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 Abstract 

 CRISPR screens are powerful tools to identify key genes that underlie biological processes. 
 One important type of screen uses fluorescence activated cell sorting (FACS) to sort perturbed 
 cells into bins based on the expression level of marker genes, followed by guide RNA (gRNA) 
 sequencing. Analysis of these data presents several statistical challenges due to multiple 
 factors including the discrete nature of the bins and typically small numbers of replicate 
 experiments. To address these challenges, we developed a robust and powerful Bayesian 
 random effects model and software package called Waterbear. Furthermore, we used 
 Waterbear to explore how various experimental design parameters affect statistical power to 
 establish principled guidelines for future screens. Finally, we experimentally validated our 
 experimental design model findings that, when using Waterbear for analysis, high power is 
 maintained even at low cell coverage and a high multiplicity of infection. We anticipate that 
 Waterbear will be of broad utility for analyzing FACS-based CRISPR screens. 
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 Introduction 

 Genetic screening is a powerful technique to identify the genes that underlie a phenotype or that 
 are involved in a particular biological process. The ability of CRISPR/Cas9 to induce genetic 
 perturbations efficiently has facilitated large-scale screens in many mammalian cell types  1,2  . 
 CRISPR screens can be paired with FACS to map the genetic wiring underlying complex 
 phenotypes by identifying key upstream regulators of specific, relevant target genes  3–8  . These 
 screens use fluorescent reporters or fluorescent antibodies to directly measure the expression 
 level of a protein of interest or a protein that is a surrogate marker of a biological process (such 
 as a phosphorylated protein at the end of a signaling cascade). For simplicity, we will refer to 
 any target measured by FACS – either an endogenous protein or a reporter protein – as a 
 marker throughout the rest of the text. After pooled CRISPR perturbations, FACS is used to sort 
 cells into different bins based on the fluorescence intensity of the marker. By sequencing the 
 relative abundance of gRNAs in each bin it is possible to associate genetic perturbations with 
 their effect on the levels of the marker. 

 There are a number of experimental and computational challenges when performing CRISPR 
 FACS screens. These screens must balance a desire to perturb many genes, with high cell 
 coverage for each perturbation, against costs and experimental demands. Furthermore, there is 
 increasing interest in performing such screens in primary cells or in  in vivo  models which are 
 more relevant for disease, but for which the number of cells that can be used is often limited  9–11  . 
 CRISPR screens are also usually only performed with two or three replicates. Limiting numbers 
 of cells and replicates reduce the number of times each gRNA is measured, which increases 
 noise and uncertainty. This noise compounds with other sources of variability between replicates 
 and donors, between different gRNAs targeting the same gene, and imprecise FACS gates. 
 Finally, FACS screens are further complicated by the fact that they involve a pool of perturbed 
 cells so the effect of each gRNA on the marker cannot be measured directly, but must instead 
 be inferred by the relative abundance of gRNAs in different FACS bins. These challenges 
 necessitate the development of new analysis methods designed specifically to analyze CRISPR 
 FACS screens. Furthermore, there are often not principled guidelines on how different 
 parameters affect the statistical power of these screens to inform experimental design. 

 We developed a computational framework, Waterbear, that (1) performs robust inference of 
 CRISPR FACS screens and (2) informs optimal experimental design by iterating over thousands 
 of plausible experimental configurations through simulation. Given parameters learned from real 
 data, the model can generate realistic simulations of experiments at the single-cell level using a 
 generative view of the model. The generative view of the model enables stepping through each 
 parameter of the model to generate data that is consistent with parameters learned from real 
 data while still introducing randomness at every stage of the model consistent with biological 
 and experimental variability. Once a simulation is done, the statistical power of that experimental 
 configuration can be estimated using our gene-level inference model which is a simplified 
 version of the cell-level model which more closely mimics how the data is observed in practice. 
 The inference model aggregates the cell-level information into a count observation and models 
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 the gRNA count distribution across discrete bins as is observed in actual screens. Waterbear is 
 robust in that it can infer bin sizes, model the latent effects of the gRNAs on the marker 
 distribution, and share information across guides, genes, and replicates to assess uncertainty. 
 Further, this model is also used to analyze real data where the cell-level information is not 
 available. 

 Waterbear is designed to use all available information to make informed decisions about 
 whether each perturbed gene affects the marker distribution by modeling several relationships 
 that are inherent to such screens. This model enables inferring thousands of parameters by 
 shrinking the results towards a shared prior across relevant dimensions. For example, on 
 average, gRNAs targeting the same gene should behave similarly, so in the model, gRNAs 
 targeting the same gene share a “parent” distribution, while allowing each guide to have a 
 unique effect size. While some gRNAs will produce off-target effects, Waterbear’s design does 
 not ignore them, but rather downweights the evidence of the gene-level effect size if the 
 off-target gRNA is inconsistent with other guides. Similarly, negative controls are used to infer 
 experiment-level parameters such as the null marker distribution, variance between replicates, 
 and variance between gRNAs. Additionally, Waterbear uses a sparse prior for  gene-level  effects 
 since out of thousands of gRNAs, only a modest fraction of gRNAs will have a true measurable 
 effect on the marker distribution. 

 While other tools have been used widely for FACS-based screen analysis, the current tools all 
 have limitations for this purpose. MAGeCK was originally designed to analyze cell abundance 
 screens and is one of the most commonly used CRISPR screen analysis tools  12  . However, 
 MAGeCK only supports comparisons between two populations, and therefore it cannot take 
 advantage of the additional information collected with more than two FACS bins, preventing it 
 from modeling the underlying marker distribution. In contrast, MAUDE was developed 
 specifically for the analysis of FACS screens  13  .  However, MAUDE does not explicitly handle 
 replicates, requires a separate input population, and requires precise bin sizes to be manually 
 specified. Finally, RELICS shares technical similarities with Waterbear as it is also a Bayesian 
 hierarchical model. However, RELICS is designed for CRISPR tiling screens that perturb 
 non-coding sequences where one would expect spatial correlations between guides, and thus 
 the software is designed around the concept of finding “functional sites'', rather than finding 
 gene-gene relationships as we describe here. Waterbear was designed to overcome these 
 limitations. 

 In addition to being able to analyze data, an expanded cell-level view of the Waterbear model 
 can be used to simulate experiments to explore a wide range of experimental parameters and 
 their implication on the design of these screens. We used Waterbear to explore how FACS bin 
 size, gRNA coverage (the number of times a gRNA is measured), and lentiviral gRNA library 
 multiplicity of infection  14  (MOI) affect the power  of FACS-based screens and show that it is 
 possible to reduce the number of cells required while still maintaining high sensitivity. Unlike 
 existing simulation methods  15  , we simulate each cell  individually, enabling us to change 
 cell-level parameters such as the MOI. We validate our simulations and inference procedure by 
 repeating previous screens  3  at a higher MOI and with  lower coverage of the gRNAs. Our results 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2024.06.17.599448doi: bioRxiv preprint 

https://paperpile.com/c/t3TMRD/0G8W
https://paperpile.com/c/t3TMRD/4rtX
https://paperpile.com/c/t3TMRD/LZTA
https://paperpile.com/c/t3TMRD/Kei3
https://paperpile.com/c/t3TMRD/Hg7Q
https://doi.org/10.1101/2024.06.17.599448
http://creativecommons.org/licenses/by/4.0/


 provide a roadmap to reduce the number of cells required for FACS screens and we introduce a 
 powerful new analysis tool to analyze such screens. These advances open the door for future 
 screens addressing novel biological questions in rare, primary cell types and  in vivo  models. 
 Waterbear is available as free and open-source software at 
 https://github.com/pimentel/waterbear  . 

 Results 

 Overview of CRISPR FACS screens and tunable parameters 

 To understand the genetic regulation of a marker of interest, the most straightforward approach 
 would be to individually perturb the expression of candidate regulatory genes and then measure 
 the expression of the marker. This approach is challenging to scale and instead perturbations 
 are often performed in a pool of cells with each cell containing a different perturbation  16  . When 
 the cells are pooled, the distribution of the marker reflects a mixture of many different 
 perturbations and the effect of each individual perturbation cannot be directly observed (Figure 
 1A). However, using FACS, the perturbed cells can be sorted into different bins based on the 

 Figure 1: Overview of CRISPR FACS screens and tunable parameters 
 A) Schematic of pooled CRISPR FACS screens. Perturbations that differentially affect the 
 expression of a target protein of interest are mixed together in a pool of modified cells. To infer 
 the effect of each gRNA, cells are sorted into bins based on expression of a target protein 
 using FACS; gRNA abundance is compared across bins through sequencing. B) Experimental 
 design considerations focused on reducing cell requirements, including the effect of changing 
 i. gRNA coverage, ii. MOI, and iii. FACS bin configuration. 
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 expression of the marker  16  . By sequencing the gRNAs in the sorted cells and identifying which 
 gRNAs are differentially enriched between the sorted populations, one can identify regulators of 
 the marker (Figure 1A). 

 The field lacks principled guidelines for how experimental design choices affect the statistical 
 power to detect differentially enriched gRNAs. Coverage, MOI, and FACS bin size are highly 
 interrelated experimental parameters that can be altered to balance the number of cells needed 
 for an experiment and the accuracy of gRNA abundance measurements (Figure 1B). For 
 instance, at high MOI there will be multiple gRNAs per cell, which increases the effective 
 coverage for a fixed number of cells while also increasing the variance of the observations. 
 Here, we provide a framework to explore how these experimental parameters affect false 
 discoveries and statistical power and provide principled guidelines for future screens. 

 A statistical model for CRISPR FACS screen data 

 We present two possible generative views of the data; one with cell-level information (the 
 “cell-level” view) and one with aggregate information as is observed in FACS screen data (the 
 “gene-level” view). The cell-level view offers details on all guides within a single cell (as in in 
 single-cell sequencing), while the gene-level view provides only the total occurrences of a 
 guide-bin combination, the default in FACS-based screens. For simplicity, we describe the 
 gene-level model in detail below, but the more general cell-level model is discussed in detail in 
 Supplementary Section 1. Importantly, we perform simulated screens using the cell-level model 
 while iterating over the parameter space, but perform inference using the gene-level model to 
 match the data available from a typical FACS screen. 

 In the Waterbear model (Figure 2A), there are two classes of genes, those that have no effect 
 on the marker (denoted by  ), and those that have  an effect on the marker (  ). By 
 classifying genes into two discrete groups, our model defines different gRNA-marker behavior 
 based on the inferred class. The central goal of Waterbear is to report, for each gene, the 
 posterior probability that  , as well as estimated  effect sizes. 

 When a gene has no effect (  ), all of the gRNAs targeting  this gene should be similar to 
 the null marker distribution with effects being shrunk towards zero. Thus, deviations in the 
 observed sequencing counts between bins represent noise in the experiment. In particular, 
 control gRNAs enable us to force  which enables a  direct estimation of the experimental 
 noise. 

 When a gene has an effect (  ) the model allows the  guide level effect estimates to vary 
 and we employ a hierarchical process which assumes gRNAs targeting that gene behave 
 similarly. The true gene-level effect is drawn from a Gaussian effect distribution enabling a large 
 range of true effects, as is common in Bayesian models due to its flexibility and modeling 
 convenience  17  . Then, each gRNA has its own random  effect centered around the gene-level 
 effect distribution. Each gRNA thus results in a different marker distribution that is shifted around 
 the gene-level effect, resulting in a gRNA-specific gRNA-marker bin count distribution. 
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 As a result of this two-class approach, rather than focusing on gRNA- or gene-level p-values, 
 Waterbear prioritizes genes where the individual gRNAs targeting that gene produce consistent 
 shifts in the marker distribution (Figure 2B). In particular, a gene is considered a notable target if 
 the inferred posterior inclusion probability (PIP),  , is sufficiently close to one. 
 Genes with high PIP have gRNAs with consistent, non-zero effects and genes with low PIP 
 have gRNAs with effects close to zero. As the count of inconsistent gRNAs targeting a gene 
 rises, the PIP will decrease, indicating higher uncertainty in the relationship between the target 
 gene and the marker. Statistically, this is one of the major contributions of Waterbear; rather 
 than aggregating results from each guide, Waterber fits a holistic model in which the data help 
 infer whether the “effect” class or the “no effect” class is more consistent over all guides 
 targeting a gene. 

 Figure 2: A statistical model for CRISPR FACS screen data 
 A) Overview of the generative model. First, the gene level perturbation effect is assessed as 
 either having a no effect (top row) or having an effect (bottom row) on the marker gene and 
 the effect size established as  . For genes with an  effect on the marker, the individual gRNA 
 effect sizes are chosen centered around this gene effect. Each gRNA is assumed to shift the 
 expression of the marker gene to center on the gRNA’s effect size. Finally, each marker is 
 discretized into four FACS bins with the counts in each bin reflecting the amount that the 
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 marker distribution was shifted. B) Multiple gRNAs that have consistent effects on a given 
 gene increase the probability that perturbation of that gene affects the level of the marker. In 
 this example, gRNAs 1-3 target Gene 1 and show a consistent up regulation of the marker, 
 thus, Gene 1 has the highest posterior inclusion probability. gRNAs 4-6 have more noise and 
 less overall up regulation, so Gene 2 shows a slightly lower posterior inclusion probability than 
 Gene 1. C) Waterbear implements a Bayesian hierarchical model to infer gene-level effects 
 with small sample sizes by sharing parameters within genes and across the experiment. 
 Additionally, Waterbear improves inference by modeling the unobserved FACS distribution 
 (bottom row). When there is no shift, the guide distribution is modeled to look like a control 
 guide (bottom left). When there is an effect, the bin proportion and thus bin counts are shifted 
 (bottom right). 

 Importantly, Waterbear learns experimental parameters including the sizes of the sorted FACS 
 bins using either the counts of the control gRNAs or, in the absence of controls, by assuming 
 that a subset of gRNAs do not have an effect (Figure 2C). Experimentally, FACS bin sizes can 
 shift during long sorts and opposing bins (e.g. bin one and bin four) might not always be 
 collected in equal proportions. Using the control gRNA counts in each bin, Waterbear infers for 
 each replicate what bin cutoffs divide the marker distribution to produce the observed count 
 distribution. 

 Waterbear has relatively high sensitivity while controlling the false discovery rate 

 To establish the performance of Waterbear and compare it to other methods, we used the 
 cell-level view of the generative model which includes a number of tunable parameters 
 (Supplementary Section 2). We performed simulations and analyzed the results with the 
 collapsed “gene-level” view of Waterbear, MAGeCK, and MAUDE (Methods)  12,13  to observe how 
 changing these parameters affect each method’s ability to detect hits. 

 To assess each method’s calibration, we compared the estimated false discovery rate (FDR) to 
 the true FDR. Ideally, the true FDR should be at or below the estimated FDR. We first ran 
 simulations across a range of coverage levels with 10% of the gRNAs in the library having a 
 true effect on the marker. At all tested coverage levels, Waterbear and MAGeCK maintained 
 lower true FDRs at the estimated 10% FDR (Figure 3A). In contrast, MAUDE’s true FDR was 
 nearly 50% across all coverage levels. We also evaluated the calibration with low cell:gRNA 
 ratios while varying the MOI. Increasing the MOI resulted in a higher effective coverage without 
 having to increase cell numbers (Figure 1B). Again, MAGeCK and Waterbear controlled the 
 FDR, while MAUDE had a highly inflated FDR for nearly all MOI levels (Figure 3B). 

 Experiments are often collected under less ideal conditions than simulations. Given that 
 Waterbear learns most parameters from the observed data rather than making assumptions 
 about the experiment, we thought that it should be more robust than existing tools under 
 non-ideal conditions. For instance, since MAGeCK was not designed to analyze FACS-based 
 screens, using it for this type of analysis requires the implicit assumption that all FACS bins are 
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 equally sized with each other and between donors. While MAUDE supports uneven bin sizes, it 
 requires the user to manually specify the exact bin sizes collected. In contrast, for each sample 
 Waterbear learns the sizes of individual FACS bins directly from the data. Therefore, we 
 expected that Waterbear would outperform both MAGeCK and MAUDE in situations where the 
 bin sizes were misspecified. In simulations with uneven bin sizes, Waterbear and, surprisingly, 
 MAGeCK controlled the FDR, while MAUDE did not (Supplementary Figure 2.8). It is important 
 to note that since MAUDE does not estimate the bin sizes, we input the true simulated bin sizes 
 for MAUDE, while letting Waterbear estimate the bin sizes and MAGeCK normalize the counts. 
 These results show that MAGeCK’s RNA-seq style normalization still performs well in this 
 setting. 

 Figure 3: Waterbear has relatively high sensitivity while controlling the false discovery 
 rate 
 Sensitivity and calibration plots comparing Waterbear, MAGeCK, and MAUDE on simulated 
 screen data. For each method, we consider a hit to be ‘significant’ if the estimated FDR is less 
 than q = 0.10. Since Waterbear produces posterior inclusion probabilities, we consider a test 
 to be significant if PIP > 1 - q and the gene effect size (1 - q) credibility interval does not 
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 include zero. True FDR of the methods across various coverage levels (A) and various MOIs 
 (B). Sensitivity of the methods across various coverage levels (C) and various MOIs (D). 

 We next tested which methods had the highest sensitivity while controlling the FDR. Ideally, 
 sensitivity should be close to one, while the FDR is close to zero. Consistently across different 
 coverage levels, MOI, and bin sizes, Waterbear had the highest sensitivity while controlling the 
 FDR (Figures 3C-D). While MAUDE technically had the highest sensitivity, this came at a high 
 false discovery cost, as nearly half of the calls were false positives. Despite not being designed 
 for FACS screens, MaGeCK had low FDR and still had relatively high sensitivity, albeit, nearly 
 always second to Waterbear. 

 Waterbear simulations suggest high sensitivity is maintained at low cell counts and high 
 MOI 

 As discussed previously, we posited that the gRNA coverage, FACS bin configuration, and MOI 
 have the largest impacts on experiments, so we focused on these parameters in our 
 simulations. Given that we know the ground truth for these simulations, we can calculate how 
 changing any of these parameters affects the sensitivity of the screen. Our cell-level generative 
 model and effect size distributions are detailed in Supplementary Section 2. 

 Increasing the gRNA coverage with fixed MOI enables a more accurate quantification of how 
 perturbations affect the marker (Figure 4A). However, at high coverage levels, a large increase 
 in cell number yields only diminishing returns for quantifying gRNAs. This result suggests that 
 identifying the minimum coverage needed to detect significant hits would have a meaningful 
 impact on reducing the resources required for FACS screens. For example, Figure 4A shows 
 that 38% of true hits will still be detected with only 50X coverage at a true FDR of 0.05. 
 Furthermore, in this scenario, almost 80% of large effect size hits, defined as having an effect 
 size greater than 0.2 standard deviations, will be detected (Figure 4B). Therefore, the strongest 
 hits in a given screen will be detected even when the coverage is as low as 50X per gRNA. 
 Increasing the coverage increases the number of hits detected and allows the detection of hits 
 with a smaller effect size. However, the sensitivity starts to saturate around 1000X coverage, 
 suggesting that it is not worthwhile to collect additional cells. 

 We next asked, given limited experimental resources, would it be better to collect a third 
 biological replicate or to collect two replicates with higher coverage. At lower coverage levels, 
 adding a third replicate only increased the mean sensitivity roughly half as much as doubling the 
 coverage of the existing two replicates (Figure 4C). At higher coverage levels, the two replicates 
 already start to saturate the mean sensitivity, suggesting that a third replicate would only have 
 minimal benefit. To confirm this result on real data, we down-sampled data from Figure 5 to two 
 replicates and found comparable sensitivity across the down-sampled counterparts and that the 
 top hits in every configuration replicated (Supplementary Section 3.1). 
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 Figure 4: Waterbear simulations suggest high sensitivity is maintained at low cell 
 counts and high MOI 
 A) As gRNA coverage increases, sensitivity approaches saturation. In this simulation there 
 are 4 gRNAs per gene, 1,000 genes, and 10% of all genes have an effect. Each line indicates 
 the coverage at the gRNA level. B) Sensitivity of (A) broken down by the size of effect that the 
 gRNA perturbation has on the marker expression levels. C) Comparison of 2 replicates versus 
 3 under the same conditions as (A). D) Effect of different MOIs on sensitivity. In this example 
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 we simulated 50,000 cells. E) Waterbear can be used with data from all 4 bins or by imputing 
 unobserved middle bins (2 bin mode). Sensitivity assessed at 4 coverage levels. F) Effective 
 coverage at the gene level stratified by the number of gRNAs. Each line indicates a different 
 gRNA configuration and each subpanel indicates a fixed total gene level coverage. 

 Commonly, screens are often performed using a low MOI of 0.3 - 0.5 to minimize the number of 
 cells that contain more than one gRNA. However, with an MOI of 0.3, approximately 74% of 
 cells will receive no gRNAs during the viral infection, which often limits the number of gRNAs 
 that can be screened, especially when dealing with a limited number of starting cells. Therefore, 
 at a fixed coverage for the experiment, even modestly increasing the MOI drastically reduces 
 the number of cells needed (Figures 1Bii). We fixed the number of cells at 50,000 with a 6,000 
 gRNA library. Increasing the MOI served to effectively increase the coverage, while not having 
 any negative effect on mean sensitivity even as the MOI approached 10 (Figure 4D). This trend 
 is also observed when going to higher numbers of total guides and different proportions of 
 guides with an effect (Supplementary Section 2.2). To check if the number of controls affected 
 the inference, we also performed many of the simulations with 10, 100, and 1000 controls 
 (Supplementary Section 3.2) which verified that this does not affect the final result. Thus, 
 increasing the MOI, even a marginal amount, can greatly improve sensitivity. 

 While increasing the MOI will result in some cells containing random combinations of multiple 
 gRNAs, in our previous screens less than 10% of the gRNAs had a statistically significant effect. 
 In similar screens, the majority of cells will contain combinations of gRNAs where none or only 
 one of the gRNAs have an effect (Supplementary Section 4). We define cells containing “gRNA 
 collisions” as cells which contain two or more gRNAs that exhibit an effect on the marker 
 distribution, but even at moderate MOIs gRNA collisions are rare. If a gRNA has an effect then 
 cells containing both this gRNA and random mostly no-effect background gRNAs should still 
 end up enriched in either the low or high FACS bins. However, if a gRNA has no effect and it is 
 randomly paired with mostly no-effect background gRNAs, cells containing these no-effect 
 gRNAs will end up equally distributed between the high and low FACS bins. 

 Many FACS screens only collect the outer two bins. However, we expected that sequencing four 
 bins spanning the full distribution would increase the gRNA coverage data that Waterbear uses 
 for inference without requiring additional input cells. We asked, given the same number of cells: 
 How moving from two bins to four bins affects the sensitivity to detect hits (Figure 4E)? With 
 15% outer bins, four bins is almost always preferable, however, the increase in sensitivity is 
 relatively minor. However, performance greatly degrades if one only collects two outerbins at the 
 tail of the extremes of the marker distribution (5% and 1% outer bins), but is maintained if one 
 also collects the inner additional bins. In summary, sequencing four bins provides consistent 
 results across coverage levels tested and is preferable when coverage is low (<= 50X gRNA 
 coverage). 

 While these simulations suggest that the cumulative coverage is an important driver of 
 sensitivity when four gRNAs target the same gene, it is unclear whether four gRNAs are 
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 necessary. We next explored how the number of gRNAs affects the sensitivity when the 
 coverage is fixed per gene, under the assumption of high-quality gRNAs. To test the effect of the 
 number of gRNAs targeting a gene, we performed an analysis where the total gene coverage 
 was fixed, but was achieved using 1, 2, 3, or 4 gRNAs (Figure 4F). For example, at 1000X 
 coverage, 1 gRNA represents 1000 cells for that gRNA, whereas in the 4 gRNA case, it 
 represents 250 cells per gRNA. Using one gRNA almost always has less power than other 
 configurations. As coverage increases, more gRNAs are helpful up to about three guides. This 
 result is likely due to the additional evidence against the null as each additional gRNA can be 
 thought of as its own “experiment” during inference, akin to a meta-analysis. 

 While these simulations suggest that increasing the coverage by many different means will 
 increase the ability to detect hits, they also provide a path to reducing the number of cells and 
 thus enabling novel screens in systems previously limited by the number of cells available. In 
 particular, increasing the MOI while capturing four bins can increase the overall coverage with 
 relatively small experimental burden and no additional cells. 

 Experiments validate that high sensitivity is maintained at low coverage and high MOI 

 We previously performed CRISPR FACS-based screens in primary human T cells to identify the 
 upstream regulators of  IL2RA  , an important cell surface  receptor implicated in numerous 
 autoimmune diseases  3,18,19  . However, these screens  were expensive and experimentally 
 demanding because they were performed at 640-2273x coverage and each screen required 
 100-290 million primary cells. However, our simulations suggest that we could have identified 
 the top hits using much lower coverage and a higher MOI. To confirm these results, we repeated 
 the screen using an MOI of 0.3 (low MOI) and 2 (high MOI). For both MOI conditions, we 
 collected the cells from 3 donors across 4 FACS bins at high coverage (average of 1662x 
 coverage for MOI 0.3, 1180x coverage for MOI 2) and at low coverage (average of 195x 
 coverage for MOI 0.3, 208x coverage for MOI 2) (Figure 5A). 

 To confirm that the cells were infected at the desired MOI, we quantified the genomic integration 
 copy number for the gRNA lentiviral construct. We used droplet digital PCR to quantify the 
 number of copies of GFP, which is part of the gRNA lentiviral construct, relative to the number of 
 copies of the control gene RPP30 in the cells. The average copy number of GFP in the 
 population ranged from 0.28 to 0.33 for the MOI 0.3 condition and from 1.9 to 2.3 for the MOI 2 
 condition across the 3 donors, closely matching the theoretical copy number for each condition 
 (Figure 5B). These data suggest that the cells were infected at the desired MOIs and that the 
 majority of cells in the high MOI condition contained more than one gRNA per cell. Given that 
 the majority of cells in the low MOI condition contained no gRNAs, one would need ~5.5 fold 
 more cells to obtain the same effective coverage as the high MOI condition. 

 We next compared the significant hits in the high coverage, low MOI condition compared to the 
 low coverage, high MOI condition using Waterbear. Despite having multiple gRNAs per cell and 
 being collected at 4.6-fold lower coverage, the top hits were highly correlated between the two 
 conditions (Figure 5C). We previously validated 26/33 hits from our original screen by 
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 performing individual knockouts and directly measuring the effect on IL2RA protein levels using 
 flow cytometry  3  . We used these 26 genes as a set  of high confidence positive controls 
 (Supplementary Section 3.2). Waterbear detected 24 out of 26 of these validated hits in the low 
 coverage, high MOI screen (Figure 5D). Together, these results experimentally validate both the 
 predictions regarding coverage and MOI from our simulations with Waterbear as well as 
 demonstrate that Waterbear is a powerful tool to analyze these screens, even under challenging 
 conditions. 

 Figure 5: Experiments validate that high sensitivity is maintained at low cell counts and 
 high MOI 
 A) CRISPR FACS screens to identify regulators of IL2RA were performed at low (~0.3) and 
 high (~2) MOI and low and high coverage. Low coverage (average of 195x coverage for MOI 
 0.3, 208x coverage for MOI 2) and high coverage (average of 1662x coverage for MOI 0.3, 
 1180x coverage for MOI 2) n = 3 donors. The relative number of cells collected for each 
 condition is shown. B) Quantification of the number of viral integrations per cell using droplet 
 digital PCR in the unsorted cells (total) or after sorting cells that express GFP in the gRNA 
 lentiviral construct (GFP+). C) Comparison of screens hits from the high coverage, low MOI 
 screen vs low coverage, high MOI screen analyzed using Waterbear. D) Experimentally 
 validated regulators of IL2RA were detected as screen hits in the low coverage, high MOI 
 screen using Waterbear. 
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 Given that Waterbear outperformed MAGeCK and MAUDE in our simulations, we wanted to 
 compare Waterbear’s sensitivity to these tools under real conditions. On the low coverage, high 
 MOI screen MAGeCK detected 17 out of 26 of these validated hits (Supplementary Figure 3.6). 
 MaGeCK’s lower sensitivity to Waterbear’s (24/26) is consistent with observation that in general 
 MaGeCK generally calls fewer hits with lower sensitivity; Waterbear called 79/1350 and 
 MAGeCK called 31/1350 genes significant. MAUDE reports many more signals (406/1350 and 
 detects 25/26 hits, Supplementary Figure 3.7), however we regard these as inflated given the 
 simulations showing poor calibration at 10% FDR. These results further validate that Waterbear 
 maintains high sensitivity, without seemingly over-calling relationships. 

 Discussion 

 Genetic screens are a powerful approach to link genes to phenotypes. Coupling CRISPR 
 perturbations with FACS in mammalian cells enables mapping the genetic basis of many 
 biological processes and regulatory relationships. Early CRISPR screens were performed in 
 abundant cell lines  20–22  , but increasingly, these  screens are being performed in rare primary cell 
 types or  in vivo  models with limited cell numbers  4,9,23,24  . In these screens, researchers must 
 often make choices about experimental conditions based on their intuition as there have not 
 been good guidelines to inform how changing experimental parameters affect the ability to 
 identify hits. Furthermore, changes such as lowering gRNA coverage or increasing the MOI 
 increase the statistical challenge of identifying hits. 

 We solve these experimental design and analysis gaps by introducing Waterbear, an end-to-end 
 experimental design and inference procedure for CRISPR FACS screens. Our cell-level 
 generative implementation enables exploration of experimental parameters such as effect size 
 distribution, gRNA distribution, and MOI. In conjunction with a “gene-level” version of this model 
 for inference, Waterbear enabled us to show that (1) sensitivity saturates relatively quickly, and 
 thus if using four bins can be dropped from about 1,000X coverage to 250X coverage with little 
 loss in sensitivity, (2) increasing the MOI modestly from 0.3 to 2 improves effective coverage 
 while greatly reducing the number of input cells needed, (3) the number of gRNAs targeting 
 each gene can be reduced from four to three while achieving similar sensitivity. 

 Overall, our results demonstrate that the number of cells for such screens can be reduced, 
 enabling one to assay significantly smaller cell populations. The prevailing view has been that 
 such screens should be performed with only a single perturbation per cell. These guidelines 
 likely emerged from siRNA screens where there are many more off-target effects. Consistent 
 with other recent reports  25–27  , we demonstrate that  increasing the MOI greatly reduces the 
 number of uninfected input cells that are thrown away during screening, while having a similar 
 sensitivity as the low MOI screen. Coupled with our results that coverage and gRNA number 
 can be reduced without impacting sensitivity, these guidelines should reduce the resources and 
 effort required to perform CRISPR FACS screens and enable a next generation of CRISPR 
 screens in rare cell types and with  in vivo  models  that will be essential to understand many 
 disease-relevant processes. 
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 Equipped with knowledge of the important experimental aspects, we developed a hierarchical 
 statistical model that enables principled inference of guide-effects with replicates. The unique 
 approach models the unobserved FACS marker and connects it to the observed sequencing 
 counts. This key hierarchy is what sets the Waterbear method apart from existing methods and 
 makes it adaptable for other FACS-based sequencing experiments. The statistical challenge lies 
 in how one connects the unobserved marker distribution to the FACS bins, while maintaining the 
 correlation structure in the bins and not treating each bin independently, but rather, as samples 
 joint from an unobserved marker. Concretely, this is modeled through our function  in the 
 methods section. 

 Importantly, the Waterbear model infers experimental parameters and is robust in small sample 
 settings which are common in these screens. We do so by “shrinking” estimates in the 
 hierarchy, thus jointly modeling experimental parameters across replicates or within replicates 
 when appropriate. To address the concerns of model assumptions and general performance, we 
 additionally demonstrated that our model outperforms tools commonly used for these types of 
 analyses (MAGeCK and MAUDE) in many different experimental settings and on real biological 
 data. 

 Through both simulations and follow-up experiments, we have demonstrated an approach of 
 model driven experimental design followed by experimentally guided inference models that can 
 be seen as a vignette for other similar screens. For example, both the experimental design and 
 inference framework can be modified to inform design and inference of proliferation screens,  in 
 vivo  screens, scRNA-seq screens, and potentially multi-ome  readout screens. 

 Data Availability 

 The raw sequencing files generated during this study are available at GEO: GSE242880. 

 Code Availability 

 The code to reproduce all of the analyses in this paper can be found at: 
 https://github.com/pimentel/waterbear_analysis  . The  pipeline tool Snakemake  28  was used to 
 run Waterbear, MAGeCK, and MAUDE. 

 Methods 

 Sample collection 
 This study was approved by the University of California, San Francisco (UCSF) Committee on 
 Human Research and Stanford University Panel on Medical Human Subjects (IRB#53302) and 
 written consent was obtained from all donors. Primary human T cells were obtained through 
 consented Leukopaks (STEMCELL) (Catalog #70500.2). 
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 Isolation, culture and expansion of human CD4+CD25- effector T cells 
 PBMCs from Leukopaks (STEMCELL) were diluted 1:1 with PBS containing 2% FCS and 1mM 
 EDTA and spun at 500g for 10 minutes. The StemCell EasySep Human Isolation Kit (Catalog # 
 18063) was used to isolate CD4+CD25- effector T cells from washed PBMCs while excluding 
 CD4+CD25+ regulatory T cells. Isolated cells were then stimulated with Immunocult Human 
 CD3/CD28/CD2 T Cell Activator (STEMCELL, Cat #10970) at 6.25 uL per 1E6 cells and grown 
 in RPMI with 50 U/mL IL-2 (Amerisource Bergen, Cat #10101641) at a concentration of 1E6 
 cells/mL. 

 Pooled CRISPR screens 

 Pooled CRISPR screens were performed as in Freimer et al.  3  . 

 Lentiviral transduction 
 Approximately twenty-four hours post stimulation, lentivirus containing the sgRNA library was 
 added directly to cultured T cells at various multiplicity of infections (MOIs). After an additional 
 twenty-four hours, the media was changed. 

 Cas9-ribonucleotide protein (RNP) preparation 
 Cas9 (MacroLab, Berkeley, 40 µM stock) ribonucleoprotein complex was delivered into the cells 
 using a modified Guide Swap technique  29  . Lyophilized  Dharmacon Edit-R crRNA Non-targeting 
 Control #3 (Dharmacon, Cat #U-007503-01-05) and Dharmacon Edit-R CRISPR-Cas9 Synthetic 
 tracrRNA (Dharmacon, Cat #U-002005-20) were resuspended at a stock concentration of 160 
 uM in 10 mM Tris-HCl (pH 7.4) with 150 mM KCl. They were mixed at a 1:1 ratio and incubated 
 at 37°C for 30 minutes. A single-stranded donor oligonucleotide (ssODN; sequence: 
 TTAGCTCTGTTTACGTCCCAGCGGGCATGAGAGTAACAAGAGGGTGTGGTAATATTACGGTA 
 CCGAGCACTATCGATACAATATGTGTCATACGGACACG) was then added at a 1:1 molar ratio 
 of the final Cas9-Guide complex and the solution was mixed well by pipetting. The solution was 
 incubated for an additional 5 minutes at 37°C. Cas9 protein was then added slowly at a 1:1 
 volume and incubated at 37°C for 15 minutes. 

 Electroporation 
 Approximately twenty-four hours after viral transduction the cells were centrifuged at 100  g  for 10 
 minutes and then resuspended in room temperature Lonza P3 electroporation buffer (Lonza, 
 Cat #V4XP-3032) at 1-2E6 cells per 17.8 µL. For every 17.8 µL of cells, 7.2 µL of the 
 RNP-ssODN complex was added and the solution was mixed well. 23 uL of the 
 cells-RNP-ssODN mixture was added to each well of a 96 well electroporation cuvette plate 
 (Lonza, Cat #VVPA-1002), and nucleofected using the pulse code EH-115. Immediately after 
 electroporation, 90 µL of warm media was added to each well and incubated at 37°C for 15 
 minutes. Cells were then pooled and grown at a concentration of 1E6 cells/mL. 

 Screen phenotyping and cell sorting 
 Cells were collected for analysis 6 days after electroporation. Cells were stained for IL2RA using 
 an APC fluorescent antibody (Tonbo, Cat #20-0259-T100) at a 1:25 dilution according to the 
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 manufacturer's protocol. GFP positive cells were sorted into 4 bins based on IL2RA protein 
 levels using a BD FACS Aria II and FACSDiva version 8.0.1. Bulk GFP positive and negative 
 population were also collected for ddPCR assessment. 

 GFP copy number assessment using Droplet Digital PCR 
 Following genomic DNA purification, an aliquot was reserved for ddPCR analysis. For each 
 sample, 10 ng of purified genomic DNA was added to a reaction consisting of 10 µL of ddPCR 
 Supermix for Probes (Bio-Rad, Cat #1863024), 1 µL of MseI (New England Biolabs, Cat 
 #R0525S), 1 µL of both the reference and target primer assays, and water to a total volume of 
 20 µL. A Bio-Rad validated HEX ddPCR Copy Number Assay targeting the reference gene, 
 RPP30, (Cat #10031243) was used in addition to a custom FAM Copy Number Assay targeting 
 GFP (Bio-Rad, Cat #10042958). After assembling the ddPCR reactions, the samples were 
 emulsified in oil droplets using the QX200 Droplet Generator (Bio-Rad, Cat #  1864002)  following 
 the manufacturer’s instructions. In brief, a DG8tm Cartridge (Cat #1864008) was inserted into a 
 DG8 Cartridge Holder (Cat #  1863051) and each 20 µL  reaction mixture was transferred to a 
 well, followed by 70 µL of Droplet Generation Oil for Probes (Cat #1863005). The cartridge was 
 covered with a gasket (Cat #  1863009) and loaded into  the Droplet Generator. Following 
 emulsification, the droplets were transferred to a 96 well plate (Cat #12001925). This process 
 was repeated until all samples were transferred to the plate, which was then sealed using a 
 pierceable heat seal (Cat #  1814040) and the  PX1 PCR  Plate Sealer (Cat #  1814000). DNA was 
 was fragmented and amplified using the  BioRad C1000  Thermocycler (Cat #1851196) 
 programmed to the following specifications: 95  °C  for  10 minutes, followed by 40 cycles of 94  °C 
 for 20 seconds and 57  °C  for 1 minute, and ending with  98  °C for 10 minutes and a final 4°C hold 
 until data acquisition. Each step was performed with a ramp rate of 2°C/sec until the final cool 
 down at 1°C/sec. Amplification was determined with the QX200 Droplet Reader (Cat #  1864003) 
 using the Copy Number Variant (CNV) assay on the QuantaSoft™  Software.  Positive and 
 negative populations in each channel were manually defined using the oval tool. 

 Lentiviral production 
 14E6 HEK 293T cells were seeded in a 15 cm tissue culture dish (Corning, Cat #430599) in 
 Opti-MEM (UCSF CCF, Cat #CCFAC008) approximately twenty-four hours prior to transfection. 
 Cells were transfected with the sgRNA library plasmid, and two lentiviral packaging plasmids, 
 pMD2.G (Addgene, Cat #12259) and psPAX2 (Addgene, Cat #12260) using Lipofectamine 3000 
 (Lifetech, Cat #L3000075). Cells were incubated for 5 hours at 37°C. The media was then 
 replaced with fresh Opti-MEM containing ViralBoost at 1x (Alstem, Cat #VB100). The cells were 
 cultured for approximately twenty-four hours and then the media was collected and spun down 
 at 300  g  for 5 minutes to remove cellular debris. The  media was then filtered using 0.45-µm filter 
 and one volume of cold Lentivirus Precipitation Solution (Alstem, Cat #VC125) was added for 
 every four volumes of lentivirus-containing media. Samples were mixed and then put at 4°C 
 overnight. The viral media was then spun in a centrifuge at 1500  g  for 30 minutes at 4°C, 
 followed by a second spin at 1500  g  for 5 minutes to  concentrate the virus. The viral pellet was 
 then resuspended in 4°C PBS (Fisher Scientific, Cat #10010049) at a 1:100 dilution of the 
 original media volume. The concentrated virus was stored at -80°C until use. 
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 Culture media 
 Cells were grown in RPMI (Sigma, Cat # R0883) with 10% FCS (Sigma, Cat # F0926), with 
 100U/mL Pen-Strep (Gibco, Cat # 15140-122), 2mM L-Glutamine (Sigma, Cat # G7513), 10mM 
 HEPES (Sigma, Cat # H0887), 1X MEM Non-essential Amino Acids (Gibco, Cat # 11140-050), 
 1mM Sodium Pyruvate (Gibco, Cat # 11360-070), and 50 U/mL IL-2 (Amerisource Bergen, Cat 
 #10101641) at a concentration of 1E6 cells/mL. 

 Genomic DNA extraction and preparation for next generation sequencing 
 After sorting, cells were washed with PBS, counted, and resuspended at up to 5E6 cells per 400 
 µl of lysis buffer (  1% SDS, 50 mM Tris, pH 8, 10 mM  EDTA).  16µl of NaCl (5M) was added and 
 the sample was incubated overnight at 66°C. Then 8µl of RNAse A (10mg/ml) (Thermo 
 Scientific, Cat #EN0531) was added and incubated at 37°C for 1 hour. Then 8µl of Proteinase K 
 (20mg/ml) (Thermo Scientific, Cat #  AM2548  ) was added  and incubated at 55°C for 1 hour.  A 
 phase lock tube (Quantabio, Cat #2302820) was prepared for each sample and then 400µl of 
 Phenol:Chloroform:Isoamyl Alcohol (25:24:1)  was added  to each tube.  400µl of the sample was 
 then added and the tube was shaken vigorously. The sample was centrifuged for 5 min at max 
 speed at room temperature. The aqueous phase was transferred to a low-bind Eppendorf tube 
 (Eppendorf, Cat #022431021). 40µl of Sodium Acetate (3M), 1µl GlycoBlue (Invitrogen, Cat # 
 AM9515), and 600µl of room temperature isopropanol were added to the sample. The sample 
 was stored at -80°C for 30 minutes and then centrifuged for 30 minutes at max speed at 4°C. 
 The pellet was washed with fresh 70% room temperature Ethanol and allowed to air dry for 15 
 minutes. Pellets were then resuspended in Zymo DNA elution buffer (Zymo, Cat No: 
 D3004-4-10), and then incubated at 65°C for 1 hour to completely dissolve the genomic DNA. 

 sgRNAs were amplified from the genomic DNA as initially described by Joung et al.  30  . Up to 2.5 
 µg of genomic DNA was added to each 50 µL PCR reaction with 25 µL of NEBNext Ultra II Q5 
 master mix (NEB, Cat #M0544L), 1.25 µL of the 10 µM forward primer and 1.25 µL of the 10 µM 
 reverse primer, and H2O to 50 uL. The reaction was then amplified with the following cycling 
 conditions: 98°C for 3 minutes, followed by 23 cycles at 98°C for 10 seconds, 63°C for 10 
 seconds, and 72°C for 25 seconds, and finally 2 minutes at 72°C. The amplicons were cleaned 
 with Sera-Mag Speed Beads (Cytiva, Cat #65152105050250) used at a 1X v/v ratio.  The 
 concentration of each sample was then measured using the Qubit dsDNA high sensitivity assay 
 kit (Thermo Fisher Scientific, Cat #Q32854) and the successful removal of adapter dimers 
 confirmed with the 4200 TapeStation system (Agilent, Cat#  G299  1BA)  . Samples were then 
 sequenced on an Illumina HiSeq 4000 (Illumina, Cat #15017872) using a custom sequencing 
 primer. 
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 Statistics and analysis 

 A cell-level generative model for FACS screens 

 For Figures 3 and 4, we simulate from a cell-level generative model. The full description of the 
 cell-level generative model is in Supplementary Section 1.1, but we briefly describe the cell-level 
 process here. First, a number of guides is chosen according to a Poisson distribution (MOI). 
 Next, the guides integrating with this cell are chosen at random, according to a Dirichlet. If more 
 than one of the included guides has an effect, we assume additive, linear effects, and no 
 interaction effects. A value from the resulting marker distribution is drawn and the corresponding 
 guide bin count is incremented. The final observation is a Dirichlet Multinomial centered around 
 the total bin counts corresponding to a noisy observation of the entire process. 

 Parameters for simulations 
 The guide representation proportion is modeled as  where  represents 
 the dispersion and  represents the number of guides.  The parameter  was learned from the 
 GFP+ population on real data. Further, effect sizes were also learned on this data set. See 
 Supplementary Section 2 for full details. 

 A model for gene-level inference 

 Waterbear implements a hierarchical Bayesian model to infer the latent effect sizes at the 
 gene-level. In order to allow inference with small sample sizes that are common in screens, we 
 use various shared priors in the hierarchy. We begin with the observed bin counts in sample  , 
 resulting from guide  by, 

 where  is the guide coverage,  is the sample specific  dispersion, and  takes the 
 null probability mass in each bin (  ) and the guide  effect size (  ) and returns the probability 
 mass function across the bins. In particular,  is  the mass in bin  under the null marker and 
 thus we model the joint over  as a Dirichlet. If  we assume the marker distribution to be 

 , the mass in bin  is defined as, 

 , 

 where we define  and  (under a 4-bin experiment),  is a standard normal 
 random variable, and  is the inverse CDF of a standard  normal. 

 To draw guide level effect sizes, first we must decide if the gene is included in the model 
 or if it is not (  ). Guide-level effect sizes are  drawn from a prior centered at the latent gene 
 effect,  if the gene is included in the model or  a point mass at 0 if it is not according to a 
 spike-and-slab prior, 
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 . 

 At the population level, the parameter  dictates  the proportion of genes that are allowed to be 
 included in the model (  ). Thus,  . Of note, this  prior encourages 
 guide-level effects if there is evidence with many guides. A full specification of all priors and 
 hyper parameters can be found in Supplementary Section 1.2. Posterior sampling is performed 
 with a MCMC sampler implemented in NIMBLE  31  . All  results in this paper were run with 4 
 chains, each chain producing 5,000 samples preceded by 5,000 adaptive burn-in samples. 

 MAGeCK 
 MAGeCK was run using the following parameters: 

 mageck test -k [INPUT_COUNTS] -t [LOW_BIN_COLUMNS] -c [HIGH_BIN_columns] 
 --sort-criteria pos -n [OUTPUT_DIRECTORY] 

 Since MAGeCK does not model the bins, we provide the outermost bins in every analysis. 
 Additionally, MAGeCK does not provide a two-sided test at the gene-level. The heuristic we 
 used to deal with this was to take the minimum of the reported gene-level FDR in the positive 
 and negative direction. 

 MAUDE 
 MAUDE was run using default parameters. For specifics, please see the pipeline code. Since 
 MAUDE requires the gRNA proportions, we gave it the true bin fraction in every simulation. In 
 experimental data we gave MAUDE the GFP+ proportion. Since MAUDE does not have a direct 
 way to merge replicates, we took the gene-level replicate p-values and merged them using 
 Fisher’s method. The resulting Fisher’s p-value was then Benjamini-Hochberg FDR corrected  32  . 
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