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SUMMARY 
Comprehensive molecular and cellular phenotyping of human islets can enable deep 

mechanistic insights for diabetes research. We established the Human Islet Data Analysis and 

Sharing (HI-DAS) consortium to advance goals in accessibility, usability, and integration of data 

from human islets isolated from donors with and without diabetes at the Alberta Diabetes 

Institute (ADI) IsletCore. Here we introduce HumanIslets.com, an open resource for the 

research community. This platform, which presently includes data on 547 human islet donors, 

allows users to access linked datasets describing molecular profiles, islet function and donor 

phenotypes, and to perform various statistical and functional analyses at the donor, islet and 

single-cell levels. As an example of the analytic capacity of this resource we show a dissociation 

between cell culture effects on transcript and protein expression, and an approach to correct for 

exocrine contamination found in hand-picked islets. Finally, we provide an example workflow 

and visualization that highlights links between type 2 diabetes status, SERCA3b Ca2+-ATPase 

levels at the transcript and protein level, insulin secretion and islet cell phenotypes. 

HumanIslets.com provides a growing and adaptable set of resources and tools to support the 

metabolism and diabetes research community. 
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INTRODUCTION 
 Four decades following the development of methods for large-scale isolation of human 

pancreatic islets,1–3 the use of cadaveric islets has become a staple of diabetes research.4–7 As 

biomedical datasets continue to grow in size, there has been increased emphasis on improving 

the findability, accessibility, interoperability, and reusability (FAIR) of published data.8–10 This is 

highly relevant to human islet research6 since these are increasingly used as a comparator in 

the development of stem cell-derived products for transplantation,11–13 in large genomics studies 

at the islet14,15 and single-cell level,16,17 and in studies that seek to understand conventional type 

1 diabetes (T1D) and type 2 diabetes (T2D).4 Furthermore, since islet tissue is not readily 

accessible it is particularly important to maximize the usage of existing datasets. 

 Several initiatives provide data resources and analysis pipelines for the exploration of 

human islet data, with differing degrees of openness. Some focus on deep human pancreas 

phenotyping and data curation,7,18–21 while others provide analysis tools for linking hormone 

production and gene expression,22 single-cell islet transcript visualization,23,24 and exploring the 

relationship between diabetes genetics and gene regulation.25 While existing resources are 

valuable, there is an unmet need both for user-friendly analysis pipelines that are accessible to 

the general islet and diabetes research community, including non-specialists, and for improved 

access to analysis pipelines and minimally processed data for more customized analyses. 

Additionally, since there is often low concordance in findings from different datasets and 

analyses,4 a better understanding of how donor factors, technical aspects of organ processing, 

and cell culture impact these data is crucial for appropriate interpretation of results. Proper 

documentation, reporting, and integration of this information into transparent data collection and 

analysis pipelines can make important contributions to understanding islet data and diabetes 

research. We established the HumanIslets Data Analysis & Sharing (HI-DAS) Consortium to 

address these important gaps in the human islet research ecosystem. 

The Alberta Diabetes Institute (ADI) IsletCore (www.isletcore.ca) isolates and distributes 

human islets specifically for research. Together with HI-DAS we present an online resource 

(HumanIslets.com) for the exploration, analysis, and download of data collected from human 

research islet preparations from organ donors with and without diabetes. This platform includes 

data (547 donors as of June 2024) and methods for analysis of bulk islet transcriptomics, bulk 

islet proteomics, and single-cell transcriptomics linked to measures of islet functions such as 

insulin secretion, oxygen consumption, electrophysiology, pancreas processing, and cell culture 

metadata. The HumanIslets.com platform offers intuitive support to directly analyze these data 

and metadata, including: i) exploration at the donor, islet and single-cell levels; ii) multi-omic 
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analysis of genes/proteins and pathways controlled for common factors that may influence 

results; and iii) download of data, results and analysis methods for transparent and reproducible 

re-analysis. Furthermore, we demonstrate the impact of correcting for culture time and exocrine 

contamination following cell type composition deconvolution using bulk proteomics data. This 

platform is under continuous growth as new donors and additional data types are added and is 

freely available for the diabetes and islet research community. 

 

RESULTS 
The HumanIslets.com tool is a web-based platform for accessing, analyzing, and 

visualizing phenotyping data collected from human research islets isolated at the ADI IsletCore. 

The underlying database includes technical metadata on the islet isolation and cell culture 

process; multi-omics; functional data; and associated donor metadata that describes basic, de-

identified demographic parameters (Figure 1). The tool is designed to be easily expanded with 

new data types, and regularly updated as data are collected from new donors. 

 

Database contents. The HumanIslets platform presently contains data from 547 donors. These 

are 41.1% female, range in age from 10-weeks to 84 years, and include donors with no diabetes 

(n=355, 65%), pre-diabetes (n=99, 18%, defined as HbA1c of 5.7-6.5% and no clinical diagnosis 

of T2D), T2D (n=78, 14.3%, defined as a reported diagnosis of T2D or HbA1c>6.5%), and T1D 

(n=15, 2.7%, defined as a reported diagnosis of T1D, typically with validation by autoantibody 

screening, genetic risk scores, and/or biopsy immunostaining) (Figure 2). The donor metadata 

also contain technical details on pancreas characteristics and processing, islet isolation, and cell 

culture outcomes. There are extensive functional phenotyping data including static insulin 

secretion at various glucose concentrations, dynamic insulin secretion in response to glucose 

and other macronutrients, islet oxygen consumption in response to glucose and mitochondrial 

modulators, and single-cell electrophysiological outcomes for both a- and b-cells. Certain data 

are available for all donors, while others have been collected from more recent subsets or are 

not yet available (Figure 2E). In total, there are 74 distinct donor, technical, and functional 

outcomes summarized at the donor level, providing a rich context within which to analyze and 

interpret islet multi-omics data from the same donors (Suppl Table 1). 

 Bulk transcriptomics, bulk proteomics, and single-cell transcriptomics were collected 

from isolated islets of subsets of the donors. Two different platforms were used for the bulk 

transcriptomics: including RNA-seq (n=117 donors; whole transcriptome) and NanoString 

(n=190 donors; 156 genes). The single-cell transcriptomic data are available for analysis at the 
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single-cell or donor level. At the single-cell level, transcriptomes are linked with nine single-cell 

electrophysiology outcomes (Patch-seq data; n=~4300 cells collected from 96 donors) sub-

setted by cell type (a-, b-cells) and glucose concentration (1, 5, and 10mM). For donor-level 

outcomes (ie. age, diabetes status), the data are summarized as a single a- and b-cell 

pseudobulk profile for each donor. Analysis of single-cell data with respect to donor-level 

outcomes like diabetes status can lead to artificially low p-values when each cell is treated as an 

independent replicate by not incorporating donor IDs into the statistical analysis (known as 

‘pseudoreplication’).26 Two main solutions have been proposed: analyzing pseudobulk profiles 

with respect to donor-level outcomes,27,28 or using linear mixed models with donor incorporated 

as a random effect.26 Given there is no consensus on the best approach,29 we use the 

pseudobulk profiles method to support interactive visual exploration. Users can download the 

data and corresponding analysis script to perform mixed model analysis, if desired.   

 

Platform design. The HumanIslets.com platform was developed using a design-thinking 

approach30 to focus features on addressing the needs of the islet and diabetes research 

community. Within the HI-DAS Consortium, tool developers were in continual contact with islet 

biologists across career stages and with broad expertise across domains of islet biology and 

diabetes, enabling feedback on prototypes followed by multiple iterations of each feature. This 

process revealed a clear desire for support for simple queries and common analyses of well-

organized and documented data via an interactive web interface, coupled with the ability to 

easily subset and export minimally processed data for more customized and sophisticated 

offline analyses. This focused the tool design on intuitive workflows using well established and 

widely understood statistical methods, providing clear documentation of all steps, and 

presenting results with familiar visualizations. The platform is designed to allow researchers to 

query statistical associations within the data by omics type (Omics View), by individual omics or 

metadata feature (Feature View), or by donor (Donor View) (Figure 1C). A visual walkthrough of 

the functions described below is presented in the Supplementary Document 1. 

Omics View allows researchers to find omics features and pathways associated with any 

of the 74 distinct donor, technical, and functional outcomes. The interface allows users to select 

an omics type, a metadata variable of interest, and any covariates that should be adjusted for. 

Researchers can perform the analysis on a subset of donors by applying different filters and can 

specify the p-value significance threshold. The association analysis results are displayed in an 

interactive volcano plot coupled with a detailed result table. Clicking on a point (in volcano plot) 

or result row (in table) will display a scatterplot or violin plot for the association/analysis of 
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interest which can be exported in PNG, PDF, or SVG format. Within these, the donor-level data 

points are interactive - clicking them will open the ‘Donor View’ page query results for that 

donor, allowing researchers to quickly investigate outliers and to assess whether they are driven 

by technical or biological factors. The result table provides raw and adjusted p-values as well as 

estimates for cell type associations (Associated Proportions) based on deconvolution analysis of 

the bulk proteomics data. Links in this table take users to the relevant gene page at the National 

Center for Biotechnology Information (‘NCBI’) or Type 2 Diabetes Knowledge Portal (‘T2DKP’),31 

or generate a figure summarizing the cell-type specific gene expression across 14 cell types 

from 109 donors without diabetes, representing more than 140,000 individual cells (‘SC’). 

Clicking on the feature name (gene/protein) will link directly to the Feature View page (see 

below) for that hit. Finally, using Pathway Analysis, data can be analyzed using either 

overrepresentation analysis (ORA) or gene set enrichment analysis (GSEA). Statistically 

significant pathways are displayed in an interactive ridgeline plot that allows comparison of 

relative positive and negative metadata associations across different pathways. Clicking on a 

pathway of interest will generate heatmaps of protein or gene expression for all features in a 

pathway. Pathway analysis results can also be viewed in table form (Results Table). This allows 

researchers to quickly perform and visualize standard differential expression, association, and 

pathway analyses, compare global signals across omics layers, and explore the influence of 

different covariates on the results. When users perform an analysis in the ‘Omics View’ page, 

the list of donors with completely paired sets of the omics data and metadata used in the 

analysis is made available for download. All associations and pathway results, along with the R 

scripts that generated them, can be downloaded directly via the ‘Download Results’ and ‘Save 

Analysis’ buttons, respectively. 

Feature View consists of a search bar and database of pre-computed statistical 

associations describing over 3.7 million relationships, including pairwise combinations of all 

omics features and metadata variables (omics-metadata), while adjusting for influential technical 

and biological covariates (sex, age, BMI, culture time). Users can enter the name of any 

variable within the HumanIslets database to retrieve its associations with all other outcomes. If a 

gene name or symbol is searched, significant associations for both the protein and mRNA gene 

products will be included in the search results, which can be subsequently filtered by 

gene/protein symbol, metadata variable, or omics type. This page was designed for researchers 

who have a particular gene or outcome of interest, and would like to find out which proteins, 

mRNAs, or metadata variables are most correlated with it. 
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Donor View allows users to query a specific donor by ADI IsletCore DonorID or RRID, 

and returns that donor’s metadata and functional outcomes, highlighted within the context of all 

other donors in the database. For example, searching donor ‘R421’ displays a histogram of 

HbA1c values from all donors, with donor R421’s value of 5.4% highlighted with the percentile 

rank (0.38, or 38th percentile), and the same for age and BMI. The Donor View page has nine 

different tabs, each presenting a different category of data. Clicking through these will show, in 

addition to donor information: the properties and images of the islet isolation itself; insulin 

content results and static insulin secretion across glucose concentrations; dynamic insulin 

secretion responses to glucose, leucine and oleate/palmitate; oxygen consumption assessed 

via Seahorse assay; and electrophysiological profiles of a-cells and b-cells. Each of these data 

are shown in relation to the entire dataset, allowing researchers to understand how comparable 

a given donor is to the rest of the population represented within the database: this is a common 

question when a donor appears as an outlier in a particular analysis or when a research group 

receives islet samples from the ADI IsletCore from a small number of donors. Finally, the last 

tab presents a summary of omics data available in the tool for that donor. 

 Data Download allows researchers to download all data from the HumanIslets database 

using extensive filtering options to subset donors using common or advanced criteria, by 

uploading a list of donor IDs, or by dataset availability. For example, a researcher could filter the 

list to include only female donors with both insulin secretion and bulk RNA-seq data. The omics 

data are available for download in their unprocessed and processed forms. The unprocessed 

data refer to the original omics data table; for example, intensity values for proteomics data and 

counts for RNA-seq-based gene expression data. The processed omics data have undergone 

batch correction, missing value imputation, filtering, and normalization (see Methods for more 

details). Raw omics data (ie. proteomics MS spectra, sequencing FASTQ files) are not stored in 

the HumanIslets.com tool but are accessible in public repositories (links provided under 

‘Documentation’ and in Data Accessibility below). The final data tables can be exported in either 

CSV, plain text, Excel format, or as an R object, together with a data dictionary outlining units 

and any formulas used to calculate each variable. Details on data collection and processing are 

available in the ‘Documentation’ (Suppl Document 1) link at the top of the web page. 

 

Transparency, reproducibility, and maintainability. The HumanIslets.com platform comes 

with extensive documentation on how each dataset was generated and the precise definition of 

each variable. A brief description is given for all statistical methods, and how they are combined 

into pipelines to generate the results. The HumanIsletsR Github repository 
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(https://github.com/xia-lab/HumanIsletsR) provides all R functions used to perform analyses 

within the tool, and all R scripts used to process each dataset. The processing scripts are 

designed to dynamically pull together data from different sources as various datasets are 

expanded and save the data at different stages of processing for download, analysis, and 

visualization within the tool. Some steps, such as outlier detection and omics data 

normalization, depend on statistics computed from all samples and therefore produce slightly 

different processed values as new donors are added (or in comparison to the original published 

analyses of individual datasets). This presents a reproducibility problem, as the same analysis 

on the omics View page will produce slightly different results after the data are updated, even if 

the donors are filtered to include the same list of IDs. Therefore, the “Download Analysis” 

feature was added to the tool, which allows researchers to download a time-stamped copy of 

the processed omics data, paired metadata outcomes, and R functions, allowing them to fully 

reproduce the analysis offline. 

 

Important technical and biological associations. The omics data were analyzed with respect 

to each metadata variable to understand the relative signal strength associated with different 

functional outcomes, and to identify which donor and technical covariates were influential across 

multiple omics layers. These results informed the linear model used to generate the pre-

computed association results in the ‘Feature Search’ page. Here we highlight overarching 

trends across the entire database and focus on technical covariates that are often overlooked.  

 

The number of omics features statistically significantly associated with eight key donor and 

technical metadata are presented in Table 1, along with the dimensions of each omics data and 

whether there were significant batch effects present, details that are important to consider when 

interpreting the number of significant features across modalities. ‘Culture time’ and ‘percent 

purity’ are two metadata categories with the most significantly associated features in multiple 

omics datasets (Table 1). Both are technical parameters and should be carefully considered in 

the analysis and interpretation of data. The metadata comparison with the next highest number 

of significantly associated features across omics layers was T2D-ND. HbA1c (%) was 

associated with a high number of features in the proteomics data only. Age and sex also had a 

moderate number of associated features across multiple omics platforms. Most mRNAs and 

proteins significantly associated with sex are encoded by genes found on the X- and Y 

chromosomes, but do not show up in the NanoString data because they were not included in 

that gene panel; genes in the NanoString panel were mainly selected for their relevance to islet 
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function and development. This handful of explicitly sex chromosome-linked features is strongly 

associated (FDR<10-10) with sex, while most other mRNAs and proteins have no discernible 

difference between male and female donors.  

 There were many fewer, or no, pseudobulk mRNA features associated with any 

metadata variable except for sex, which makes sense given the lower sample size and because 

these profiles are derived from single-cell data that has greater noise, lower sequencing depth, 

and higher drop-out rates compared to bulk data. However, while the adjusted p-values may not 

be statistically significant at the feature level, analyzing the pseudobulk association results at 

the pathway level with GSEA produces statistically significant results that are consistent with 

known biology. For example, comparing pseudobulk mRNA expression in a-cells from donors 

with and without T1D highlights the upregulated Reactome pathway ‘Antigen Presentation: 

Folding, assembly and peptide loading of class I MHC’ as shown by others.32 An expanded 

table with the full association results for all metadata variables is available in the Supplementary 

Information (Suppl Table 2). 

 

Culture time has less impact on protein expression than transcript expression. The 

distribution of culture time values is multimodal with each peak spaced roughly 24 hours apart 

(Figure 3A) because islets were typically removed from culture during business hours. 

Consistent with what we recently observed,33 a large proportion of features were associated 

with culture time in the bulk RNA-seq (53%; Figure 3B) and NanoString (32%) data, but not the 

bulk proteomics data (~0.01%; Figure 3C). Gene products tend to have consistent relationships 

across the bulk RNA-seq and NanoString data, but not with the proteomics data. For example, 

FGF2 (fibroblast growth factor 2) is positively associated with culture time in both the bulk RNA-

seq (FDR=5.3e-9, Figure 3D) and NanoString (FDR=4.1e-6, Figure 3E) data, but not in the 

proteomics data (FDR=0.99, Figure 3F). Pathway analysis of the bulk RNA-seq data with GSEA 

(features ranked by T-statistic) using the KEGG, Reactome, and Gene Ontology Biological 

Process libraries consistently identified proteasome, spliceosome, and ribosome-related gene 

sets as the most significantly enriched with culture time, along with evidence for altered immune 

pathways, cell cycle pathways, oxidative phosphorylation, and fatty acid metabolism (Figure 
3G; Suppl Table 3). Consistent with the idea that these changes in gene expression have not 

(yet) translated into alterations in protein expression and functionality, analysis of insulin 

secretion from these donors show no impact of culture time on stimulation index within this time 

frame.34 
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 Control for culture time in data analysis. Culture time is largely determined by the time of 

day and week that the ADI IsletCore receives donor organs, and is not significantly associated 

with any donor metadata, technical metadata other than other measures of processing, or 

functional outcomes (correlation for continuous metadata, ANOVA for discrete metadata, 

FDR<0.05). Users can control for culture time by including ‘culture time’ (under ‘Cell Culture 

Outcomes’) as a covariate when performing analysis on the ‘Omics Analysis’ page. Accounting 

for culture time when analyzing the bulk transcriptomics data improves the strength of the 

relationships between gene expression and nearly every other variable, resulting in decreased 

p-values for associated transcripts and a higher number of transcripts that pass the significance 

threshold (Figure 3H). For example, the number of transcripts with significant differential 

expression between donors with and without T2D increases from 418 to 542 (RNA-seq) and 

from 25 to 30 (NanoString) when culture time is included as a covariate. 

 

Impacts of cell type composition. The purity of the islet preparation (percent purity) is 

estimated by the isolation research technician,35,36 leading to more frequent instances of whole 

numbers (Figure 4A). Purity is significantly associated with many transcripts and proteins in the 

bulk omics data (Figure 4B). This initially seems surprising since the islets were hand-picked to 

nearly 100% purity prior to acquiring these omics data. However, purity is negatively correlated 

with the ‘percentage trapped’ islets (islets embedded within acinar fragments, r = -0.28, p-value 

= 1.88e-11, Pearson’s correlation) and is significantly lower in donors with diabetes compared to 

those without (two-sided t-test, p-value = 1.39e-7 for T2D versus no diabetes and p-value = 

3.93e-17 for T1D versus no diabetes). Single-cell gene expression distributions show that bulk 

RNA-seq and proteomics features with the strongest positive and negative associations with 

purity have biased expression in endocrine and non-endocrine cell types respectively (Suppl 
Figures 1,2), suggesting that their relationship with purity is explained by differential amounts of 

non-endocrine cells that get trapped on islet surfaces and that persist after hand picking. Thus, 

lower initial islet purity could be associated with more acinar tissue (even in hand-picked islets) 

as well as islet dysfunction. It may therefore be difficult to distinguish features that are direct 

reflections of lower purity preparations from those with perturbed biological function. To address 

this, we used the abundance of known endocrine marker proteins to estimate the relative 

amounts of endocrine (b-, a-, d-, and pancreatic polypeptide (PP) cells) and non-endocrine cells 

in the samples with proteomics analysis (Figure 4D). The estimated non-endocrine proportion is 

negatively correlated with purity (r = -0.54, p-value = 1.13e-11, Pearson correlation), and has 

the highest number of significantly associated features across both the bulk proteomics and 
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transcriptomics data (Table 2, Suppl Table 4). This is especially interesting because no non-

endocrine markers were used in the deconvolution analysis. Instead, the non-endocrine 

proportion is the remainder signal left over after estimating the signal strength from each major 

endocrine cell type. Examination of the features most positively associated with non-endocrine 

proportion show highly biased expression in various non-endocrine cell types, across all omics 

layers. For example, GALK1 in proteomics (FDR = 1.6e-42; Figure 4E, F) is most expressed in 

acinar and ductal cells, RBPMS in RNA-seq (FDR = 0.00195; Suppl Fig 3A) is most expressed 

in ductal and stellate cells, and MYC in NanoString (FDR = 7.7e-6; Suppl Fig 3B) is most 

expressed in stellate cells.  

The a- and b-cell proportions are positively associated with many features in all three 

bulk omics datasets, most of which are not marker genes that were used in the deconvolution 

(Table 2, Suppl Table 4). Features with the most significant positive associations with the 

estimated a- and b-cell proportions have distinctive gene expression in the associated cell type, 

even for non-marker genes. For example, the non-marker gene features with the most 

significant positive associations with a-cell proportions are DOP1B (proteomics) and LAT2 (bulk 

RNA-seq) and with b-cell proportions are SLC27A2 (proteomics) and HHATL (bulk RNA-seq). 

Examination of the single cell distributions for these genes confirm the cell type-specific 

expression (Suppl Figures 4 and 5). Overall, there were more proteomics features associated 

with the estimated proportions than transcripts, and with lower p-values, even after excluding 

features corresponding to the marker genes used in the deconvolution analysis. This is likely 

because the proteomics data was used for the deconvolution, and therefore had the highest 

number of overlapping cell type proportion estimates and omics profiles (n = 134 for proteomics 

versus n = 90 and 91 for bulk RNA-seq and NanoString respectively), giving this analysis higher 

statistical power. Additionally, each omics dataset was from separate islet preparations. While 

the cell type composition should be similar across samples from the same donor, this likely 

contributes to the fewer significant associations observed for the bulk RNA-seq and NanoString 

data. Finally, while many features were significantly associated with the proportion of delta and 

PP cells in the proteomics data (Table 2), there were no significant associations with these cell 

types in either the bulk RNA-seq or NanoString gene expression data. However, examination of 

the single-cell gene expression distributions of the transcripts most significantly associated with 

the estimated delta and PP cell proportions (raw p-values < 0.05) shows that many of these do 

have distinct expression patterns in appropriate cell types. For example, in the bulk RNA-seq 

data, F5, LRFN5, and SST were the most associated with d-cells and FGB and CACNA2D3 

were two of the four features most associated with PP cells (Suppl Figures 6 and 7). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.19.599613doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.19.599613
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 Control for purity in data analysis. Including the ‘non-endocrine percentage’ as a 

covariate greatly reduces the number of bulk omics features identified as statistically 

significantly different between donors with T2D and those with no diabetes, which is consistent 

with previous findings37 (Figure 4G). The significant feature count decreases from 1519 to 281 

in the proteomics data, 418 to 43 in the RNA-seq data, and 25 to 10 in the NanoString data. 

Importantly, adjusting for the non-endocrine proportion eliminates or greatly reduces statistically 

significant features with non-endocrine biased expression from the significant RNA-seq and 

proteomics results (Figure 4H), suggesting that this approach successfully filters out signals 

driven by differential amounts of trapped non-endocrine tissue. However, this correction also 

likely decreases the statistical power for detecting features that are truly reflective of perturbed 

islet function and could therefore be overly stringent. 
 

Mini Case-study: SERCA pump expression, genetic risk for diabetes, and islet function. 
To illustrate a potential analysis workflow that considers the different metadata factors, we first 

examined proteomic data comparing ‘Corrected diabetes status’ of 'Type 2’ vs ‘No Diabetes’. As 

opposed to ‘Diabetes diagnosis’ which is based on diagnosis information provided upon organ 

procurement, the ‘Corrected diabetes status’ additionally accounts for donor HbA1c. Donors 

with reported T2D remain in that category, donors with no reported T2D, but HbA1c>6.5 are 

now considered as T2D, and donors with no diabetes and HbA1c between 5.7-6.5 are 

considered ‘pre-T2D’. With no covariate correction, this comparison yields 1636 differentially 

expressed proteins, while correcting for age, sex, and BMI yields 1478 (FDR<0.05). Because 

islets isolated from donors with T2D typically have lower purity as noted above,38,39 we further 

adjusted for the calculated ‘non-endocrine cell proportion’. This resulted in 284 significantly 

different proteins (138 up, 146 down; FDR<0.05; Figure 5A). 
 Many of the top hits, some of which were identified in the initial analysis of these data,33 

appear enriched in endocrine cells (calculated from the proteomics deconvolution as above; 

Figure 5B). The results and analysis pipeline for this Feature View can be downloaded directly 

via the ‘Download Results’ and ‘Save Analysis’ buttons. This endocrine enrichment can be 

visualized at the single-cell RNA-seq level by clicking on ‘SC’ (shown for ATP2A3, Figure 5C), 

and information from the NCBI gene database for each hit can be accessed via the ‘NCBI’ link. 

For example, ATP2A3 (ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3 

protein) is also known as SERCA3b, a Ca2+-ATPase involved in clearing cytosolic Ca2+ and has 

been suggested to play a role in regulated insulin secretion.40–42 
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We visualized the downregulation of ATP2A3 protein expression in islets from donors 

with T2D (as opposed to no diabetes or pre-T2D) by clicking on the appropriate row in the 

‘Results Table’ (Figure 5D). Although this protein is downregulated in T2D, a possible outlier 

with very low expression can be seen in the T2D group. Clicking on this outlier will open a new 

tab showing the ‘Donor view’ page for this donor, for inspection. This donor (R241) is a 65 year 

old male with T2D and elevated HbA1c (9.9%) but has a very small pancreas (7th percentile; 

seen in the ‘Isolation Information’ tab), and the islet preparation has high exocrine content and 

very low purity (Figure 5E).The computed cell composition for this donor suggests a high 

proportion of b-cells, which we confirmed by immunostaining of banked paraffin embedded 

biopsy from this donor (Figure 5E, inset). To analyze ATP2A3 protein expression data with this 

potential outlier removed, we: 1) From the ‘Data Download’ page filtered donors by availability of 

proteomics data; 2) Selected ‘Donor information’ and ‘Proteomics’ as data to download in .xlsx 

format, and clicked ‘download’; 3) Analyzed the data by ‘Corrected diabetes status’ 

(‘diagnosis.computed’ in the downloaded file), using including outlier removal by ROUT (Q = 

5%) which removed one outlier in each of the ‘Pre-T2D’ and ‘T2D’ groups, including R241. 

Analysis following removal of these outliers confirmed a significant reduction in ATP2A3 

expression in the T2D group (Figure 5F). 

 Via the ‘Pathway Analysis’ tab we performed gene-set enrichment analysis (GSEA) on 

the results shown in Figure 5A using T-statistic for weighting with an FDR cutoff of 0.1 and the 

KEGG library. This revealed 54 significantly enriched pathways that appear either up- or down-

regulated in T2D islets. Pathways include the citrate cycle (TCA cycle), synaptic vesicle cycle, 

insulin secretion, lysosome, and antigen processing/presentation. To narrow potentially 

overlapping pathways the GSEA can be re-run with collapse redundant sets checked, which 

filters out gene sets with gene lists and enrichment patterns that are statistically 

indistinguishable from other gene sets in the library. Re-running GSEA with this setting reduced 

the number of significant pathways to 36 (Figure 5G, selected pathways shown). The most 

significant of these (FDR=2.0x10-7) is ‘valine, leucine and isoleucine degradation’, as denoted 

by the dark shade of green in the ridge plot and the adjusted p-value in the ‘Results Table’ tab. 

The individual features in this pathway can be explored by clicking on the ridge plot to generate 

a heatmap of all proteins in this pathway (Figure 5G). As for the protein features, the results 

and analysis pipeline for this Pathway Analysis can be downloaded directly via the ‘Download 

Results’ and ‘Save Analysis’ buttons. 

To explore the evidence from human genetics for a role of variation in genes in these 

pathways in metabolic control, the ‘T2DKP’ link associated with each hit can be clicked. This 
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opens the relevant page in the Type 2 Diabetes Knowledge Portal to allow examination of 

common and rare variant associations in the gene and Human Genetic Evidence (HuGE) 

scores,43 tissue specific gene expression, and other genetic information as described recently.31 

Several of the endocrine-enriched hits above appear to have genetic support for a role in 

metabolism, with HuGE scores ranging from ‘Moderate’ (>3) to ‘Compelling’ (>350) (Figure 5H). 

ATP2A3 for example presents “compelling” evidence that it is the gene mediating genetic 

associations at the locus with T2D (HuGE score 641.77), along with evidence for common 

variant associations with T2D adjusted for BMI, HbA1c, and T1D. This is in line with candidate 

genes studies of variants associated with T2D which have been replicated in larger genome-

wide studies.44  

To explore whether ATP2A3 is associated with other features, the feature name in the 

associated results table can be clicked, or, after navigating to the ‘Feature View’ page, ATP2A3 

can be directly searched. This reveals statistically significant associations of potential interest at 

both the protein and transcript levels, including a negative association with HbA1c (adjusted p-

value = 4.4x10-5); down-regulation of ATP2A3 transcript in T2D (adjusted p-value = 0.036); a 

positive association with b-cell size in Patch-seq data (adjusted p-value = 4.3x10-12); and 

positive associations with various measures of insulin secretion, such as the area under the 

curve for insulin secretion at 15 mM glucose (adjusted p-value = 7.6x10-7) (Figure 5I).  
 

DISCUSSION 
The past decade has produced major efforts to generate large amounts and diverse 

types of data from human pancreas that can be leveraged for insights into diabetes 

pathophysiology and potential therapeutic targets. Access to, and integration of, these large 

datasets remain a challenge. Three main approaches have emerged to facilitate integrated 

human pancreas and islet datasets: 1) Portals that aggregate minimally processed datasets and 

images;7,18,20,21,45,46 2) Provision of islet quality control and donor demographic data, often 

associated with biobanking activity;19,47 and 3) Implementation of pipelines for data analysis and 

visualization, largely in the genomic space.22,25,48,49 Each of these approaches are tremendously 

valuable in understanding islet and pancreas (patho)physiology, but naturally are subject to key 

limitations. Current resources occasionally include low numbers of donors, little or no donor or 

technical data, limited accessibility to underlying data, narrow breadth of data types, or 

conversely broad and deep datasets that require advanced expertise for analysis. The ADI 

IsletCore (www.isletcore.ca) is a large single-center biobanking program that has provided 

human islets for research since 2011.39 We have, over more than a decade, increased the 
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amount of data collected from each research islet isolation through a collaborative ‘distributed 

phenotyping network’,14,33,39,50,51 and have now leveraged this to develop HumanIslets.com as 

an open resource for the community. 

Our goal is to provide a flexible, open, and user-friendly platform for exploring the 

relationship between donor, isolation, and islet phenotypes and molecular datasets from many 

donors. This should be useful to the broader diabetes and islet research community via built-in 

analysis pipelines with standardized options and outputs, and for users who are more 

experienced in data processing and analysis by providing ease of access to minimally 

processed data in a variety of formats when possible. To balance data access, research 

benefits, and requirements for privacy and compliance, all data are de-identified at the source of 

organ procurement and sensitive data such as RNA sequencing, is provided only in a 

processed form while raw data remains accessible via controlled access repositories. Although 

the depth of pancreas phenotyping here does not presently match that provided by detailed 

case-control initiatives, notably the Human Pancreas Analysis Program (HPAP),7,18 our goal is 

to provide access to as broad a range of donors as possible, facilitating an understanding of 

both biological variation and diabetes pathophysiology. We also provide more detailed metadata 

describing not only donor phenotypes, but also organ processing parameters and cell culture 

outcomes which are not commonly included with publicly available datasets elsewhere. 

Confounding relationships can be quickly viewed with other variables and across 

different omics modalities to inform hypotheses about causality. Visual analytics can help 

researchers assess potential relationships beyond the summary statistics. The technical 

parameters, especially, should be commonly available since they add no identifiable 

information. Indeed, our exploration of potential confounding technical variables led us to 

include culture time as covariate when generating precomputed results for the Feature View 

page. We did not include purity as a covariate since it is only a rough estimate of the amount of 

non-endocrine tissue in the analyzed samples, particularly following hand-picking, and often 

confounds measures of islet function. We also did not include the computed non-endocrine 

proportion, mainly because the estimates are only available for donors with proteomics data. 

This can nonetheless be informative, and we include a column in the results table that indicates 

whether each feature is positively associated (FDR < 0.05) with either the estimated endocrine 

or non-endocrine proportions, to alert researchers to cases where a significant relationship 

could be explained by variable cell type composition. Also, the cell type proportions are 

available under the covariates drop-down menu in the omics Analysis page, so researchers can 

employ it in their own customized analyses if they choose. 
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This resource can replicate well-established findings from us and others. We highlighted 

commonly accepted pathophysiology above in Figure 5, for example reduced oxidative 

phosphorylation in T2D islets has previously been shown both at the transcript and functional 

levels.52,53 Analysis of single-a-cell patch-seq data via the web tool also replicates our previous 

findings54 that the expression of lineage marker transcripts (e.g. ISL1, NKX2-2, NEUROD1, 

RFX6) all negatively correlate with a-cell function in T2D, and with numerous developmental 

pathways (e.g. GSEA for Go Biological Process ‘Central Nervous System Development’, 

FDR=6.0x10-4; n=620 cells from 24 donors). It is important to note that some results obtained 

with this platform may not match exactly published findings using the same or overlapping 

datasets, likely due to the updated datasets and/or slightly different analysis pipelines. 

In summary, HumanIslets.com is a valuable resource for the diabetes research 

community, containing data and utility both for wet lab scientists, with easy analysis and 

visualization of data at the donor-islet-cellular level, and for computational biologists, providing 

straightforward downloading of minimally processed datasets. This resource continues to evolve 

through the ongoing collection of datasets outlined in this report, and by the addition of new data 

types for additional analyses. Examples of the latter, include donor genotyping; genetically 

predicted ancestry, and genetic risk scores for diabetes;55,56 prohormone processing;57,58 

metabolomics;59 and the pancreatic accumulation of environmental contaminants60,61 and 

lipids,62 among other data types that will be added in the future. In time, we hope to allow all ADI 

IsletCore islet and tissue recipients to provide/upload data for integration. We welcome 

feedback for future refinement of this resource (see ‘Feedback’ under the ‘About’ tab - 

https://www.humanislets.com/#/about), which we hope will support exploration and hypothesis 

generation by the diabetes, transplant, and metabolism research community. 

 

Limitations. We attempted to balance sophisticated versus intuitive analysis pipelines, to serve 

both inexperienced and experienced users and allow meaningful analysis within the computing 

restrictions of a web server. Some detailed analyses will require off-line computation, and while 

the data processing pipeline was designed for maximum comparability across omics types there 

may be more optimal analyses for each individual dataset. This should be facilitated, however, 

through the addition of a donor/data filtering and download tool. While the ability to easily add 

new and expanded datasets is an important advantage of this platform, it is important to note 

that some results will change as new data are added (i.e. pre-computed statistics will be 

different after they are re-computed with more samples). As such, version tracking and reporting 

by users will be important. While some datasets are limited by low total donor numbers or lack 
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some overlap between measures (i.e. there is currently little overlap between oxygen 

consumption measurements and RNA-seq or proteomics results, as these remain in analyses 

pipelines), the continuing addition of data when available will enhance the overall functionality of 

the resource. Additionally, while this dataset aims to include as much technical and donor 

metadata as possible, some donor metadata that may be important are not available. This may 

include information on donor gender or reproductive status, ethnicity, and exposure history, 

among potentially many others.  Some of our ongoing new dataset collection explicitly designed 

to fill these gaps include plasma measurement of sex hormones, determination of genetic 

ancestry, and pancreas accumulation of environmental contaminants. Finally, long-term 

maintenance of academic software and databases are challenging. However, our team has 

extensive experience in tool maintenance63,64 and tissue biobanking sustainability that should 

benefit the long-term evolution of HumanIslets.com in support of diabetes and islet research. 

 

Consortium 
Members of the HumanIslets Data Analysis and Sharing (HI-DAS) Consortium are Ella Atlas 

(Health Canada), Austin Bautista (Alberta), Jennifer E Bruin (Carleton), Alice L Carr (Alberta), 

Haoning H Cen (UBC), Yi-chun Chen (UBC), Angela Ching (Carleton), Xiao-Qing Dai (Alberta), 

Tina Dafoe (Alberta), Theodore dos Santos (Alberta), Cara E Ellis (Alberta), Jessica D Ewald 

(Broad Institute), Leonard J Foster (UBC), Anna L Gloyn (Stanford), Aryana Hossein (UBC), 

Myriam P Hoyeck (Carleton), James D Johnson (UBC), Jelena Kolic (UBC), Yao Lu (McGill), 

Francis Lynn (UBC), James G Lyon (Alberta), Patrick E MacDonald (Alberta), Jocelyn E 

Manning Fox (Alberta), Renata Moravcova (UBC), Nadya M Morrow (Ottawa), Erin E Mulvihill 

(Ottawa), Andrew Pepper (Alberta), Lindsay Pallo (UBC), Varsha Rajesh (Stanford), Jason 

Rogalski (UBC), Shugo Sasaki (UBC), Seth A Sharp (Stanford), Nancy P Smith (Alberta), Aliya 

F Spigelman (Alberta), Han Sun (Stanford), Swaraj Thaman (Stanford), C Bruce Verchere 

(UBC), Jane Velghe (UBC), Charles Viau (McGill), Kyle van Allen (Carleton), Jessica Worton 

(Alberta), Jordan Wong (Alberta), Jianguo Xia (McGill), Dahai Zhang (UBC). 

 

Methods 
 
A general overview of methods and usage of the HumanIslets.com web tool can be found in the 

online documentation (http://doc.humanislets.com) and as Supplementary Document 2. 

Subsets of all data types have been published elsewhere, with extensive details on the 

protocols used to perform experiments and collect the data. Here, we provide a brief overview of 
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the entire process, along with references to the previous descriptions of complete data 

collection methodology. 

 
Islet isolation and culture. Islets were isolated from pancreas of cadaveric human donors at 

the Alberta Diabetes Institute IsletCore using standard procedures.39,65,66 The isolated islets 

were cultured prior to experimental use or distribution in CMRL 1066 (Corning) supplemented 

with 0.5% BSA (Equitech-Bio), 1% insulin-transferrin-selenium (Corning), 100 U/mL 

penicillin/streptomycin (Life Technologies), and L-glutamine (Sigma-Aldrich) at 22°C with 5% 

CO2 at a typical seeding density of 225 IEQ/cm2. Following release from the ADI IsletCore, islets 

were typically cultured in DMEM (11885, Gibco) supplemented with L-glutamine, 110 mg/l 

sodium pyruvate, 10% fetal bovine serum (FBS) (12483, Gibco), and 100 U/ml 

penicillin/streptomycin (15140, Gibco) at 37°C with 5% CO2. 

All research was performed with approval of the Human Research Ethics Board at the 

University of Alberta (Pro00013094; Pro00001754), the University of British Columbia (UBC) 

Clinical Research Ethics Board (H13-01865), the University of Oxford’s Oxford Tropical 

Research Ethics Committee (OxTREC Ref.2-15), the Oxfordshire Regional Ethics Committee B 

(REC reference: 09/H0605/2), or by the Stanford Center for Biomedical Ethics (IRB Protocol: 

57310). All donors' families gave informed consent for the use of pancreatic tissue in research. 

 
Insulin secretion. Static glucose-stimulated insulin secretion was performed as described.67 

Briefly, on the day of sample collection islets were hand-picked and cultured overnight. Fifteen 

hand-picked islets, in triplicate, from each donor were pre-incubated at low glucose for two 1-

hour periods, consecutively, and then sequentially treated with low glucose followed by high 

glucose 1 hour each. Experiments were performed with parings of glucose concentrations as 

follows: 1→10mM; 1→16.7mM; and 2.8→16.7 mM. Collected supernatants, and insulin content 

collected by acid ethanol lysis of the pellet, were measured by ELISA (ALPCO STELLUX 

Chemiluminescence). For in-tool omics Analysis, a single donor-level measurement was 

computed as the median of the three replicate measures, reducing the impact of replicate-level 

outliers. Then, donor-level values were filtered to remove those that were more than 4 standard 

deviations away from the mean of all donors on a log10 scale. This removed values that were 

many orders of magnitude different from the population. Data in the Data Download tool are 

provided at the replicate level (before outlier removal). 

 Dynamic insulin secretion responses were assessed as described68 following shipment 

of islets in CMRL media (Thermo Fisher Scientific) overnight from Edmonton to Vancouver. 
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Islets were hand-picked and cultured in RPMI 1640 medium (Thermo Fisher Scientific, Cat#, 

11879-020) supplemented with 5.5 mmol glucose, 10% FBS, and 100 units/mL 

penicillin/streptomycin for 24-72 hours prior to experiments to allow for recovery from shipment. 

Perifusion columns were loaded with 65 islets and perifused at 0.4 mL/min with 3 mM glucose 

Krebs-Ringer Modified Buffer (KRB) solution for 1-hour. Islets were perifused with 6 mM or 15 

mM glucose, and subsequently 30 mM KCl. Parallel experiments examined responses to 5 mM 

leucine (Sigma, Cat. # L8912, dissolved in 1M HCl, then pH adjusted with 1M NaOH) and a 1:1 

mixture of 0.75 mM oleic acid (Sigma, Cat. # 364525) and 0.75 mM palmitic acid (Sigma, Cat. 

#P5585) at either 3 mM or 6 mM glucose (see figure legends). Fatty acids stock solutions were 

prepared in 50% ethanol at 65°C for 30 minutes, and then added to a solution of fatty acid free 

bovine serum albumin (BSA) (Sigma, Cat. # A7030) in a 6:1 molar ratio in a 37 °C water bath for 

60 min. Peak insulin secretion was defined as single point whereby the amount of insulin 

released during the first 15 minutes of a solution change was the highest. Samples were stored 

at –20 °C and insulin secretion was quantified using human (Millipore Cat. # HI-14K) insulin 

radioimmunoassay kits. 

 
Oxygen consumption. Agilent’s Seahorse XFE24 Analyzer with the islet capture microplates 

was used for oxygen consumption measurements. On the day of sample collection, islets were 

hand-picked to 70 islets per well in triplicate. Islets were placed in the center of the well, with 

islet capture screens used to keep islets in place, and incubated at 37oC for 1 hour without CO2. 

Islets were exposed to a modified Mito Stress Test (Seahorse XF Cell Mito Stress Test Kit, Cat. 

No. 103015-100) where basal measurement was at 2.8 mM glucose and stimulation at 16.7 mM 

glucose, then with 5 µM oligomycin, 3 µM FCCP, and 5 µM of rotenone and antimycin A. All 

solutions were made using DMEM (from Agilent) supplemented with 1% FBS, sodium pyruvate, 

and L-glutamine. After the run was complete, islets were collected and a DNA assay 

(QuantiFluor® dsDNA System, Promega, Madison, WI, USA) was conducted for data 

normalization. 

 
Electrophysiology was performed as described.54,69 Islets were dispersed to single cells, 

plated as single cells in 35-mm dishes, and cultured for 1-3 days in RPMI with 5 mM glucose 

(37oC, 5% CO2). Patch-clamp was in the whole-cell configuration using a HEKA EPC-9 amplifier 

(Harvard Apparatus) with 1, 5 or 10 mM glucose. Cells were held at -70 mV and depolarizations 

were applied to cells to elicit activation of voltage-dependent Na+ and Ca2+ channels, and 

exocytosis responses were measured as increases in whole-cell capacitance. Responses are 
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normalized to initial cell size. Following electrophysiological measurements, cells were identified 

by post-hoc immunostaining for insulin with a rabbit anti-insulin primary antibody (Santa Cruz; 

#SC-9168; RRID: AB_2126540) and goat anti-rabbit Alexa Fluor488 secondary (ThermoFisher, 

#A-11076; RRID: AB_141930), and with a guinea pig anti-glucagon primary antibody (Sigma-

Aldrich, #G2654; RRID: AB_259852) and goat anti-guinea pig Alexa Fluor 594 secondary 

(ThermoFisher, #A-11076; RRID: AB_141930); or following collection for scRNA-seq. 

 
Omics data processing 
Bulk RNA-seq 150 human islets were hand-picked on the day of distribution and placed in 1ml 

of Trizol (Invitrogen), vortexed and stored at -80°C until shipping to Oxford or Stanford for 

further processing. Ensembl gene IDs were mapped to Entrez IDs and counts from any 

duplicated Entrez IDs were summed. Transcripts with over 80% zeros were filtered out. The 

RNA-seq dataset contains seven batches, and significant batch effects were observed. Batch 

effects were corrected for using the Combat-Seq function in the sva R package (version 

3.44.0)70, which preserves the count nature of the data. Counts were converted to log-counts-

per-million (logCPM) using the relative log expression (RLE) method in the edgeR R package 

(version 3.38.4).71 Transcripts with logCPM variance in the lowest 20th percentile were filtered 

out. Since the sequencing depth was different across different batches, a substantial number of 

transcripts had zero counts in some batches and low but robust counts in other batches. These 

batch-related drop-out patterns led to large numbers of significant differentially expressed 

features that disappeared if individual batches were held out. To address this problem, counts 

with a value of zero or one were replaced with NAs, excluding these individual values from all 

downstream statistical analyses and leading to more stable differential expression analysis 

results. 

 

PatchSeq. Reads from FASTQ files (available in the NCBI Gene Expression Omnibus (GEO) 

and Sequence Read Archive (SRA) under accession numbers GSE124742,69 GSE164875,54 at 

PancDB,72 and unpublished data to be deposited) were trimmed using TrimGalore version 0.6.5 

with auto-detection of adapter sequence, then aligned and counted using STAR version 2.7.9a 

to the GRCh38 human genome (Ensembl release 104). Cell count matrices were loaded into 

R73 and a Seurat object was generated using the Seurat R package (version 4.3.0).74 Only cells 

with patch-clamp data were included; data for additional cells are available from the listed 

accession numbers.  Cell types were identified by projection, using the MapQuery command 

from the R package Seurat, onto a large set of human islet single cell RNA-seq data generated 
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from publicly available data (see below). Cells were filtered to remove any that were not a- or b-

cells, had fewer than 500 total counts across all transcripts, had fewer than 300 unique 

transcripts with non-zero count values, or had greater than 20% mitochondrial DNA. Ensembl 

gene IDs were mapped to Entrez IDs and counts from any duplicated Entrez IDs were summed. 

Counts were separated by cell type (a- and b-) and glucose concentration (1, 5, and 10mM), 

resulting in six different matrices. Each matrix was filtered to remove transcripts with greater 

than 80% zeros. Counts were converted to logCPM values using the trimmed mean of M-values 

(TMM) method from the edgeR R package (version 3.38.4).71 TMM has been shown to perform 

better for single-cell RNA-seq data compared to the RLE method because it is robust to the high 

drop-out rate. Individual transcripts that had zero counts were replaced with NA. 

Electrophysiology parameters other than the half-inactivation sodium current were normalized to 

cell size. The sign of the calcium entry, sodium current, and calcium current (early and late) 

electrophysiology parameters was flipped such that greater values correspond to greater 

currents. Negative exocytosis values were replaced with zeros. 

 

Pseudobulk RNA-seq. The single-cell counts described above were also summarized at the 

donor level using a pseudobulk approach. Counts were separated by cell type (a- and b-), 

creating two matrices. For each matrix, the number of cells per donor was counted, and only 

cells from donors with at least five cells were retained. Pseudobulk profiles were created by 

summing counts from all cells derived from the same donor. Ensembl gene IDs were mapped to 

Entrez IDs and counts from any duplicated Entrez IDs were summed. Each matrix was filtered 

to remove transcripts with greater than 80% zeros. Counts were converted to logCPM values 

using the TMM method from the edgeR R package (version 3.38.4).71 Individual transcripts that 

had zero or one count were replaced with NA values.  

 

NanoString. Fifty islets were hand-picked on the day of distribution and placed in 100 µl RLT 

(Qiagen) with 1% beta mercaptoethanol (Sigma) and stored at -80°C until shipping to the 

University of British Columbia for processing. Briefly, 1.5 µl cell lysate was used for hybridization 

with customized gene code sets for 16 hours. The hybridized complex was then loaded on one 

cartridge, and the NanoString nCounter Sprint Profiler was used to measure the target gene 

expression. Data are analyzed with nSolver4.0 software for quality control and normalization to 

a panel of housekeeping genes (NanoString, USA). NanoString data were collected from two 

different gene lists, the first with 132 transcripts and the second with 147 transcripts, and 156 

unique transcripts across both. Significant batch effects were present, and so transcripts 
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measured in both NanoString arrays were batch corrected using the Combat function from the 

sva R package (version 3.44.0).70 Given the much smaller number of transcripts compared to 

the RNA-seq data, no abundance or variance filters were applied. 

 

Bulk proteomics. Islets were shipped to the University of British Columbia, hand-picked, and 

cultured in RPMI for 24-72 hours. After recovery, 300 islets were hand-picked again, washed 

with PBS, snap frozen as a pellet, and stored at −80°C. LC-MS/MS analysis was performed with 

n = 3 technical replicates, using a NanoElute UHPLC system (Bruker Daltonics) with Aurora 

Series Gen2 (CSI) analytical column coupled to a Trapped Ion Mobility-Time of Flight mass 

spectrometer (timsTOF Pro; Bruker Daltonics, Germany) operated in Data-Independent 

Acquisition-Parallel Accumulation-Serial Fragmentation (DIA-PASEF) mode. Protein 

abundances were filtered to remove any that had more than 50% missing values, median 

normalized, and log2 transformed. Missing values were imputed with the missForest method 

(random forest-based) using the imp4p R package (version 1.2.0).75 Uniprot IDs were converted 

to Entrez IDs, and rows with duplicate IDs were aggregated by taking the mean. Proteins with 

variance in the lowest 20th percentile were filtered out.  

 For all omics datasets, both the minimally and fully processed matrices were saved so 

that they can be accessed by researchers on the Data Download page. Minimally processed 

datasets are the data in matrix form, but with no filters, normalization, missing value imputation, 

or batch correction applied. Raw data such as FASTQ files for the RNA-seq are not available for 

download through the tool. Instead, accession IDs indicating where they are available on public 

repositories are available in the donor metadata file (“RRID” column), or at the accessions listed 

in the data accessibility section below.  

 
Statistical analysis 
The following methods are called by the omics Analysis page to identify omics features 

significantly associated with selected metadata and pathways overrepresented or enriched in 

the association results. 

 

Feature association analysis. Linear models are used to compute omics feature-metadata 

associations for the bulk RNA-seq, NanoString, pseudobulk RNA-seq, and bulk proteomics 

datasets. A linear model containing the selected metadata variable of interest and all covariates 

(if any) is fit to the expression or abundance levels of each feature in the selected omics 

dataset, using the limma R package (version 3.52.4).76 If the user selects a categorical 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.19.599613doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.19.599613
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

metadata of interest, two dropdowns automatically appear so that a specific contrast can be 

specified (ie. type 2 diabetes versus no diabetes). Then, the coefficient of the metadata variable 

(continuous) or metadata contrast (categorical) of interest and its associated p-value are 

extracted from the model for each feature. P-values are adjusted using the false discovery rate 

method. The rationale for using the original limma method is that it has been shown to perform 

well for many omics types as long as the data are appropriately normalized and transformed. 

While more customized methods developed for specific omics types may perform slightly better 

when applied to the appropriate data type, the advantage of our approach is that it can be 

applied to many omics types without modification, making the results more comparable to each 

other and more consistent for users to interpret.  

 Due to the highly nonlinear nature of the relationships between single-cell gene 

expression and single-cell electrophysiology outcomes, Spearman correlation is used to 

compute feature-metadata relationships for the patchSeq data. Only single-cell 

electrophysiology outcomes are available for analysis with the single-cell expression data, and 

covariate adjustment is not supported. The single-cell expression profiles are also summarized 

as pseudobulk profiles for each donor; associations with donor-level clinical, technical, and 

functional outcomes can be investigated using this format.  

 

Pathway analysis. Overrepresentation analysis (ORA) and gene set enrichment analysis 

(GSEA) are supported for pathway analysis of the feature association results. Both methods are 

implemented using the fgsea R package (version 1.22.0).77 The feature list used for ORA is 

determined by the p-value threshold specified in the association analysis. GSEA can be 

performed using either the model coefficient (equivalent to log2FC when the metadata is 

categorical) or the test statistic from the association analysis to rank the features. For the 

patchSeq data, the coefficient is the correlation estimate and there is no test statistic option as it 

is not compatible with the Spearman correlation results. There are six supported pathway 

libraries, including KEGG, Reactome, the full Gene Ontology term list (broken into Biological 

Process, Cellular Component, and Molecular Function), and the PANTHER summary of the 

Gene Ontology terms (also broken into the same three categories). Pathway analysis can 

sometimes return a high number of significant pathways or gene sets that consist of mostly the 

same features, leading to a redundant results list. Users have the option of collapsing redundant 

sets, which uses the “collapsePathways” function within the fgsea R package to filter the list of 

gene sets to only include those that have statistically significantly distinct feature lists. Pathway 
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analysis is not supported for the NanoString data, as there are too few features (n = 156) for 

adequate pathway coverage.  

 
Pre-computed Results 

Associations were computed between all omics feature-metadata variable pairs and 

between all metadata variable-metadata variable pairs. The linear model and Spearman 

correlation methods described above were used to compute the omics-metadata associations, 

with one modification. Some categorical variables have obvious specific contrasts, for example 

for diabetes status, one is usually interested in type 1 versus no diabetes and type 2 versus no 

diabetes. In these cases, we specify each contrast of interest using the methods described 

above. Other variables do not have obvious comparisons, for example donation type, so in this 

case an ANOVA style analysis is done and the statistics are extracted for the categorical 

variable coefficient rather than for a specific contrast. Sex, age, BMI, and culture time were 

included as covariates for analyses that used a linear model (all bulk omics data associations).  

 Three different methods were used to compute associations between pairs of metadata, 

depending on whether each metadata in the pair were continuous or categorical. Pearson 

correlation was used for continuous-continuous pairs, Cramer’s V correlation was used for 

categorical-categorical pairs, and ANOVA was used for categorical-continuous pairs where the 

categorical variable is the independent variable, and the continuous variable is the dependent 

variable. Multiple hypothesis correction (FDR method) was performed across all results for the 

same statistical method. Some metadata variables such as percent purity and percent trapped 

are in between ordinal variables and a true continuous variable because they are estimates 

made by eye by a research technician, and the technician tends to estimate whole percentages 

(ie. 80%, 70%). For simplicity, we treat these as continuous variables.  

 
Single-cell database compilation 

Reads from FASTQ files (available in the NCBI Gene Expression Omnibus (GEO) and 

Sequence Read Archive (SRA) under accession numbers GSE81076,78 GSE81547,79 

GSE81608,80 GSE83139,81 GSE84133,37 GSE85241,82 GSE86469,83 GSE154126;84 from the 

European Molecular Biology Laboratory European Biology Institute (EMBL-EBI) under 

accession number E-MTAB-5061;85 at PancDB up to donor HPAP-10972) were trimmed using 

TrimGalore version 0.6.5 with auto-detection of adapter sequence, then aligned to the GRCh38 

human genome, Ensembl release 104,and counted using STAR version 2.7.9a except for files 

from GSE84133, which were aligned and counted using the inDrops protocol; files from 
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GSE81076 and GSE85241, which were aligned and counted using the R package scruff 

(version 1.10.1)86 with Rsubread (version 1.22.2);87 and files to be deposited (unpublished), 

which were aligned and counted with Cell Ranger (10X Genomics Cell Ranger v6.1.2). Cell 

count matrices were loaded into R73 and objects generated using the R package Seurat (version 

4.3.0),74 restricted to transcripts detected in more than 10 cells and cells with between 200 and 

12,500 unique transcripts with non-zero count values; cells with percent mitochondrial 

transcripts in the top 25% for each dataset were also dropped. Transcript names were 

maintained as Ensembl identifiers to preserve the greatest number of unique transcripts. After 

combining all donors, transcripts expressed in fewer than 0.1% of cells were filtered. Donor 

HPAP-027 was dropped from the data set because there were very few cells (32 cells). The 

reciprocal PCA intergration with references (HPAP-037, HPAP-040; HPAP-045, HPAP-050, 

HPAP-052, and HPAP-072) workflow from the R package Seurat (version 4.3.0)74 was followed, 

with k.anchor = 5, then FindNeighbors and FindCluster (resolution = 1.2). Cell types were first 

manually annotated based the unambiguous, high level expression of marker genes (Suppl 
Table 5) in distinct clusters in UMAP space, except cytotoxic T cells, which did not form a 

distinct cluster but had restricted expression of TRAC. The remaining ambiguous cells were 

annotated using the MapQuery function by projecting unknown cells onto the manually 

annotated cells. 

  

Deconvolution analysis 
After normalization for tissue sample size, the intensity of a marker protein that is only abundant 

in one cell type and that has relatively constant levels is proportional to the abundance of that 

cell type. High-quality lists of marker genes have been published for islet endocrine cell types 

based on a meta-analysis of seven different human islet single-cell datasets.88 Studies have 

also published the range of endocrine cell type proportions across human donors, as assessed 

by staining and microscopy - here, we assume an average of 0.55 b-cells, 0.30 a-cells, 0.10 d-

cells, and 0.05 PP cells.89,90 We used this prior knowledge to estimate the cell type composition 

of each donor using the proteomics data. First, islet endocrine marker gene lists from van Gurp 

et al.88 were filtered to remove any that were classified as markers for more than one cell type 

and any that were not present in the proteomics data. This resulted in 72 genes for b-cells, 78 

for a-cells, 15 for d-cells, and 8 for PP cells. Next, we computed the proportion of each cell type 

for each donor, according to each marker gene (𝑝𝑟𝑜𝑝!,#). This was done using the following 

formula: 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2024. ; https://doi.org/10.1101/2024.06.19.599613doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.19.599613
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

𝑝𝑟𝑜𝑝!,# 	= 	 (𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒#	/	𝑚𝑒𝑑𝑖𝑎𝑛(𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒#)) 	∗ 	𝑃𝑟𝑜𝑝! 

 

For example, the proportion of b-cells in a given donor according to the marker gene INS would 

be computed as the abundance of insulin, divided by the median insulin abundance across all 

donors, and multiplied by the prior known median proportion of b-cells (0.55). The overall 

proportion of each cell type was calculated as the median of proportion estimates across all 

marker genes for that cell type. Finally, the proportion of non-endocrine cells was computed as 

the remainder after adding the estimated proportion of b-, a-, d-, and PP cells and normalizing 

the endocrine proportions to satisfy an assumed maximum purity of 98%. When computing 

associations between individual omics features and cell type proportions, endocrine cell 

proportions were normalized as a proportion of the total endocrine signal and the non-endocrine 

proportion was included as a covariate to better distinguish cell type-specific signals.  

 

Tool Implementation 
The HumanIslets frontend is implemented using Angular version 14, with the PrimeNg 

components library. All statistical analyses are performed in R, are managed by a Java backend 

with Rserve, and are communicated from the frontend to the backend via REST API. Interactive 

visualizations are implemented with d3 in the frontend and static visualizations are generated in 

the backend using the ggplot R package (version 3.4.2).91 The R functions used to generate all 

statistical results and visualizations are available at the HumanIsletsR Github repository 

(https://github.com/xia-lab/HumanIsletsR).  
 
Data accessibility 
All raw data used in this study is available for download via the HumanIslets web-tool, with the 

following exceptions for raw sequencing and proteomics data (available elsewhere). Bulk RNA 

sequencing data and raw proteomics data are from a recent preprint33 and has been deposited 

in the European Genome-phenome Archive (EGA; EGAS00001007241) and ProteomeXchange 

via MASSive (PXD045422), respectively. Patch-seq sequencing reads are from published 

papers,54,69 new data, and the Human Pancreas Analysis Program (HPAP) and is available in 

the NCBI Gene Expression Omnibus (GEO) and Sequence Read Archive (SRA) under 

accession numbers GSE124742, GSE164875, and at the PANC-DB data portal of the HPAP 

(https://hpap.pmacs.upenn.edu),72 along with data to be deposited (unpublished). Data used to 

generate islet cell type-specific single-cell expression profiles is from HPAP (availability as 

above) and, from new data (GSE269204), and from published papers.37,78–85 The latter are 
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available via NCBI GEO and SRA via accession numbers GSE81076, GSE81547, GSE81608, 

GSE83139, GSE84133, GSE85241, GSE86469, GSE154126, and from the European 

Molecular Biology Laboratory European Biology Institute (EMBL-EBI) under accession number 

E-MTAB-5061. 
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Figure Legends 
 
Figure 1. A human research islet phenotyping, sample and data collection, and data 
analysis and visualization pipeline. 
 A) Human research pancreas received by the Alberta Diabetes Institute (ADI) IsletCore 
is processed for sample collection (grey) and islet isolation (FFPE – formalin fixed paraffin 
embedded). 
 B) Metadata and data are collected on the organ donor, organ and tissue processing, 
islet and cellular function, and molecular profiling via several omics platforms. 
 C) The HumanIslets tool comprises both a backend server for data storage and 
computation, and a user-friendly frontend for interactive data analysis and visualization. 
 
Figure 2. Profiles of donors, islets and data types within the database. 
 A-E) Distribution of donor age (A), BMI (B), HbA1c (C), sex (D) and corrected diabetes 
status (E) across the 540 donors currently in the database. 
 F) Distribution of islet isolation outcomes across the 540 donors currently in the 
database. 
 G) Heatmap showing the availability of metadata and data types within the database and 
for download. 
 
Figure 3. Effect of culture time on transcript and protein expression, and the impact of 
including ‘culture time’ as covariate in analysis. 
 A) The time in culture following research islet isolation and prior to sample collection or 
shipment. Times are clustered due to collection and shipment during business hours (usually in 
the morning). 
 B-C) Effect of culture time on transcript (B) and protein (C) expression in human islets. 
Adjusted p-value <0.05 indicated in red. 
 D-F) Impact of culture time on expression of FGF measured by RNA-seq (D), 
NanoString (E), or FGF measured by proteomics (F).  
 G) Gene set enrichment analysis using T-statistic as weighting against KEGG (black), 
Reactome (blue), and GO: Biological Process (red) genesets. Selected significant pathways 
(FDR<0.05) are shown. See also Suppl Table X. 
 H) Impact of adjusting for culture time on gene-level p-values for the association of bulk 
RNA-seq data and diabetes status (T2D vs. None). Transcripts were either significant 
(FDR<0.05) both with and without adjusting for culture time (dark grey), only when adjusting for 
culture time (red), only when not adjusting for culture time (blue), or not significant in either 
scenario (light grey). 
 
Figure 4. Effect of preparation purity on transcript and protein expression, and the use of 
cell type deconvolution analysis in correction for exocrine contamination. 
 A) Estimate purity of preparations following isolation, with donors ranked in order by 
purity. 
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 B-C) Although islets are hand-picked prior to these analyses, post-isolation purity has an 
impact on both transcript (B) and protein (C) expression in human islets. Adjusted p-value <0.05 
indicated in red. 
 D) Cell type distributions computed from proteomic data across donors, ranked by ‘non-
endocrine’ cell proportions. 
 E-F) Correlation of GALK1 protein with the proportion of non-endocrine cells (E) and 
confirmation in single-cell RNA-seq data that GALK1 is expressed primarily in acinar and ductal 
cells (F). 
 G) Impact of adjusting for the proportion of non-endocrine cells on protein-level p-values 
for the association of bulk proteomics data and diabetes status (T2D vs. None). Proteins were 
either significant (FDR<0.05) both with and without adjusting for non-endocrine cells (dark grey), 
only when adjusting for non-endocrine cells (red), only when not adjusting for non-endocrine 
cells (blue), or not significant in either scenario (light grey). 
 H) Of a-, b- and non-endocrine-associated RNA-seq and proteomics features found to 
be significantly different (adjusted p-value <0.05) when comparing T2D versus no diabetes with 
and without  adjustment for the computed proportion of non-endocrine cell types (non-adjusted 
RNA-seq, n=117; adjusted RNA-seq, n=90; non-adjusted proteomics, n=134; adjusted 
proteomics, n=134). 
 
Figure 5. Mini-case study: Linking SERCA3b expression with diabetes and islet function. 
 A) Analysis of proteomic data comparing the corrected diabetes status of ‘no diabetes’ 
versus ‘type 2 diabetes’. Analyses were run with no correction, with addition of age, sex and 
BMI as covariates, and then with addition of ‘proportion non-endocrine’ as a covariate. Adjusted 
p-value <0.05 indicated in red. 
 B) Web-tool Results Table, with top hits sorted by adjusted p-value. 
 C) Clicking on ‘SC’ (single-cell) raises a visualization of single-cell RNA-seq data for a 
particular hit (in this case ATP2A3) to confirm cell-type specific expression. 

D) Clicking on a row of the Results Table raises the protein expression of a hit (in this 
case ATP2A3) separated by the initial query. This example shows ATP2A3 expression in 
donors with no diabetes (ND), pre-type 2 diabetes (pre-T2D) and T2D (Type2). A potential 
outlier donor is indicated in the red circle. 

E) Clicking on the potential outlier raises the Donor View page for that donor for 
inspection. Shown here are the donor metadata, HbA1c and pancreas weight in relation to the 
total database donor population, and cell type composition for this potential outlier (R241). 
Composition calculations are from the proteomics deconvolution, with exocrine cells shown as a 
proportion of all cells and endocrine cell types shown as a proportion of all endocrine cells. 
Inset, the presence of both insulin (green) and glucagon (red) positive cells in R241 is confirmed 
by fluorescence immunostaining in banked FFPE biopsy from this donor. 

F) Proteomic data downloaded from the Data Download page, can be analyzed by the 
user. In this case the potential outlier was removed from analysis of ATP2A3 expression (****-
p<0.0001; one-way ANOVA followed by Tukey post-test to compare groups). 

G) Gene set enrichment analysis, via the ‘pathway analysis’ tab highlights pathways up-
regulated (blue) and down-regulated (red) in T2D. Results were exported in table format and 
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plotted using local software. Within the tool, clicking on a pathway result raises a heatmap 
showing genes/proteins contributing to the pathway. Significant hits are indicated by ***. 

H) In the results table (panel B), clicking on ‘NCBI’ takes users to the NCBI gene page 
for a given hit, while clicking on ‘T2DKP’ takes users to the T2D Knowledge Portal page. Data 
extracted from the T2DKP page for top endocrine-enriched hits demonstrates Human Genetic 
Evidence (HuGE) scores suggesting potential links to human metabolism and diabetes. Red 
shows HuGE scores for ATP2A3. 

I) In the results table (panel B), clicking on the hit name (in this case ATP2A3) takes 
users to the Feature View results for that particular hit. Here, ATP2A3 is seen to be negatively 
(red) associated with T2D at both the transcript and protein levels, and positively (blue) 
associated with some measures of beta-cell function and insulin secretion. 
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Tables 
 
Table 1. Number of omics features significantly associated with key metadata (adj. P-value < 
0.05, FDR method). Table cells with an “N/A” indicate that the analysis was not performed 
because there were fewer than 10 donors with omics profiles per group for categorical 
variables, or fewer than 10 donors overall for continuous variables. Note that HbA1c data are 
not available for all donors and there were a few donors with T1D, thus the sample size is 
slightly less than the number of omics profiles for some of the T2D-ND and HbA1c analyses. 
 

 
Bulk RNA-

seq 
Nanostring Proteomics 

Pseudobulk 
RNA-seq (𝛼) 

Pseudobulk 
RNA-seq (𝛽) 

Features 14 314 156 6138 16 874 14 950 

Donor profiles 117 190 134 52 30 

Significant 
batch effects 

Yes Yes No No No 

Key diabetes outcomes 

T2D-ND 418 51 1519 0 N/A 

HbA1c (%) 5 94 781 0 5 

Selected clinical covariates 

Age (years) 105 39 46 0 0 

Sex 27 0 20 12 8 

BMI 0 1 0 0 0 

Selected technical covariates 

Cold ischemic 
time (h) 

2 0 2 0 0 

Purity (%) 2245 98 2414 1 0 

Culture time 
(h) 

7547 30 1 0 0 
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Table 2. Features positively associated (FDR < 0.05) with each estimated cell type proportion. 
Beta, alpha, delta, and PP proportions are the % of all endocrine cells, and the association 
analysis for these cell types included non-endocrine % as a covariate. The percentage of 
features that were used as marker genes is shown in brackets. 
 

Cell type Proteomics RNA-seq Nanostring 

Non-endocrine % 1491 (0%) 849 (0%) 20 (0%) 

Beta cell % 352 (5%) 312 (11%) 3 (0%) 

Alpha cell % 652 (10%) 168 (13%) 7 (57%) 

Delta cell % 1036 (1%) 0 (0%) 0 (0%) 

PP cell % 721 (1%) 0 (0%) 0 (0%) 
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