the remainder of the human genome (gray).  
e) rs77924615, a variant associated with eGFRCr-Cys level, lies with a tubule epithelial-specific 
cCRE (gray).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.18.599625doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599625
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.18.599625doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599625
http://creativecommons.org/licenses/by-nc-nd/4.0/


 39 

Figure 4: Identification of causal kidney function variants using functionally informed fine-
mapping. 
a) Workflow of functionally-informed fine-mapping of variants affecting eGFRcr-cys. GWAS for 
eGFRcr-cys identified 462 lead variants. 385 of these variants had consistent effects on both 
serum creatinine and cystatin C levels. Fine-mapping of these loci incorporated annotation of 
kidney tubule cCREs, evolutionary conservation, and gene annotations including annotations 
indicating whether a variant is coding, affects protein sequence (nonsynonymous), is in an intron, 
or is in a UTR. PIP, posterior inclusion probability. 
b) eGFRcr-cys index variants plotted by the estimated size of their effect on both serum creatinine 
and cystatin C levels. Variants colored blue affect both creatinine and cystatin C levels in the 
same direction.  
c) Comparison of the number of fine-mapped kidney function variants identified with or without 
functional annotations. Variants are separated into those with moderate posterior inclusion 
probability (0.3-0.7) and high posterior inclusion probability (>0.7).  
d) Fold enrichment of fine-mapped kidney function variants that cause nonsynonymous changes 
in a coding sequence, are evolutionarily conserved, or that lie within tubule epithelial-specific 
cCREs. Variants are separated into those with high (>0.7), moderate (0.3-0.7) and low (0.05-0.3) 
posterior inclusion probabilities.  
e) Functionally informed fine-mapping at the SHROOM3 locus. The functionally informed 
posterior causal probability is plotted for variants, which are colored according to the causal 
probability estimated without functional annotations. Chromatin accessibility from scATAC-seq for 
the indicated kidney cell types are plotted below. Gray boxes indicate tubule epithelial cCREs 
containing fine-mapped variants. 
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Table 1: Fine-mapped kidney function variants implicate genes involved in kidney function. 
A subset of genes with missense or promoter fine-mapped kidney function variants (PIP>0.4). 
Additional genetic evidence from the role of these genes in human monogenic kidney diseases 
or model organisms is noted. AD, autosomal dominant; AR, autosomal recessive.  

Gene Additional Genetic Evidence Function

ATP6V1B1
AR Distal renal tubular acidosis and 
sensorineural hearing loss Calcium/Phosphorous

SLC34A3
AR Hereditary hypophosphatemic rickets 
with hypercalciuria Calcium/Phosphorous

CLUAP1 Zebrafish: Kidney cyst Cilia
PKHD1 AR Polycystic kidney disease Cilia
POC5 Cilia
PKD1 AD Polycysitic kidney disease Cilia
EPB41L5 Mouse: proteinuria, kidney failure Extracellular matrix
COL18A1 Extracellular matrix
ELN Extracellular matrix
ALDOB AR Fructose intolerance Glucose metabolism
GCKR Glucose metabolism
APOE AD Lipoprotein glomerulopathy Lipid metabolism
DEPTOR Mouse: Reduced kidney injury mTOR
FNIP1 Mouse: Kidney cysts mTOR
LRP2 AR Donnai-Barrow syndrome Proximal tubule reabsorption
SLC7A9 AD/AR Cystinuria Proximal tubule reabsorption
KCNK5 Mouse: Kidney fibrosis Proximal tubule reabsorption
GATA5 Mouse: Kidney immune infilitrate Transcription factor
HNF1B AD Tubulointersitial kidney disease Transcription factor
HNF4A AD Fanconi renotubular syndrome Transcription factor
NFAT5 Mouse: Kidney medulla atrophy Transcription factor
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Figure 5: Chromatin accessibility allelic imbalance and machine learning identify cell type-
specific effects of variants on chromatin accessibility. 
a) Workflow to detect chromatin accessibility allelic imbalance (CAAI). Single-cell ATAC-seq 
reads were analyzed at heterozygous alleles and accessibility at both alleles was compared to 
measure the effect of variants on chromatin accessibility.  
b) Enrichment of proximal tubule expressed transcription factor-binding motifs at cCREs 
exhibiting CAAI in the proximal tubule. 
c) Schematic of ChromKid, a convolutional neural network trained to predict cell type-specific 
chromatin accessibility for 10 kidney cell types from DNA sequence. ChromKid uses a 1344bp 
DNA sequence input to generate a prediction of the quantitative chromatin accessibility at the 
center of the input region for each kidney cell type. 
d) Measured versus ChromKid-predicted proximal tubule chromatin accessibility on chromosome 
11, which was withheld from training. The best fit line is shown. 
e) Receiver operating characteristic (ROC) curves for the direction of proximal tubule chromatin 
accessibility imbalance, displaying the false positive rate (x-axis) versus true positive rate (y-axis) 
of cell-type specific predictions from ChromKid. The areas under the curves (AUCs) for ChromKid 
predictions for each cell type are shown in the legend. ChromKid predictions of variant effects in 
each cell type are compared to proximal tubule CAAI.  
f) Fine-mapped variant rs12509595 (indicated by a vertical line) maps to a proximal tubule cCRE 
near FGF5. CAAI analysis revealed the cCRE with the alternate allele exhibits increased 
chromatin accessibility in the proximal tubule. ChromKid also predicted that the alternate allele 
would show increased chromatin accessibility at this cCRE in the proximal tubule. A motif in this 
cCRE corresponds to a consensus binding motif for the proximal tubule transcription factor RXRA. 
The variant, indicated in red, affects this binding motif. The alternative allele sequence more 
closely matches the consensus binding motif for RXRA. Statistical significance was calculated 
with a two-sided binomial test.
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Figure 6: Genetic variants affecting kidney function alter tubule epithelial cis-regulatory 
element function. 
a) Fine-mapped kidney function variants exhibit larger predicted effects on accessibility than other 

variants within tubule epithelial cCREs. ChromKid-generated predictions of CAAI at fine-mapped 

kidney function (eGFRcr-cys) variants within tubule cCREs stratified by PIP. Predicted CAAI is 

shown as the max !0.5 − / *)+
*)+,&'-

0! across tubule epithelial cell types. Box boundaries indicate the 

1st and 3rd quartile and whiskers indicate the most extreme data point within 1.5 times the 

interquartile range. Statistical significance was calculated using the Mann Whitney U test.  

b-d) Left: Plots of scATAC-seq data near fine-mapped kidney function variants, which are 

depicted by vertical lines. cCREs (gray) containing a kidney function variant were selected for 

functional testing. Top right: ChromKid predicted proximal tubule chromatin accessibility for both 

alleles at these cCREs. Predicted chromatin accessibility for the reference allele is depicted in 

dark green, and for the alternative allele is depicted in light green. Bottom right: Activity of 

enhancers in human primary tubule epithelial cells. Enhancer activity of the reference allele is 

depicted in dark green, and of the alternative allele is depicted in light green. Results are 
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representative of three independent experiments. Statistical significance was based on a two-

sided t test, ** P<0.01.  
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Figure 7: Kidney function enhancers regulate RBPMS and NDRG1. 
a) Schematic of the approach to map genes regulated by kidney function regulatory elements 
using CRISPRi-mediated silencing. cCREs containing fine-mapped kidney function variants were 
targeted in human primary tubule epithelial cells with CRISPRi. Gene expression and guide 
expression were measured by scRNA-seq. b) UMAP of scRNA-seq for 24,563 primary tubular 
epithelial cells from 4 donors used for CRISPRi-mediated silencing of kidney function cCREs. c) 
Volcano plot of differentially expressed genes in cells with expression of guides targeting kidney 
function cCREs. d-e). Left: Plots of proximal tubule chromatin accessibility from scATAC-seq data 
with the CRISPRi-targeted cCRE depicted with a black rectangle. Right: Violin plots of gene 
expression in cells expressing (green) or not expressing (gray) guides targeting the indicated 
regulatory element. Superimposed box plots indicate the median, 25th, and 75th percentiles of 
expression. All P values are adjusted for multiple hypothesis testing using the Bonferroni 
correction. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.18.599625doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.18.599625
http://creativecommons.org/licenses/by-nc-nd/4.0/


 47 

Supplementary Figure 1: Kidney candidate cis-regulatory elements are enriched for kidney 
function heritability. 

a) Pearson correlation between variant effect size for eGFRcr-cys and chronic kidney disease (CKD) 
from GWAS performed in two independent populations. The P value for the Pearson correlation 
is indicated. b) Binding motifs of kidney transcription factors are enriched in kidney cCREs defined 
using kidney ATAC-seq peaks. P values are calculated relative to GC-content matched genomic 
background using the binomial test.  
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Supplementary Figure 2: Kidney function variants are within kidney candidate cis-
regulatory elements. 
a-c) The association between eGFRcr-cys and variants near TFEB, DDX1 and HOXD8 are 

indicated. The variant with the strongest association at each locus is indicated by the purple 

diamond and the LD between the top variant and other variants at the locus are indicated by color.  
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Supplementary Figure 3: Gene activity scores of kidney marker genes 
Gene activity scores—a measure of integrated chromatin accessibility around genes which 

correlates with expression—for established marker genes of each cell type. 
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Supplementary Figure 4: Kidney tubule epithelial cCREs account for most kidney function 
SNP heritability. 
a-c) Fold enrichment of SNP heritability for serum creatinine, cystatin C, and urea levels within 

cell type-specific and ubiquitously accessible (common) cCREs calculated using stratified LD 

score regression. * P<0.05. P values are Bonferroni corrected for multiple hypothesis testing. 

d) Fraction of heritability of eGFRcr-cys explained by kidney podocyte and tubule epithelial cell 

cCREs (blue), coding exons (beige), and the remainder of the human genome (gray).  
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Supplementary Figure 5: Functionally informed fine-mapping and target gene prioritization 
identifies causal kidney function variants and genes. 
a) Enrichment of variants fine-mapped without functional annotations. Fold enrichment for 

variants that cause nonsynonymous changes in a coding sequence, are evolutionarily conserved, 

or that lie within tubule epithelial-specific cCREs is shown. Variants are separated into those with 

high (>0.7), moderate (0.3-0.7), and low (0.05-0.3) posterior inclusion probability.  

b-c) Precision and recall of the top prioritized gene for fine-mapped variants (PIP>0.4) based on 

distance, PoPS, or the agreement of PoPS and distance using a gold standard defined as (b) 

genes with fine-mapped missense variants associated with eGFRcr-cys or (c) genes significantly 

associated with both creatinine and cystatin C in an exome sequencing gene-based association 

test. 
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Supplementary Figure 6: Chromatin accessibility allelic imbalance and machine learning 
identify cell type-specific effects of variants on chromatin accessibility. 
a) Schematic illustrating alleles that differ in their similiarity to the HNF4A transcription factor 

binding motif.  

b) The fraction of cCREs at which the variant more closely matching the consensus binding motif 

of the indicated transcription factor is associated with increased chromatin accessibility. 

c) The model Pearson correlation between ChromKid-predicted and experimentally measured 

chromatin accessibility calculated on a held-out chromosome (chromosome 11) graphed relative 

to the number of cells within the training set for each cell type. Across cell types, correlation 

increased with greater cell number. 
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d) ROC curves for the prediction of proximal tubule chromatin accessibility (CAAI), displaying the 

false positive rate (x-axis) versus true positive rate (y-axis) of cell-type specific predictions from 

ChromKid. The AUCs for ChromKid predictions for each cell type are shown in the legend. 
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Supplementary Figure 7: CRISPRi enhancer-gene mapping in human tubule epithelial 
cells. 
a) The fraction of non-promoter tubule epithelial cCREs containing fine-mapped kidney function 

variants (PIP>0.4) which are accessible in cultured primary human tubule epithelial cells and 

indicated cell lines.  

b) Expression of marker genes in proximal tubule, distal tubule, or parietal epithelial cells within 

cultured primary human tubule epithelial cells as measured by scRNA-seq. Marker genes of 

tubule cells, proximal tubule, distal tubule, and parietal epithelial cells are indicated on the y-axis. 

c) Histograms of the number of guide constructs expressed per cell (top) and number of cells 

expressing each guide construct (bottom).  

d) Effect of transcriptional start site-targeting guides on gene expression. Expression of indicated 

genes in cells that do not express (Ctrl) or do express a guide (Guide) targeting the transcription 

start site.  

e) Effect of positive control enhancer guides on gene expression. Expression of indicated genes 

in cells that do not express (Ctrl) or do express a guide (Guide) targeting a previously identified 

enhancer. Superimposed box plots indicate the median, 25th and 75th percentiles of expression. 

All P values were calculated using logistic regression and adjusted for multiple hypothesis testing 

using the Bonferroni correction. 
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Supplementary Figure 8: Consistency of the effect of cCRE silencing across donors. 
a) Violin plots of RBPMS gene expression in cells expressing (Guide) or not expressing (Ctrl) 

guides targeting the cCRE within the first intron of RBPMS for four different donors. 
b) Violin plots of NDRG1 gene expression in cells expressing (Guide) or not expressing (Ctrl) 

guides targeting the cCRE 5’ of NDRG1 in HRCEs. Superimposed box plots indicate the median, 

25th and 75th percentiles of expression. All P values were calculated using the logistic regression 

test and adjusted for multiple hypothesis testing using the Bonferroni correction. 
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