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‭Abstract‬

‭CRISPR screens are powerful tools to identify key genes that underlie biological processes.‬
‭One important type of screen uses fluorescence activated cell sorting (FACS) to sort perturbed‬
‭cells into bins based on the expression level of marker genes, followed by guide RNA (gRNA)‬
‭sequencing. Analysis of these data presents several statistical challenges due to multiple‬
‭factors including the discrete nature of the bins and typically small numbers of replicate‬
‭experiments. To address these challenges, we developed a robust and powerful Bayesian‬
‭random effects model and software package called Waterbear. Furthermore, we used‬
‭Waterbear to explore how various experimental design parameters affect statistical power to‬
‭establish principled guidelines for future screens. Finally, we experimentally validated our‬
‭experimental design model findings that, when using Waterbear for analysis, high power is‬
‭maintained even at low cell coverage and a high multiplicity of infection. We anticipate that‬
‭Waterbear will be of broad utility for analyzing FACS-based CRISPR screens.‬
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‭Introduction‬

‭Genetic screening is a powerful technique to identify the genes that underlie a phenotype or that‬
‭are involved in a particular biological process. The ability of CRISPR/Cas9 to induce genetic‬
‭perturbations efficiently has facilitated large-scale screens in many mammalian cell types‬‭1,2‬‭.‬
‭CRISPR screens can be paired with FACS to map the genetic wiring underlying complex‬
‭phenotypes by identifying key upstream regulators of specific, relevant target genes‬‭3–8‬‭. These‬
‭screens use fluorescent reporters or fluorescent antibodies to directly measure the expression‬
‭level of a protein of interest or a protein that is a surrogate marker of a biological process (such‬
‭as a phosphorylated protein at the end of a signaling cascade). For simplicity, we will refer to‬
‭any target measured by FACS – either an endogenous protein or a reporter protein – as a‬
‭marker throughout the rest of the text. After pooled CRISPR perturbations, FACS is used to sort‬
‭cells into different bins based on the fluorescence intensity of the marker. By sequencing the‬
‭relative abundance of gRNAs in each bin it is possible to associate genetic perturbations with‬
‭their effect on the levels of the marker.‬

‭There are a number of experimental and computational challenges when performing CRISPR‬
‭FACS screens. These screens must balance a desire to perturb many genes, with high cell‬
‭coverage for each perturbation, against costs and experimental demands. Furthermore, there is‬
‭increasing interest in performing such screens in primary cells or in‬‭in vivo‬‭models which are‬
‭more relevant for disease, but for which the number of cells that can be used is often limited‬‭9–11‬‭.‬
‭CRISPR screens are also usually only performed with two or three replicates. Limiting numbers‬
‭of cells and replicates reduce the number of times each gRNA is measured, which increases‬
‭noise and uncertainty. This noise compounds with other sources of variability between replicates‬
‭and donors, between different gRNAs targeting the same gene, and imprecise FACS gates.‬
‭Finally, FACS screens are further complicated by the fact that they involve a pool of perturbed‬
‭cells so the effect of each gRNA on the marker cannot be measured directly, but must instead‬
‭be inferred by the relative abundance of gRNAs in different FACS bins. These challenges‬
‭necessitate the development of new analysis methods designed specifically to analyze CRISPR‬
‭FACS screens. Furthermore, there are often not principled guidelines on how different‬
‭parameters affect the statistical power of these screens to inform experimental design.‬

‭We developed a computational framework, Waterbear, that (1) performs robust inference of‬
‭CRISPR FACS screens and (2) informs optimal experimental design by iterating over thousands‬
‭of plausible experimental configurations through simulation. Given parameters learned from real‬
‭data, the model can generate realistic simulations of experiments at the single-cell level using a‬
‭generative view of the model. The generative view of the model enables stepping through each‬
‭parameter of the model to generate data that is consistent with parameters learned from real‬
‭data while still introducing randomness at every stage of the model consistent with biological‬
‭and experimental variability. Once a simulation is done, the statistical power of that experimental‬
‭configuration can be estimated using our gene-level inference model which is a simplified‬
‭version of the cell-level model which more closely mimics how the data is observed in practice.‬
‭The inference model aggregates the cell-level information into a count observation and models‬
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‭the gRNA count distribution across discrete bins as is observed in actual screens. Waterbear is‬
‭robust in that it can infer bin sizes, model the latent effects of the gRNAs on the marker‬
‭distribution, and share information across guides, genes, and replicates to assess uncertainty.‬
‭Further, this model is also used to analyze real data where the cell-level information is not‬
‭available.‬

‭Waterbear is designed to use all available information to make informed decisions about‬
‭whether each perturbed gene affects the marker distribution by modeling several relationships‬
‭that are inherent to such screens. This model enables inferring thousands of parameters by‬
‭shrinking the results towards a shared prior across relevant dimensions. For example, on‬
‭average, gRNAs targeting the same gene should behave similarly, so in the model, gRNAs‬
‭targeting the same gene share a “parent” distribution, while allowing each guide to have a‬
‭unique effect size. While some gRNAs will produce off-target effects, Waterbear’s design does‬
‭not ignore them, but rather downweights the evidence of the gene-level effect size if the‬
‭off-target gRNA is inconsistent with other guides. Similarly, negative controls are used to infer‬
‭experiment-level parameters such as the null marker distribution, variance between replicates,‬
‭and variance between gRNAs. Additionally, Waterbear uses a sparse prior for‬‭gene-level‬‭effects‬
‭since out of thousands of gRNAs, only a modest fraction of gRNAs will have a true measurable‬
‭effect on the marker distribution.‬

‭While other tools have been used widely for FACS-based screen analysis, the current tools all‬
‭have limitations for this purpose. MAGeCK was originally designed to analyze cell abundance‬
‭screens and is one of the most commonly used CRISPR screen analysis tools‬‭12‬‭. However,‬
‭MAGeCK only supports comparisons between two populations, and therefore it cannot take‬
‭advantage of the additional information collected with more than two FACS bins, preventing it‬
‭from modeling the underlying marker distribution. In contrast, MAUDE was developed‬
‭specifically for the analysis of FACS screens‬‭13‬‭.‬‭However, MAUDE does not explicitly handle‬
‭replicates, requires a separate input population, and requires precise bin sizes to be manually‬
‭specified. Finally, RELICS shares technical similarities with Waterbear as it is also a Bayesian‬
‭hierarchical model. However, RELICS is designed for CRISPR tiling screens that perturb‬
‭non-coding sequences where one would expect spatial correlations between guides, and thus‬
‭the software is designed around the concept of finding “functional sites'', rather than finding‬
‭gene-gene relationships as we describe here. Waterbear was designed to overcome these‬
‭limitations.‬

‭In addition to being able to analyze data, an expanded cell-level view of the Waterbear model‬
‭can be used to simulate experiments to explore a wide range of experimental parameters and‬
‭their implication on the design of these screens. We used Waterbear to explore how FACS bin‬
‭size, gRNA coverage (the number of times a gRNA is measured), and lentiviral gRNA library‬
‭multiplicity of infection‬‭14‬ ‭(MOI) affect the power‬‭of FACS-based screens and show that it is‬
‭possible to reduce the number of cells required while still maintaining high sensitivity. Unlike‬
‭existing simulation methods‬‭15‬‭, we simulate each cell‬‭individually, enabling us to change‬
‭cell-level parameters such as the MOI. We validate our simulations and inference procedure by‬
‭repeating previous screens‬‭3‬ ‭at a higher MOI and with‬‭lower coverage of the gRNAs. Our results‬
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‭provide a roadmap to reduce the number of cells required for FACS screens and we introduce a‬
‭powerful new analysis tool to analyze such screens. These advances open the door for future‬
‭screens addressing novel biological questions in rare, primary cell types and‬‭in vivo‬‭models.‬
‭Waterbear is available as free and open-source software at‬
‭https://github.com/pimentel/waterbear‬‭.‬

‭Results‬

‭Overview of CRISPR FACS screens and tunable parameters‬

‭To understand the genetic regulation of a marker of interest, the most straightforward approach‬
‭would be to individually perturb the expression of candidate regulatory genes and then measure‬
‭the expression of the marker. This approach is challenging to scale and instead perturbations‬
‭are often performed in a pool of cells with each cell containing a different perturbation‬‭16‬‭. When‬
‭the cells are pooled, the distribution of the marker reflects a mixture of many different‬
‭perturbations and the effect of each individual perturbation cannot be directly observed (Figure‬
‭1A). However, using FACS, the perturbed cells can be sorted into different bins based on the‬

‭Figure 1: Overview of CRISPR FACS screens and tunable parameters‬
‭A) Schematic of pooled CRISPR FACS screens. Perturbations that differentially affect the‬
‭expression of a target protein of interest are mixed together in a pool of modified cells. To infer‬
‭the effect of each gRNA, cells are sorted into bins based on expression of a target protein‬
‭using FACS; gRNA abundance is compared across bins through sequencing. B) Experimental‬
‭design considerations focused on reducing cell requirements, including the effect of changing‬
‭i. gRNA coverage, ii. MOI, and iii. FACS bin configuration.‬
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‭expression of the marker‬‭16‬‭. By sequencing the gRNAs in the sorted cells and identifying which‬
‭gRNAs are differentially enriched between the sorted populations, one can identify regulators of‬
‭the marker (Figure 1A).‬

‭The field lacks principled guidelines for how experimental design choices affect the statistical‬
‭power to detect differentially enriched gRNAs. Coverage, MOI, and FACS bin size are highly‬
‭interrelated experimental parameters that can be altered to balance the number of cells needed‬
‭for an experiment and the accuracy of gRNA abundance measurements (Figure 1B). For‬
‭instance, at high MOI there will be multiple gRNAs per cell, which increases the effective‬
‭coverage for a fixed number of cells while also increasing the variance of the observations.‬
‭Here, we provide a framework to explore how these experimental parameters affect false‬
‭discoveries and statistical power and provide principled guidelines for future screens.‬

‭A statistical model for CRISPR FACS screen data‬

‭We present two possible generative views of the data; one with cell-level information (the‬
‭“cell-level” view) and one with aggregate information as is observed in FACS screen data (the‬
‭“gene-level” view). The cell-level view offers details on all guides within a single cell (as in in‬
‭single-cell sequencing), while the gene-level view provides only the total occurrences of a‬
‭guide-bin combination, the default in FACS-based screens. For simplicity, we describe the‬
‭gene-level model in detail below, but the more general cell-level model is discussed in detail in‬
‭Supplementary Section 1. Importantly, we perform simulated screens using the cell-level model‬
‭while iterating over the parameter space, but perform inference using the gene-level model to‬
‭match the data available from a typical FACS screen.‬

‭In the Waterbear model (Figure 2A), there are two classes of genes, those that have no effect‬
‭on the marker (denoted by‬ ‭), and those that have‬‭an effect on the marker (‬ ‭). By‬
‭classifying genes into two discrete groups, our model defines different gRNA-marker behavior‬
‭based on the inferred class. The central goal of Waterbear is to report, for each gene, the‬
‭posterior probability that‬ ‭, as well as estimated‬‭effect sizes.‬

‭When a gene has no effect (‬ ‭), all of the gRNAs targeting‬‭this gene should be similar to‬
‭the null marker distribution with effects being shrunk towards zero. Thus, deviations in the‬
‭observed sequencing counts between bins represent noise in the experiment. In particular,‬
‭control gRNAs enable us to force‬ ‭which enables a‬‭direct estimation of the experimental‬
‭noise.‬

‭When a gene has an effect (‬ ‭) the model allows the‬‭guide level effect estimates to vary‬
‭and we employ a hierarchical process which assumes gRNAs targeting that gene behave‬
‭similarly. The true gene-level effect is drawn from a Gaussian effect distribution enabling a large‬
‭range of true effects, as is common in Bayesian models due to its flexibility and modeling‬
‭convenience‬‭17‬‭. Then, each gRNA has its own random‬‭effect centered around the gene-level‬
‭effect distribution. Each gRNA thus results in a different marker distribution that is shifted around‬
‭the gene-level effect, resulting in a gRNA-specific gRNA-marker bin count distribution.‬
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‭As a result of this two-class approach, rather than focusing on gRNA- or gene-level p-values,‬
‭Waterbear prioritizes genes where the individual gRNAs targeting that gene produce consistent‬
‭shifts in the marker distribution (Figure 2B). In particular, a gene is considered a notable target if‬
‭the inferred posterior inclusion probability (PIP),‬ ‭, is sufficiently close to one.‬
‭Genes with high PIP have gRNAs with consistent, non-zero effects and genes with low PIP‬
‭have gRNAs with effects close to zero. As the count of inconsistent gRNAs targeting a gene‬
‭rises, the PIP will decrease, indicating higher uncertainty in the relationship between the target‬
‭gene and the marker. Statistically, this is one of the major contributions of Waterbear; rather‬
‭than aggregating results from each guide, Waterber fits a holistic model in which the data help‬
‭infer whether the “effect” class or the “no effect” class is more consistent over all guides‬
‭targeting a gene.‬

‭Figure 2: A statistical model for CRISPR FACS screen data‬
‭A) Overview of the generative model. First, the gene level perturbation effect is assessed as‬
‭either having a no effect (top row) or having an effect (bottom row) on the marker gene and‬
‭the effect size established as‬ ‭. For genes with an‬‭effect on the marker, the individual gRNA‬
‭effect sizes are chosen centered around this gene effect. Each gRNA is assumed to shift the‬
‭expression of the marker gene to center on the gRNA’s effect size. Finally, each marker is‬
‭discretized into four FACS bins with the counts in each bin reflecting the amount that the‬
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‭marker distribution was shifted. B) Multiple gRNAs that have consistent effects on a given‬
‭gene increase the probability that perturbation of that gene affects the level of the marker. In‬
‭this example, gRNAs 1-3 target Gene 1 and show a consistent up regulation of the marker,‬
‭thus, Gene 1 has the highest posterior inclusion probability. gRNAs 4-6 have more noise and‬
‭less overall up regulation, so Gene 2 shows a slightly lower posterior inclusion probability than‬
‭Gene 1. C) Waterbear implements a Bayesian hierarchical model to infer gene-level effects‬
‭with small sample sizes by sharing parameters within genes and across the experiment.‬
‭Additionally, Waterbear improves inference by modeling the unobserved FACS distribution‬
‭(bottom row). When there is no shift, the guide distribution is modeled to look like a control‬
‭guide (bottom left). When there is an effect, the bin proportion and thus bin counts are shifted‬
‭(bottom right).‬

‭Importantly, Waterbear learns experimental parameters including the sizes of the sorted FACS‬
‭bins using either the counts of the control gRNAs or, in the absence of controls, by assuming‬
‭that a subset of gRNAs do not have an effect (Figure 2C). Experimentally, FACS bin sizes can‬
‭shift during long sorts and opposing bins (e.g. bin one and bin four) might not always be‬
‭collected in equal proportions. Using the control gRNA counts in each bin, Waterbear infers for‬
‭each replicate what bin cutoffs divide the marker distribution to produce the observed count‬
‭distribution.‬

‭Waterbear has relatively high sensitivity while controlling the false discovery rate‬

‭To establish the performance of Waterbear and compare it to other methods, we used the‬
‭cell-level view of the generative model which includes a number of tunable parameters‬
‭(Supplementary Section 2). We performed simulations and analyzed the results with the‬
‭collapsed “gene-level” view of Waterbear, MAGeCK, and MAUDE (Methods)‬‭12,13‬ ‭to observe how‬
‭changing these parameters affect each method’s ability to detect hits.‬

‭To assess each method’s calibration, we compared the estimated false discovery rate (FDR) to‬
‭the true FDR. Ideally, the true FDR should be at or below the estimated FDR. We first ran‬
‭simulations across a range of coverage levels with 10% of the gRNAs in the library having a‬
‭true effect on the marker. At all tested coverage levels, Waterbear and MAGeCK maintained‬
‭lower true FDRs at the estimated 10% FDR (Figure 3A). In contrast, MAUDE’s true FDR was‬
‭nearly 50% across all coverage levels. We also evaluated the calibration with low cell:gRNA‬
‭ratios while varying the MOI. Increasing the MOI resulted in a higher effective coverage without‬
‭having to increase cell numbers (Figure 1B). Again, MAGeCK and Waterbear controlled the‬
‭FDR, while MAUDE had a highly inflated FDR for nearly all MOI levels (Figure 3B).‬

‭Experiments are often collected under less ideal conditions than simulations. Given that‬
‭Waterbear learns most parameters from the observed data rather than making assumptions‬
‭about the experiment, we thought that it should be more robust than existing tools under‬
‭non-ideal conditions. For instance, since MAGeCK was not designed to analyze FACS-based‬
‭screens, using it for this type of analysis requires the implicit assumption that all FACS bins are‬
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‭equally sized with each other and between donors. While MAUDE supports uneven bin sizes, it‬
‭requires the user to manually specify the exact bin sizes collected. In contrast, for each sample‬
‭Waterbear learns the sizes of individual FACS bins directly from the data. Therefore, we‬
‭expected that Waterbear would outperform both MAGeCK and MAUDE in situations where the‬
‭bin sizes were misspecified. In simulations with uneven bin sizes, Waterbear and, surprisingly,‬
‭MAGeCK controlled the FDR, while MAUDE did not (Supplementary Figure 2.8). It is important‬
‭to note that since MAUDE does not estimate the bin sizes, we input the true simulated bin sizes‬
‭for MAUDE, while letting Waterbear estimate the bin sizes and MAGeCK normalize the counts.‬
‭These results show that MAGeCK’s RNA-seq style normalization still performs well in this‬
‭setting.‬

‭Figure 3: Waterbear has relatively high sensitivity while controlling the false discovery‬
‭rate‬
‭Sensitivity and calibration plots comparing Waterbear, MAGeCK, and MAUDE on simulated‬
‭screen data. For each method, we consider a hit to be ‘significant’ if the estimated FDR is less‬
‭than q = 0.10. Since Waterbear produces posterior inclusion probabilities, we consider a test‬
‭to be significant if PIP > 1 - q and the gene effect size (1 - q) credibility interval does not‬
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‭include zero. True FDR of the methods across various coverage levels (A) and various MOIs‬
‭(B). Sensitivity of the methods across various coverage levels (C) and various MOIs (D).‬

‭We next tested which methods had the highest sensitivity while controlling the FDR. Ideally,‬
‭sensitivity should be close to one, while the FDR is close to zero. Consistently across different‬
‭coverage levels, MOI, and bin sizes, Waterbear had the highest sensitivity while controlling the‬
‭FDR (Figures 3C-D). While MAUDE technically had the highest sensitivity, this came at a high‬
‭false discovery cost, as nearly half of the calls were false positives. Despite not being designed‬
‭for FACS screens, MaGeCK had low FDR and still had relatively high sensitivity, albeit, nearly‬
‭always second to Waterbear.‬

‭Waterbear simulations suggest high sensitivity is maintained at low cell counts and high‬
‭MOI‬

‭As discussed previously, we posited that the gRNA coverage, FACS bin configuration, and MOI‬
‭have the largest impacts on experiments, so we focused on these parameters in our‬
‭simulations. Given that we know the ground truth for these simulations, we can calculate how‬
‭changing any of these parameters affects the sensitivity of the screen. Our cell-level generative‬
‭model and effect size distributions are detailed in Supplementary Section 2.‬

‭Increasing the gRNA coverage with fixed MOI enables a more accurate quantification of how‬
‭perturbations affect the marker (Figure 4A). However, at high coverage levels, a large increase‬
‭in cell number yields only diminishing returns for quantifying gRNAs. This result suggests that‬
‭identifying the minimum coverage needed to detect significant hits would have a meaningful‬
‭impact on reducing the resources required for FACS screens. For example, Figure 4A shows‬
‭that 38% of true hits will still be detected with only 50X coverage at a true FDR of 0.05.‬
‭Furthermore, in this scenario, almost 80% of large effect size hits, defined as having an effect‬
‭size greater than 0.2 standard deviations, will be detected (Figure 4B). Therefore, the strongest‬
‭hits in a given screen will be detected even when the coverage is as low as 50X per gRNA.‬
‭Increasing the coverage increases the number of hits detected and allows the detection of hits‬
‭with a smaller effect size. However, the sensitivity starts to saturate around 1000X coverage,‬
‭suggesting that it is not worthwhile to collect additional cells.‬

‭We next asked, given limited experimental resources, would it be better to collect a third‬
‭biological replicate or to collect two replicates with higher coverage. At lower coverage levels,‬
‭adding a third replicate only increased the mean sensitivity roughly half as much as doubling the‬
‭coverage of the existing two replicates (Figure 4C). At higher coverage levels, the two replicates‬
‭already start to saturate the mean sensitivity, suggesting that a third replicate would only have‬
‭minimal benefit. To confirm this result on real data, we down-sampled data from Figure 5 to two‬
‭replicates and found comparable sensitivity across the down-sampled counterparts and that the‬
‭top hits in every configuration replicated (Supplementary Section 3.1).‬
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‭Figure 4: Waterbear simulations suggest high sensitivity is maintained at low cell‬
‭counts and high MOI‬
‭A) As gRNA coverage increases, sensitivity approaches saturation. In this simulation there‬
‭are 4 gRNAs per gene, 1,000 genes, and 10% of all genes have an effect. Each line indicates‬
‭the coverage at the gRNA level. B) Sensitivity of (A) broken down by the size of effect that the‬
‭gRNA perturbation has on the marker expression levels. C) Comparison of 2 replicates versus‬
‭3 under the same conditions as (A). D) Effect of different MOIs on sensitivity. In this example‬
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‭we simulated 50,000 cells. E) Waterbear can be used with data from all 4 bins or by imputing‬
‭unobserved middle bins (2 bin mode). Sensitivity assessed at 4 coverage levels. F) Effective‬
‭coverage at the gene level stratified by the number of gRNAs. Each line indicates a different‬
‭gRNA configuration and each subpanel indicates a fixed total gene level coverage.‬

‭Commonly, screens are often performed using a low MOI of 0.3 - 0.5 to minimize the number of‬
‭cells that contain more than one gRNA. However, with an MOI of 0.3, approximately 74% of‬
‭cells will receive no gRNAs during the viral infection, which often limits the number of gRNAs‬
‭that can be screened, especially when dealing with a limited number of starting cells. Therefore,‬
‭at a fixed coverage for the experiment, even modestly increasing the MOI drastically reduces‬
‭the number of cells needed (Figures 1Bii). We fixed the number of cells at 50,000 with a 6,000‬
‭gRNA library. Increasing the MOI served to effectively increase the coverage, while not having‬
‭any negative effect on mean sensitivity even as the MOI approached 10 (Figure 4D). This trend‬
‭is also observed when going to higher numbers of total guides and different proportions of‬
‭guides with an effect (Supplementary Section 2.2). To check if the number of controls affected‬
‭the inference, we also performed many of the simulations with 10, 100, and 1000 controls‬
‭(Supplementary Section 3.2) which verified that this does not affect the final result. Thus,‬
‭increasing the MOI, even a marginal amount, can greatly improve sensitivity.‬

‭While increasing the MOI will result in some cells containing random combinations of multiple‬
‭gRNAs, in our previous screens less than 10% of the gRNAs had a statistically significant effect.‬
‭In similar screens, the majority of cells will contain combinations of gRNAs where none or only‬
‭one of the gRNAs have an effect (Supplementary Section 4). We define cells containing “gRNA‬
‭collisions” as cells which contain two or more gRNAs that exhibit an effect on the marker‬
‭distribution, but even at moderate MOIs gRNA collisions are rare. If a gRNA has an effect then‬
‭cells containing both this gRNA and random mostly no-effect background gRNAs should still‬
‭end up enriched in either the low or high FACS bins. However, if a gRNA has no effect and it is‬
‭randomly paired with mostly no-effect background gRNAs, cells containing these no-effect‬
‭gRNAs will end up equally distributed between the high and low FACS bins.‬

‭Many FACS screens only collect the outer two bins. However, we expected that sequencing four‬
‭bins spanning the full distribution would increase the gRNA coverage data that Waterbear uses‬
‭for inference without requiring additional input cells. We asked, given the same number of cells:‬
‭How moving from two bins to four bins affects the sensitivity to detect hits (Figure 4E)? With‬
‭15% outer bins, four bins is almost always preferable, however, the increase in sensitivity is‬
‭relatively minor. However, performance greatly degrades if one only collects two outerbins at the‬
‭tail of the extremes of the marker distribution (5% and 1% outer bins), but is maintained if one‬
‭also collects the inner additional bins. In summary, sequencing four bins provides consistent‬
‭results across coverage levels tested and is preferable when coverage is low (<= 50X gRNA‬
‭coverage).‬

‭While these simulations suggest that the cumulative coverage is an important driver of‬
‭sensitivity when four gRNAs target the same gene, it is unclear whether four gRNAs are‬
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‭necessary. We next explored how the number of gRNAs affects the sensitivity when the‬
‭coverage is fixed per gene, under the assumption of high-quality gRNAs. To test the effect of the‬
‭number of gRNAs targeting a gene, we performed an analysis where the total gene coverage‬
‭was fixed, but was achieved using 1, 2, 3, or 4 gRNAs (Figure 4F). For example, at 1000X‬
‭coverage, 1 gRNA represents 1000 cells for that gRNA, whereas in the 4 gRNA case, it‬
‭represents 250 cells per gRNA. Using one gRNA almost always has less power than other‬
‭configurations. As coverage increases, more gRNAs are helpful up to about three guides. This‬
‭result is likely due to the additional evidence against the null as each additional gRNA can be‬
‭thought of as its own “experiment” during inference, akin to a meta-analysis.‬

‭While these simulations suggest that increasing the coverage by many different means will‬
‭increase the ability to detect hits, they also provide a path to reducing the number of cells and‬
‭thus enabling novel screens in systems previously limited by the number of cells available. In‬
‭particular, increasing the MOI while capturing four bins can increase the overall coverage with‬
‭relatively small experimental burden and no additional cells.‬

‭Experiments validate that high sensitivity is maintained at low coverage and high MOI‬

‭We previously performed CRISPR FACS-based screens in primary human T cells to identify the‬
‭upstream regulators of‬‭IL2RA‬‭, an important cell surface‬‭receptor implicated in numerous‬
‭autoimmune diseases‬‭3,18,19‬‭. However, these screens‬‭were expensive and experimentally‬
‭demanding because they were performed at 640-2273x coverage and each screen required‬
‭100-290 million primary cells. However, our simulations suggest that we could have identified‬
‭the top hits using much lower coverage and a higher MOI. To confirm these results, we repeated‬
‭the screen using an MOI of 0.3 (low MOI) and 2 (high MOI). For both MOI conditions, we‬
‭collected the cells from 3 donors across 4 FACS bins at high coverage (average of 1662x‬
‭coverage for MOI 0.3, 1180x coverage for MOI 2) and at low coverage (average of 195x‬
‭coverage for MOI 0.3, 208x coverage for MOI 2) (Figure 5A).‬

‭To confirm that the cells were infected at the desired MOI, we quantified the genomic integration‬
‭copy number for the gRNA lentiviral construct. We used droplet digital PCR to quantify the‬
‭number of copies of GFP, which is part of the gRNA lentiviral construct, relative to the number of‬
‭copies of the control gene RPP30 in the cells. The average copy number of GFP in the‬
‭population ranged from 0.28 to 0.33 for the MOI 0.3 condition and from 1.9 to 2.3 for the MOI 2‬
‭condition across the 3 donors, closely matching the theoretical copy number for each condition‬
‭(Figure 5B). These data suggest that the cells were infected at the desired MOIs and that the‬
‭majority of cells in the high MOI condition contained more than one gRNA per cell. Given that‬
‭the majority of cells in the low MOI condition contained no gRNAs, one would need ~5.5 fold‬
‭more cells to obtain the same effective coverage as the high MOI condition.‬

‭We next compared the significant hits in the high coverage, low MOI condition compared to the‬
‭low coverage, high MOI condition using Waterbear. Despite having multiple gRNAs per cell and‬
‭being collected at 4.6-fold lower coverage, the top hits were highly correlated between the two‬
‭conditions (Figure 5C). We previously validated 26/33 hits from our original screen by‬
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‭performing individual knockouts and directly measuring the effect on IL2RA protein levels using‬
‭flow cytometry‬‭3‬‭. We used these 26 genes as a set‬‭of high confidence positive controls‬
‭(Supplementary Section 3.2). Waterbear detected 24 out of 26 of these validated hits in the low‬
‭coverage, high MOI screen (Figure 5D). Together, these results experimentally validate both the‬
‭predictions regarding coverage and MOI from our simulations with Waterbear as well as‬
‭demonstrate that Waterbear is a powerful tool to analyze these screens, even under challenging‬
‭conditions.‬

‭Figure 5: Experiments validate that high sensitivity is maintained at low cell counts and‬
‭high MOI‬
‭A) CRISPR FACS screens to identify regulators of IL2RA were performed at low (~0.3) and‬
‭high (~2) MOI and low and high coverage. Low coverage (average of 195x coverage for MOI‬
‭0.3, 208x coverage for MOI 2) and high coverage (average of 1662x coverage for MOI 0.3,‬
‭1180x coverage for MOI 2) n = 3 donors. The relative number of cells collected for each‬
‭condition is shown. B) Quantification of the number of viral integrations per cell using droplet‬
‭digital PCR in the unsorted cells (total) or after sorting cells that express GFP in the gRNA‬
‭lentiviral construct (GFP+). C) Comparison of screens hits from the high coverage, low MOI‬
‭screen vs low coverage, high MOI screen analyzed using Waterbear. D) Experimentally‬
‭validated regulators of IL2RA were detected as screen hits in the low coverage, high MOI‬
‭screen using Waterbear.‬
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‭Given that Waterbear outperformed MAGeCK and MAUDE in our simulations, we wanted to‬
‭compare Waterbear’s sensitivity to these tools under real conditions. On the low coverage, high‬
‭MOI screen MAGeCK detected 17 out of 26 of these validated hits (Supplementary Figure 3.6).‬
‭MaGeCK’s lower sensitivity to Waterbear’s (24/26) is consistent with observation that in general‬
‭MaGeCK generally calls fewer hits with lower sensitivity; Waterbear called 79/1350 and‬
‭MAGeCK called 31/1350 genes significant. MAUDE reports many more signals (406/1350 and‬
‭detects 25/26 hits, Supplementary Figure 3.7), however we regard these as inflated given the‬
‭simulations showing poor calibration at 10% FDR. These results further validate that Waterbear‬
‭maintains high sensitivity, without seemingly over-calling relationships.‬

‭Discussion‬

‭Genetic screens are a powerful approach to link genes to phenotypes. Coupling CRISPR‬
‭perturbations with FACS in mammalian cells enables mapping the genetic basis of many‬
‭biological processes and regulatory relationships. Early CRISPR screens were performed in‬
‭abundant cell lines‬‭20–22‬‭, but increasingly, these‬‭screens are being performed in rare primary cell‬
‭types or‬‭in vivo‬‭models with limited cell numbers‬‭4,9,23,24‬‭. In these screens, researchers must‬
‭often make choices about experimental conditions based on their intuition as there have not‬
‭been good guidelines to inform how changing experimental parameters affect the ability to‬
‭identify hits. Furthermore, changes such as lowering gRNA coverage or increasing the MOI‬
‭increase the statistical challenge of identifying hits.‬

‭We solve these experimental design and analysis gaps by introducing Waterbear, an end-to-end‬
‭experimental design and inference procedure for CRISPR FACS screens. Our cell-level‬
‭generative implementation enables exploration of experimental parameters such as effect size‬
‭distribution, gRNA distribution, and MOI. In conjunction with a “gene-level” version of this model‬
‭for inference, Waterbear enabled us to show that (1) sensitivity saturates relatively quickly, and‬
‭thus if using four bins can be dropped from about 1,000X coverage to 250X coverage with little‬
‭loss in sensitivity, (2) increasing the MOI modestly from 0.3 to 2 improves effective coverage‬
‭while greatly reducing the number of input cells needed, (3) the number of gRNAs targeting‬
‭each gene can be reduced from four to three while achieving similar sensitivity.‬

‭Overall, our results demonstrate that the number of cells for such screens can be reduced,‬
‭enabling one to assay significantly smaller cell populations. The prevailing view has been that‬
‭such screens should be performed with only a single perturbation per cell. These guidelines‬
‭likely emerged from siRNA screens where there are many more off-target effects. Consistent‬
‭with other recent reports‬‭25–27‬‭, we demonstrate that‬‭increasing the MOI greatly reduces the‬
‭number of uninfected input cells that are thrown away during screening, while having a similar‬
‭sensitivity as the low MOI screen. Coupled with our results that coverage and gRNA number‬
‭can be reduced without impacting sensitivity, these guidelines should reduce the resources and‬
‭effort required to perform CRISPR FACS screens and enable a next generation of CRISPR‬
‭screens in rare cell types and with‬‭in vivo‬‭models‬‭that will be essential to understand many‬
‭disease-relevant processes.‬
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‭Equipped with knowledge of the important experimental aspects, we developed a hierarchical‬
‭statistical model that enables principled inference of guide-effects with replicates. The unique‬
‭approach models the unobserved FACS marker and connects it to the observed sequencing‬
‭counts. This key hierarchy is what sets the Waterbear method apart from existing methods and‬
‭makes it adaptable for other FACS-based sequencing experiments. The statistical challenge lies‬
‭in how one connects the unobserved marker distribution to the FACS bins, while maintaining the‬
‭correlation structure in the bins and not treating each bin independently, but rather, as samples‬
‭joint from an unobserved marker. Concretely, this is modeled through our function‬ ‭in the‬
‭methods section.‬

‭Importantly, the Waterbear model infers experimental parameters and is robust in small sample‬
‭settings which are common in these screens. We do so by “shrinking” estimates in the‬
‭hierarchy, thus jointly modeling experimental parameters across replicates or within replicates‬
‭when appropriate. To address the concerns of model assumptions and general performance, we‬
‭additionally demonstrated that our model outperforms tools commonly used for these types of‬
‭analyses (MAGeCK and MAUDE) in many different experimental settings and on real biological‬
‭data.‬

‭Through both simulations and follow-up experiments, we have demonstrated an approach of‬
‭model driven experimental design followed by experimentally guided inference models that can‬
‭be seen as a vignette for other similar screens. For example, both the experimental design and‬
‭inference framework can be modified to inform design and inference of proliferation screens,‬‭in‬
‭vivo‬‭screens, scRNA-seq screens, and potentially multi-ome‬‭readout screens.‬

‭Data Availability‬

‭The raw sequencing files generated during this study are available at GEO: GSE242880.‬

‭Code Availability‬

‭The code to reproduce all of the analyses in this paper can be found at:‬
‭https://github.com/pimentel/waterbear_analysis‬‭. The‬‭pipeline tool Snakemake‬‭28‬ ‭was used to‬
‭run Waterbear, MAGeCK, and MAUDE.‬

‭Methods‬

‭Sample collection‬
‭This study was approved by the University of California, San Francisco (UCSF) Committee on‬
‭Human Research and Stanford University Panel on Medical Human Subjects (IRB#53302) and‬
‭written consent was obtained from all donors. Primary human T cells were obtained through‬
‭consented Leukopaks (STEMCELL) (Catalog #70500.2).‬
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‭Isolation, culture and expansion of human CD4+CD25- effector T cells‬
‭PBMCs from Leukopaks (STEMCELL) were diluted 1:1 with PBS containing 2% FCS and 1mM‬
‭EDTA and spun at 500g for 10 minutes. The StemCell EasySep Human Isolation Kit (Catalog #‬
‭18063) was used to isolate CD4+CD25- effector T cells from washed PBMCs while excluding‬
‭CD4+CD25+ regulatory T cells. Isolated cells were then stimulated with Immunocult Human‬
‭CD3/CD28/CD2 T Cell Activator (STEMCELL, Cat #10970) at 6.25 uL per 1E6 cells and grown‬
‭in RPMI with 50 U/mL IL-2 (Amerisource Bergen, Cat #10101641) at a concentration of 1E6‬
‭cells/mL.‬

‭Pooled CRISPR screens‬

‭Pooled CRISPR screens were performed as in Freimer et al.‬‭3‬‭.‬

‭Lentiviral transduction‬
‭Approximately twenty-four hours post stimulation, lentivirus containing the sgRNA library was‬
‭added directly to cultured T cells at various multiplicity of infections (MOIs). After an additional‬
‭twenty-four hours, the media was changed.‬

‭Cas9-ribonucleotide protein (RNP) preparation‬
‭Cas9 (MacroLab, Berkeley, 40 µM stock) ribonucleoprotein complex was delivered into the cells‬
‭using a modified Guide Swap technique‬‭29‬‭. Lyophilized‬‭Dharmacon Edit-R crRNA Non-targeting‬
‭Control #3 (Dharmacon, Cat #U-007503-01-05) and Dharmacon Edit-R CRISPR-Cas9 Synthetic‬
‭tracrRNA (Dharmacon, Cat #U-002005-20) were resuspended at a stock concentration of 160‬
‭uM in 10 mM Tris-HCl (pH 7.4) with 150 mM KCl. They were mixed at a 1:1 ratio and incubated‬
‭at 37°C for 30 minutes. A single-stranded donor oligonucleotide (ssODN; sequence:‬
‭TTAGCTCTGTTTACGTCCCAGCGGGCATGAGAGTAACAAGAGGGTGTGGTAATATTACGGTA‬
‭CCGAGCACTATCGATACAATATGTGTCATACGGACACG) was then added at a 1:1 molar ratio‬
‭of the final Cas9-Guide complex and the solution was mixed well by pipetting. The solution was‬
‭incubated for an additional 5 minutes at 37°C. Cas9 protein was then added slowly at a 1:1‬
‭volume and incubated at 37°C for 15 minutes.‬

‭Electroporation‬
‭Approximately twenty-four hours after viral transduction the cells were centrifuged at 100‬‭g‬‭for 10‬
‭minutes and then resuspended in room temperature Lonza P3 electroporation buffer (Lonza,‬
‭Cat #V4XP-3032) at 1-2E6 cells per 17.8 µL. For every 17.8 µL of cells, 7.2 µL of the‬
‭RNP-ssODN complex was added and the solution was mixed well. 23 uL of the‬
‭cells-RNP-ssODN mixture was added to each well of a 96 well electroporation cuvette plate‬
‭(Lonza, Cat #VVPA-1002), and nucleofected using the pulse code EH-115. Immediately after‬
‭electroporation, 90 µL of warm media was added to each well and incubated at 37°C for 15‬
‭minutes. Cells were then pooled and grown at a concentration of 1E6 cells/mL.‬

‭Screen phenotyping and cell sorting‬
‭Cells were collected for analysis 6 days after electroporation. Cells were stained for IL2RA using‬
‭an APC fluorescent antibody (Tonbo, Cat #20-0259-T100) at a 1:25 dilution according to the‬
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‭manufacturer's protocol. GFP positive cells were sorted into 4 bins based on IL2RA protein‬
‭levels using a BD FACS Aria II and FACSDiva version 8.0.1. Bulk GFP positive and negative‬
‭population were also collected for ddPCR assessment.‬

‭GFP copy number assessment using Droplet Digital PCR‬
‭Following genomic DNA purification, an aliquot was reserved for ddPCR analysis. For each‬
‭sample, 10 ng of purified genomic DNA was added to a reaction consisting of 10 µL of ddPCR‬
‭Supermix for Probes (Bio-Rad, Cat #1863024), 1 µL of MseI (New England Biolabs, Cat‬
‭#R0525S), 1 µL of both the reference and target primer assays, and water to a total volume of‬
‭20 µL. A Bio-Rad validated HEX ddPCR Copy Number Assay targeting the reference gene,‬
‭RPP30, (Cat #10031243) was used in addition to a custom FAM Copy Number Assay targeting‬
‭GFP (Bio-Rad, Cat #10042958). After assembling the ddPCR reactions, the samples were‬
‭emulsified in oil droplets using the QX200 Droplet Generator (Bio-Rad, Cat #‬‭1864002)‬‭following‬
‭the manufacturer’s instructions. In brief, a DG8tm Cartridge (Cat #1864008) was inserted into a‬
‭DG8 Cartridge Holder (Cat #‬‭1863051) and each 20 µL‬‭reaction mixture was transferred to a‬
‭well, followed by 70 µL of Droplet Generation Oil for Probes (Cat #1863005). The cartridge was‬
‭covered with a gasket (Cat #‬‭1863009) and loaded into‬‭the Droplet Generator. Following‬
‭emulsification, the droplets were transferred to a 96 well plate (Cat #12001925). This process‬
‭was repeated until all samples were transferred to the plate, which was then sealed using a‬
‭pierceable heat seal (Cat #‬‭1814040) and the‬‭PX1 PCR‬‭Plate Sealer (Cat #‬‭1814000). DNA was‬
‭was fragmented and amplified using the‬‭BioRad C1000‬‭Thermocycler (Cat #1851196)‬
‭programmed to the following specifications: 95‬‭°C‬‭for‬‭10 minutes, followed by 40 cycles of 94‬‭°C‬
‭for 20 seconds and 57‬‭°C‬‭for 1 minute, and ending with‬‭98‬‭°C for 10 minutes and a final 4°C hold‬
‭until data acquisition. Each step was performed with a ramp rate of 2°C/sec until the final cool‬
‭down at 1°C/sec. Amplification was determined with the QX200 Droplet Reader (Cat #‬‭1864003)‬
‭using the Copy Number Variant (CNV) assay on the QuantaSoft™‬‭Software.‬‭Positive and‬
‭negative populations in each channel were manually defined using the oval tool.‬

‭Lentiviral production‬
‭14E6 HEK 293T cells were seeded in a 15 cm tissue culture dish (Corning, Cat #430599) in‬
‭Opti-MEM (UCSF CCF, Cat #CCFAC008) approximately twenty-four hours prior to transfection.‬
‭Cells were transfected with the sgRNA library plasmid, and two lentiviral packaging plasmids,‬
‭pMD2.G (Addgene, Cat #12259) and psPAX2 (Addgene, Cat #12260) using Lipofectamine 3000‬
‭(Lifetech, Cat #L3000075). Cells were incubated for 5 hours at 37°C. The media was then‬
‭replaced with fresh Opti-MEM containing ViralBoost at 1x (Alstem, Cat #VB100). The cells were‬
‭cultured for approximately twenty-four hours and then the media was collected and spun down‬
‭at 300‬‭g‬‭for 5 minutes to remove cellular debris. The‬‭media was then filtered using 0.45-µm filter‬
‭and one volume of cold Lentivirus Precipitation Solution (Alstem, Cat #VC125) was added for‬
‭every four volumes of lentivirus-containing media. Samples were mixed and then put at 4°C‬
‭overnight. The viral media was then spun in a centrifuge at 1500‬‭g‬‭for 30 minutes at 4°C,‬
‭followed by a second spin at 1500‬‭g‬‭for 5 minutes to‬‭concentrate the virus. The viral pellet was‬
‭then resuspended in 4°C PBS (Fisher Scientific, Cat #10010049) at a 1:100 dilution of the‬
‭original media volume. The concentrated virus was stored at -80°C until use.‬
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‭Culture media‬
‭Cells were grown in RPMI (Sigma, Cat # R0883) with 10% FCS (Sigma, Cat # F0926), with‬
‭100U/mL Pen-Strep (Gibco, Cat # 15140-122), 2mM L-Glutamine (Sigma, Cat # G7513), 10mM‬
‭HEPES (Sigma, Cat # H0887), 1X MEM Non-essential Amino Acids (Gibco, Cat # 11140-050),‬
‭1mM Sodium Pyruvate (Gibco, Cat # 11360-070), and 50 U/mL IL-2 (Amerisource Bergen, Cat‬
‭#10101641) at a concentration of 1E6 cells/mL.‬

‭Genomic DNA extraction and preparation for next generation sequencing‬
‭After sorting, cells were washed with PBS, counted, and resuspended at up to 5E6 cells per 400‬
‭µl of lysis buffer (‬‭1% SDS, 50 mM Tris, pH 8, 10 mM‬‭EDTA).‬‭16µl of NaCl (5M) was added and‬
‭the sample was incubated overnight at 66°C. Then 8µl of RNAse A (10mg/ml) (Thermo‬
‭Scientific, Cat #EN0531) was added and incubated at 37°C for 1 hour. Then 8µl of Proteinase K‬
‭(20mg/ml) (Thermo Scientific, Cat #‬‭AM2548‬‭) was added‬‭and incubated at 55°C for 1 hour.‬‭A‬
‭phase lock tube (Quantabio, Cat #2302820) was prepared for each sample and then 400µl of‬
‭Phenol:Chloroform:Isoamyl Alcohol (25:24:1)‬‭was added‬‭to each tube.‬‭400µl of the sample was‬
‭then added and the tube was shaken vigorously. The sample was centrifuged for 5 min at max‬
‭speed at room temperature. The aqueous phase was transferred to a low-bind Eppendorf tube‬
‭(Eppendorf, Cat #022431021). 40µl of Sodium Acetate (3M), 1µl GlycoBlue (Invitrogen, Cat #‬
‭AM9515), and 600µl of room temperature isopropanol were added to the sample. The sample‬
‭was stored at -80°C for 30 minutes and then centrifuged for 30 minutes at max speed at 4°C.‬
‭The pellet was washed with fresh 70% room temperature Ethanol and allowed to air dry for 15‬
‭minutes. Pellets were then resuspended in Zymo DNA elution buffer (Zymo, Cat No:‬
‭D3004-4-10), and then incubated at 65°C for 1 hour to completely dissolve the genomic DNA.‬

‭sgRNAs were amplified from the genomic DNA as initially described by Joung et al.‬‭30‬‭. Up to 2.5‬
‭µg of genomic DNA was added to each 50 µL PCR reaction with 25 µL of NEBNext Ultra II Q5‬
‭master mix (NEB, Cat #M0544L), 1.25 µL of the 10 µM forward primer and 1.25 µL of the 10 µM‬
‭reverse primer, and H2O to 50 uL. The reaction was then amplified with the following cycling‬
‭conditions: 98°C for 3 minutes, followed by 23 cycles at 98°C for 10 seconds, 63°C for 10‬
‭seconds, and 72°C for 25 seconds, and finally 2 minutes at 72°C. The amplicons were cleaned‬
‭with Sera-Mag Speed Beads (Cytiva, Cat #65152105050250) used at a 1X v/v ratio.‬‭The‬
‭concentration of each sample was then measured using the Qubit dsDNA high sensitivity assay‬
‭kit (Thermo Fisher Scientific, Cat #Q32854) and the successful removal of adapter dimers‬
‭confirmed with the 4200 TapeStation system (Agilent, Cat#‬‭G299‬‭1BA)‬‭. Samples were then‬
‭sequenced on an Illumina HiSeq 4000 (Illumina, Cat #15017872) using a custom sequencing‬
‭primer.‬
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‭Statistics and analysis‬

‭A cell-level generative model for FACS screens‬

‭For Figures 3 and 4, we simulate from a cell-level generative model. The full description of the‬
‭cell-level generative model is in Supplementary Section 1.1, but we briefly describe the cell-level‬
‭process here. First, a number of guides is chosen according to a Poisson distribution (MOI).‬
‭Next, the guides integrating with this cell are chosen at random, according to a Dirichlet. If more‬
‭than one of the included guides has an effect, we assume additive, linear effects, and no‬
‭interaction effects. A value from the resulting marker distribution is drawn and the corresponding‬
‭guide bin count is incremented. The final observation is a Dirichlet Multinomial centered around‬
‭the total bin counts corresponding to a noisy observation of the entire process.‬

‭Parameters for simulations‬
‭The guide representation proportion is modeled as‬ ‭where‬ ‭represents‬
‭the dispersion and‬ ‭represents the number of guides.‬‭The parameter‬ ‭was learned from the‬
‭GFP+ population on real data. Further, effect sizes were also learned on this data set. See‬
‭Supplementary Section 2 for full details.‬

‭A model for gene-level inference‬

‭Waterbear implements a hierarchical Bayesian model to infer the latent effect sizes at the‬
‭gene-level. In order to allow inference with small sample sizes that are common in screens, we‬
‭use various shared priors in the hierarchy. We begin with the observed bin counts in sample‬ ‭,‬
‭resulting from guide‬ ‭by,‬

‭where‬ ‭is the guide coverage,‬ ‭is the sample specific‬‭dispersion, and‬ ‭takes the‬
‭null probability mass in each bin (‬ ‭) and the guide‬‭effect size (‬ ‭) and returns the probability‬
‭mass function across the bins. In particular,‬ ‭is‬‭the mass in bin‬ ‭under the null marker and‬
‭thus we model the joint over‬ ‭as a Dirichlet. If‬‭we assume the marker distribution to be‬

‭, the mass in bin‬ ‭is defined as,‬

‭,‬

‭where we define‬ ‭and‬ ‭(under a 4-bin experiment),‬ ‭is a standard normal‬
‭random variable, and‬ ‭is the inverse CDF of a standard‬‭normal.‬

‭To draw guide level effect sizes, first we must decide if the gene is included in the model‬
‭or if it is not (‬ ‭). Guide-level effect sizes are‬‭drawn from a prior centered at the latent gene‬
‭effect,‬ ‭if the gene is included in the model or‬‭a point mass at 0 if it is not according to a‬
‭spike-and-slab prior,‬
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‭.‬

‭At the population level, the parameter‬ ‭dictates‬‭the proportion of genes that are allowed to be‬
‭included in the model (‬ ‭). Thus,‬ ‭. Of note, this‬‭prior encourages‬
‭guide-level effects if there is evidence with many guides. A full specification of all priors and‬
‭hyper parameters can be found in Supplementary Section 1.2. Posterior sampling is performed‬
‭with a MCMC sampler implemented in NIMBLE‬‭31‬‭. All‬‭results in this paper were run with 4‬
‭chains, each chain producing 5,000 samples preceded by 5,000 adaptive burn-in samples.‬

‭MAGeCK‬
‭MAGeCK was run using the following parameters:‬

‭mageck test -k [INPUT_COUNTS] -t [LOW_BIN_COLUMNS] -c [HIGH_BIN_columns]‬
‭--sort-criteria pos -n [OUTPUT_DIRECTORY]‬

‭Since MAGeCK does not model the bins, we provide the outermost bins in every analysis.‬
‭Additionally, MAGeCK does not provide a two-sided test at the gene-level. The heuristic we‬
‭used to deal with this was to take the minimum of the reported gene-level FDR in the positive‬
‭and negative direction.‬

‭MAUDE‬
‭MAUDE was run using default parameters. For specifics, please see the pipeline code. Since‬
‭MAUDE requires the gRNA proportions, we gave it the true bin fraction in every simulation. In‬
‭experimental data we gave MAUDE the GFP+ proportion. Since MAUDE does not have a direct‬
‭way to merge replicates, we took the gene-level replicate p-values and merged them using‬
‭Fisher’s method. The resulting Fisher’s p-value was then Benjamini-Hochberg FDR corrected‬‭32‬‭.‬
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