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ABSTRACT 
 
Osteosarcoma is a rare primary bone tumor for which no significant therapeutic advancement has been made 
since the late 1980s despite ongoing efforts. Overall, the five-year survival rate remains about 65%, and is much 
lower in patients with tumors unresponsive to methotrexate, doxorubicin, and cisplatin therapy. Genetic studies 
have not revealed actionable drug targets, but our group, and others, have reported that epigenomic biomarkers, 
including regulatory RNAs, may be useful prognostic tools for osteosarcoma. We tested if microRNA (miRNA) 
transcriptional patterns mark the transition from a chemotherapy sensitive to resistant tumor phenotype. Small 
RNA sequencing was performed using 14 patient matched pre-chemotherapy biopsy and post-chemotherapy 
resection high-grade osteosarcoma frozen tumor samples. Independently, small RNA sequencing was performed 
using 14 patient matched biopsy and resection samples from untreated tumors. Separately, miRNA specific 
Illumina DASL arrays were used to assay an independent cohort of 65 pre-chemotherapy biopsy and 26 patient 
matched post-chemotherapy resection formalin fixed paraffin embedded (FFPE) tumor samples. mRNA specific 
Illumina DASL arrays were used to profile 37 pre-chemotherapy biopsy and five post-chemotherapy resection 
FFPE samples, all of which were also used for Illumina DASL miRNA profiling. The National Cancer Institute 
Therapeutically Applicable Research to Generate Effective Treatments dataset, including PCR based miRNA 
profiling and RNA-seq data for 86 and 93 pre-chemotherapy tumor samples, respectively, was also used. Paired 
differential expression testing revealed a profile of 17 miRNAs with significantly different transcriptional levels 
following chemotherapy. Genes targeted by the miRNAs were differentially expressed following chemotherapy, 
suggesting the miRNAs may regulate transcriptional networks. Finally, an in vitro pharmacogenomic screen 
using miRNAs and their target transcripts predicted response to a set of candidate small molecule therapeutics 
which potentially reverse the chemotherapy resistance phenotype and synergize with chemotherapy in otherwise 
treatment resistant tumors. Importantly, these novel therapeutic targets are distinct from targets identified by a 
similar pharmacogenomic analysis of previously published prognostic miRNA profiles from pre chemotherapy 
biopsy specimens. 
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INTRODUCTION 
 
Osteosarcoma is the most common primary bone malignancy, with approximately 1,000 new cases per year in 
the United States (Meltzer & Helman, 2021). Diagnosis is most commonly made in adolescents and young 
adults, but there is a second incidence peak in later adulthood, the cases of which are oben associated with 
prior radiaGon exposure. The tumor most oben originates in the metaphysis of long bones, with the distal 
femur and proximal Gbia being especially common sites. LocaGon of the tumor in the axial skeleton, such as 
tumors of the skull or pelvic girdle, is oben associated with worse outcome. 
 
Osteosarcoma paGents typically first present with pain at the site of the tumor or pathological fracture, for 
which these paGents are especially suscepGble because of tumor induced osteolysis (Zhou et al., 2017). 
AddiGonally, we have previously found evidence of more aggressive tumor biology in paGents who present 
with pathologic fractures, who oben go on to have worse long-term outcomes (Lozano Calderon et al., 2019). 
While there are specific imaging findings suggesGve of osteosarcoma, definiGve diagnosis requires pathological 
evaluaGon of a biopsy specimen, oben a retrieved through a core needle biopsy (Beird et al., 2022).  
Osteosarcomas are typically classified as either low or high grade (Bertoni & Bacchini, 1998). While low grade 
tumors are generally associated with low metastaGc propensity and treated with surgical resecGon alone, high 
grade tumors, the focus of the present study, are at an elevated risk of progressing to metastaGc disease and 
are thus addiGonally treated with chemotherapy.  
 
Known osteosarcoma risk factors are primarily geneGc, but specific environmental factors, like prior radiaGon 
exposure, also exist (Cole et al., 2022; Mirabello et al., 2009). Cancer predisposiGon syndromes such as Bloom 
syndrome, Diamond-Blackfan anemia, Li-Fraumeni syndrome, radial ray defect patellae and palate abnormality 
diarrhea and dislocated joints limb abnormality liUle size slender nose and normal intelligence (RAPADILINO) 
syndrome, reGnoblastoma, Rothmund-Thomson Syndrome, and Werner syndrome are known risk factors. 
However, only about 28% of paGents carry a likely pathogenic germline mutaGon in a cancer suscepGbility 
gene (Chauveinc et al., 2001; German, 1997; Ishikawa et al., 2000; Larizza et al., 2010; F. P. Li et al., 1988; 
Lipton et al., 2001; Mirabello et al., 2020; Siitonen et al., 2009). This suggests that other, potenGally epigeneGc, 
mechanisms are also important in this disease’s biology. AddiGonally, most of these mutaGons are rare, 
affecGng a very small percentage of paGents, making efforts to develop therapeuGcs for these paGents more 
difficult.  
 
For approximately 60-65 percent of high-grade osteosarcoma paGents, standard chemotherapeuGc treatment 
and surgical excision of the primary tumor is curaGve. However, approximately 20 percent of paGents present 
with metastaGc disease (Gill & Gorlick, 2021), and in these paGents, along with those with unresected or 
recurrent disease, prognosis is much worse, with long term survival rates at about 30 percent. The current 
treatment approach for osteosarcoma was developed in the 1980’s, and includes surgical resecGon of the 
tumor, and mulG-agent chemotherapy including methotrexate, doxorubicin, and cisplaGn (MAP) (Rosen et al., 
1976, 1979, 1982). Surgical treatment involves complete tumor resecGon and is oben performed with a limb 
sparing approach rather than amputaGon. Marginal resecGons are associated with increased risk of 
recurrence, but for tumors resected with negaGve margins, the local recurrence rate is low, at less than five 
percent (Picci et al., 1994). 
 
Despite ongoing efforts to develop new systemic therapies, liUle progress in improving disease outcomes has 
been made since the 1980’s (Beird et al., 2022). The most recent large-scale, internaGonal clinical trial in the 
disease, EURAMOS-1, sought to improve paGent outcomes by risk straGfying paGents for alternate adjuvant 
therapies (Whelan et al., 2015). However, the study failed to improve survival in either the high or low risk 
paGent groups (Bielack et al., 2015; Marina et al., 2016). The trial’s failure suggests that the use of 
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pathologically assessed necrosis in the operaGve specimen following chemotherapy is not a useful tool for risk 
straGficaGon and drug novel therapeuGc applicaGon in this disease.  
 
Currently, however, there is a lack of alternaGve biomarkers for further study. Osteosarcomas are known to 
have a chaoGc genomic landscape, frequently characterized by kaetagis (a large number of localized base pair 
mutaGons) and chromothripsis (clustered chromosomal rearrangements), however, few of the genomic 
aberraGons are recurrent or acGonable (X. Chen et al., 2014; Lorenz et al., 2016; Perry et al., 2014; Sayles et al., 
2019; Yamaguchi et al., 1992). It has been found that some aberraGons, such as MYC gene amplificaGon, are 
prognosGc, but these factors have not yet been developed for clinical applicaGons, and generally apply only to 
a small fracGon of paGents (Feng et al., 2020; Sayles et al., 2019). Thus, current opinion is that convenGonal 
approaches targeGng specific single geneGc aberraGons are unlikely to be successful in osteosarcoma, and 
other approaches beUer aligned with biology, potenGally including epigenomic markers, are needed (Bishop et 
al., 2016; Meltzer & Helman, 2021; Roberts et al., 2019). 
 
To this end, we previously reported panels of microRNAs (miRNAs), profiled at the Gme of diagnosGc biopsy, 
which are prognosGc of paGent survival (Kelly et al, 2013; Hill et al, 2017; Lietz et al, 2020). MiRNAs are small, 
about 20 nucleoGdes long, non-coding RNAs which regulate large fracGons of the coded genome post-
transcripGonally. They have been shown to play a variety of roles in cancer (Calin et al., 2005; Calin & Croce, 
2006; Esquela-Kerscher & Slack, 2006; J. Lu et al., 2005; Mi et al., 2007; Ooi et al., 2011). While we have 
previously invesGgated the staGc expression of miRNAs in osteosarcoma biopsy specimens, the dynamic 
changes in these regulatory species induced by chemotherapy have yet to be studied. In the analyses 
described here, a specific set of miRNAs marking chemotherapy resistance is idenGfied. Pharmacogenomic 
analysis using the miRNAs provides a set of candidate drugs which may reverse the chemoresistant phenotype, 
and thus synergize with chemotherapy, providing drug response hypotheses for further study, clinical tesGng, 
and future targeted applicaGon to improve paGent outcomes. 
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RESULTS 
 
The MGH and Longwood miRNA datasets provide for dynamic chemotherapy response tes8ng. 
 
Two miRNA transcripGonal profiling datasets were generated, both including pre- and post-chemotherapy high 
grade osteosarcoma specimens from the same paGents. The datasets differ with respect to the sample 
collecGons dates, type of clinical specimen, and miRNA assay technology (Table 1). Herein, we refer to these 
datasets as the MGH and Longwood paired specimen datasets, with the dataset names reflecGng the origin of 
the paGent samples. The MGH and Longwood miRNA datasets contained 7 and 26 pairs of paGent-matched 
pre-chemotherapy biopsy and post-chemotherapy resecGon samples, respecGvely. The MGH dataset 
addiGonally contained 7 pairs of paGent-matched, paired pre-chemotherapy biopsy and pre-chemotherapy 
resecGon specimens. Detailed demographic informaGon is presented in Supplementary Table 1 and summary 
staGsGcs for the chemoresistant samples, classified as tumors with less than 90 percent necrosis in the 
operaGve specimen (Meltzer & Helman, 2021), in Table 1. We previously partly reported the samples in the 
Longwood dataset as part of a separate study tesGng associaGon between miRNA expression and paGent 
survival using primarily pre-chemotherapy biopsy specimens (Kelly et al., 2013). 
 
In general, both the MGH and Longwood cohorts were composed predominately of adolescent paGents, and 
the cohorts’ age distribuGons were similar. The MGH cohort contained a larger fracGon of male paGents. 
Chemotherapy regimens were similar in both cohorts, with most paGents receiving at least MAP. A small 
fracGon of paGents only received Adriamycin (doxorubicin) and cisplaGn (AP), and others addiGonally received 
adjuvant etoposide and ifosfamide as front-line therapy. The majority of paGents in both cohorts underwent 
the standard treatment course of neoadjuvant therapy, surgical resecGon, and adjuvant therapy, except in the 
minority of cases where surgery was performed prior to inducGon chemotherapy, such as in the case of a 
pathologic fracture. In the MGH cohort, these unique cases provided both a biopsy and a resecGon specimen 
prior to the iniGaGon of chemotherapy, offering the opportunity to control for other biologic or technical 
differences between biopsy and resecGon specimens when assessing the effect of chemotherapy on miRNA 
profile changes over Gme. 
 
While histological subtype informaGon was not available for the Longwood cohort, in the MGH cohort, five of 
the seven chemoresistant samples were of the most common osteoblasGc subtype, and the remaining two 
were of the chondroblasGc subtype. While histologic subtype is not currently used as a predicGve or prognosGc 
tool, it has been suggested that osteoblasGc and chondroblasGc histologies tend to be more clinically 
aggressive (Bacci et al., 2003). Both the Longwood and MGH cohorts have relaGvely long follow up Gmes at 42 
and 78 months, respecGvely, for censored paGents. 
 
The MGH dataset was generated using fresh frozen Gssue samples, and small RNAs were profiled using small 
RNA sequencing. The Longwood dataset was generated using formalin fixed paraffin embedded (FFPE) 
samples, and small RNAs were profiled using Illumina cDNA mediated annealing, selecGon, extension, and 
ligaGon (DASL) arrays, which were opGmized for parGally degraded RNA, such as that from FFPE samples (Fan 
et al., 2004). 
 
Identification of a Consensus Dynamic Chemoresponse miRNA Profile. 

The paired nature of the MGH and Longwood samples with respect to chemotherapy were first leveraged to 
test if specific miRNAs may be markers of a chemoresistant phenotype, with the reasoning that the molecular 
readout from the post-chemotherapy specimens would represent a chemotherapy resistant cell populaGon, as 
they had survived treatment. Given that the MGH dataset was generated using frozen samples and small RNA 
sequencing, and the Longwood dataset was generated using FFPE samples and DASL microarray technology, 
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miRNAs with similar paUerns of differenGal expression in both datasets, despite these technical differences, 
may be robust markers of an OSA chemotherapy resistance phenotype. The 321 miRNAs which passed filtering 
criteria and could be mapped to both datasets were used for staGsGcal analysis. Note that the DASL microarray 
plaporm used in the Longwood dataset interrogates only a subset of miRNAs and miRNA expression is Gssue 
specific, thus the total number of analyzed miRNAs is less than the approximately 2,500 coded in the human 
genome (Kozomara et al., 2019). 
 
DESeq2 based paired differenGal expression analysis was used to test for miRNA transcripGonal differences 
pre- and post-chemotherapy in the MGH sequencing dataset (Love et al., 2014). Analysis was performed, 
separately, using the 14 chemotherapy treated samples and the 14 untreated samples, which served to control 
for miRNA transcripGonal differences between biopsy and resecGon specimens not related to chemotherapy. 
MiRNAs with p < 0.05 were considered differenGally expressed. False discovery rate (FDR) corrected p values 
were not considered in this iniGal discovery analysis given the small sample size and that the resulGng miRNAs 
will be further tested in independent datasets. 50 miRNAs were differenGally expressed following 
chemotherapy in the MGH dataset (Fig. 1), whereas 19 miRNAs were differenGally expressed in the untreated 
group of control pairs with the same sample size. Despite the small sample size, 23 of the 50 differenGally 
expressed miRNAs sGll had an FDR less than 0.1 (Benjamini & Hochberg, 1995). The larger number of 
significant findings in the treated compared to untreated pairs served as iniGal evidence that the discovered 
molecular differences were due to chemotherapy rather than other factors. AddiGonally, only two of the 
miRNAs differenGally expressed in the untreated samples were differenGally expressed in the treated samples 
but the direcGon of change was opposite, further suggesGng the observed changes in treated samples may be 
due to chemotherapy. 
 
Limma based paired differenGal expression analysis was used to test for miRNA transcripGonal differences 
between pre and post chemotherapy specimens in the Longwood microarray dataset (Ritchie et al., 2015). 166 
miRNAs were differenGally expressed (Fig. 1b), and all 166 also had an FDR corrected p value less than 0.1. A 
larger number of significant findings were idenGfied in the Longwood dataset potenGally because it has about 
four Gmes as many samples, and thus is more staGsGcally powerful. Only two of the 166 differenGally 
expressed miRNAs were significant and had the same direcGon of change between the MGH untreated 
samples. 
 
To idenGfy the most robust miRNA markers of chemotherapy resistance, the intersecGon of miRNAs 
differenGally expressed following chemotherapy in both datasets was idenGfied. 17 of the 18 idenGfied 
miRNAs had the same direcGon of fold change between two datasets (hypergeometric test, p = 6.868 x 10-6), 
suggesGng the differenGally expressed miRNAs were reproducible genomic changes. These 17 miRNAs were 
thus considered candidate biomarkers for further tesGng and are hereaber referred to as the Consensus 
Dynamic Chemotherapy Response Profile (CDCRP) miRNAs. None of the CDCRP miRNAs were differenGally 
expressed between the untreated MGH samples (Fig. 1). 
 
The 17 CDCRP miRNAs were encoded across the genome, without enrichment for a specific locus (Table 2). 
While the majority of the CDCRP miRNAs had greater expression in the pre-chemotherapy samples, two were 
measured at increased levels in the post-chemotherapy specimens. This increased confidence in the biologic 
origin of the miRNA differences, as unidirecGonal changes could have reflected overall decreased miRNA levels 
in the more necroGc post-chemotherapy resecGon specimen, as well as arGfacts related to surgical resecGon of 
the tumor. The two miRNAs with elevated transcripGonal levels post-chemotherapy were the 5’ and 3’ arms 
derived from the same precursor miRNA, mir-654, processed from a primary miRNA encoded on the 14q32 
locus. We and others have previously found that a collecGon of miRNAs from this locus is predicGve of paGent 
survival in osteosarcoma (Hill et al., 2017; Kelly et al., 2013; Lietz et al., 2020; Sarver et al., 2013). However, 
none of the CDCRP miRNAs overlapped with our previously published profile of prognosGc miRNAs, suggesGng 
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that different biological pathways are involved in chemotherapy response and long-term outcome. There also 
existed iniGal evidence that each of the 17 CDCRP miRNAs are connected to chemotherapy response (BhaGa et 
al., 2019; Cao et al., 2016; Y. Chen et al., 2019; Duan et al., 2017; Hou et al., 2014; Ji et al., 2018; Jin et al., 
2019; Lai et al., 2019; H.-Y. Li et al., 2017; M. Lu et al., 2018; Niu et al., 2020; Schreiber et al., 2016; Tie et al., 
2018; Wang et al., 2018; M. Xu et al., 2018; Zhang et al., 2018; Zhao et al., 2017; Zhu et al., 2020). This 
included many connecGons to MAP based chemotherapy, including reports finding that at least 10 of the 
miRNAs are associated with cisplaGn response, and at least 4 of the miRNAs are associated with doxorubicin 
response. 
 
The CDCRP was also able to differenGate between pre- and post-chemotherapy specimens in the MGH and 
Longwood datasets, suggesGng that variaGon between pre and post chemotherapy samples was greater than 
across paGent variaGon (Fig. 2). Hierarchical clustering of the samples using the CDCRP miRNAs generated two 
groups of samples significantly associated with chemotherapy treatment in both the MGH and Longwood 
datasets (MGH: C2 = 4.667, Odds RaGo (OR) = 5.000, p = 0.031; Longwood: C2 = 8.694, OR = 2.174, p = 0.004), 
suggesGng that the CDCRP miRNAs are useful markers of chemotherapy response in combinaGon and that the 
observed changes induced by chemotherapy are relaGvely consistent across paGents. While the CDCRP 
miRNAs were defined in these two datasets, the profile was not guaranteed to differenGate between pre- and 
post-chemotherapy specimens across the enGre dataset, as within paGent changes were used to generate the 
profile, and the component of across paGent variability could have driven the clustering paUerns. While the 
clustering paUerns were imperfect, it was observed that when pre- and post-chemotherapy were grouped 
together, they were, in some cases, found to be most molecularly similar to the sample from the same paGent, 
indicaGng that there are paGent level differences CDCRP miRNAs. AddiGonally, the CDCRP miRNAs did not 
differenGate between the untreated MGH samples (C2 = 0.424, OR = 0.833, p = 0.515, Supplementary Figure 
1). 
 
Gene targets of the CDCRP miRNAs have altered transcrip8onal paOerns following chemotherapy. 
 
The genes targeted by the CDCRP miRNAs were defined using the DIANA-microT-CDS target predicGon 
algorithm using the DIANA-microTv5.0 server using a microT threshold of 0.7 (Paraskevopoulou et al., 2013). 
The median number of computaGonally predicted targets per CDCRP miRNA was 960, and the range was from 
16 to 1847 targets. ComputaGonally predicted targets were used because they are not limited by the 
incompleteness of experimental miRNA target validaGon, potenGal biases introduced by performing these 
experiments in specific Gssue types, or targets which may be of current research interest. The CDCRP miRNAs 
were correlated with their predicted targets to idenGfy a refined list of genes which may be more biologically 
relevant in osteosarcoma, with the understanding that not all predicted target interacGons occur in vivo, and 
that relevant miRNA - gene interacGons may be Gssue type specific. As the best understood role of miRNAs is 
to induce mRNA translocaGon to processing bodies (P-bodies) and subsequent mRNA degradaGon (Jonas & 
Izaurralde, 2015; Liu et al., 2005), anG-correlated miRNA and mRNA levels were considered significant (Pearson 
correlaGon, one-tailed p < 0.05). 
 
MiRNA – gene target correlaGons were performed in both the expanded set of biopsy specimens previously 
reported in the Longwood dataset (Kelly et al., 2013), as well as the NCI sponsored publicly available TARGET 
osteosarcoma dataset, which provided both TaqMan rt-PCR miRNA data and RNAseq gene expression data for 
84 samples. Both datasets were used to idenGfy a set of osteosarcoma relevant set of gene targets with 
reproducible relaGonships across different assay plaporms and sample types. The TARGET dataset was used in 
lieu of the MGH dataset, for which only small RNAseq data was generated. 
 
Raw miRNA expression and RNAseq data was downloaded from the TARGET data portal and processed using 
the 2-DCt and DESeq2 based median of raGos approaches, respecGvely (Livak & SchmiUgen, 2001; Love et al., 
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2014). 16 of the 17 CDCRP miRNAs were interrogated by the TaqMan plaporm. The percent of gene targets 
significantly anGcorrelated with each CDCRP miRNA ranged from 2.26 – 15.87% (Supplementary Table 2). 
 
In the Longwood dataset, the correlaGon analysis was performed excluding the subset of samples for which 
both pre- and post-chemotherapy gene expression data were generated (n = 5), such that this subgroup could 
later be used as an independent staGsGcal tesGng environment for candidate genes which we found 
anGcorrelated with their targeGng CDCRP miRNA. This provided 32 samples for correlaGon analysis in the 
Longwood dataset. The percent of gene targets significantly anGcorrelated with each CDCRP miRNA ranged 
from 2.92 – 14.72% (Supplementary Table 2). Individual miRNA-gene target correlaGons were not correlated 
(rho < 0.001, p > 0.999) in the MGH and Longwood datasets, highlighGng the value of searching for gene 
targets which display expected paUerns of regulaGon to be further developed as markers rather than using the 
enGre predicted target set. 
 
222 CDCRP miRNA – predicted target pairs were found to be significantly anGcorrelated in both the MGH and 
Longwood datasets, including 198 unique genes and 15 of 16 evaluable CDCRP miRNAs (one of the CDCRP 
miRNAs was not interrogated by the TaqMan plaporm used to generate the TARGET dataset). Limma based 
differenGal expression tesGng was then performed using this set of genes in the five pairs of pre- and post-
chemotherapy samples in the Longwood dataset for which gene expression data was generated. None of these 
pairs, neither pre- nor post-chemotherapy sample, was used for correlaGon analysis, and they thus represent 
an independent test of chemotherapy induced gene expression changes. 30 of the anGcorrelated miRNAs were 
differenGally expressed, and 28 of 30 were differenGally expressed with the expected log fold change sign 
based on dynamic change in miRNA expression, with the expected sign being opposite of that of the targeGng 
miRNA, suggesGng that the CDCRP miRNAs may be involved in a larger regulatory network relevant to 
chemotherapy response (hypergeometric test, p = 1.4 x 10-8; Fig. 3; Table 3). 
 
Gene targets of the CDCRP miRNAs provide addi8onal insight into the biology of chemotherapy resistance. 
 
FuncGonal annotaGon analysis of the genes predicted to be targets of the CDCRP miRNAs was performed using 
DIANA-miRPath v3.0 (Vlachos et al., 2015). Gene sets from the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Gene Ontology (GO) databases were analyzed on the DIANA web server using both standard 
hypergeometric distribuGons and more stringent unbiased empirical distribuGons to account for biases 
encountered by tradiGonal enrichment staGsGcs with miRNA target gene sets (Ashburner et al., 2000; Bleazard 
et al., 2015; ConsorGum, 2021; Kanehisa et al., 2019, 2023; Kanehisa & Goto, 2000). Meta analysis staGsGcs, 
which provides a single pooled enrichment staGsGc for pathways enriched in target sets of mulGple miRNAs, 
are also employed to account for the combined effect of mulGple miRNAs targeGng the same set of pathways. 
31 KEGG pathways and 69 GO categories were found significant (FDR < 0.05) by the hypergeometric test. Five 
and zero of the KEGG and GO terms were also significant in the empirical distribuGon tests, respecGvely, 
potenGally represenGng regulated pathways most specific to the CDCRP miRNAs (Fig. 4). 
 
Pathways potenGally related to chemoresistance, such as the KEGG pathway “Signaling Pathways RegulaGng 
Pluripotency of Stem Cells”, were idenGfied, invoking the idea that the chemoresistant cell populaGon may 
harbor cancer stem cells (Batlle & Clevers, 2017), which have been shown to be responsible for treatment 
resistance in many tumor types, including osteosarcoma (Brown et al., 2017). 
 
The CDCRP miRNAs and genes predict response to novel therapeu8cs. 
 
Given that the CDCRP miRNAs were found to mark the emergence of chemoresistance to standard 
methotrexate, doxorubicin, and cisplaGn-based therapy (MAP), it was tested if they could also mark the 
sensiGvity to novel therapeuGcs which may be useful in resistant tumors. These therapeuGcs may then be used 
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to synergize with MAP. The large-scale Profiling RelaGve InhibiGon Simultaneously in Mixtures (PRISM) drug 
screening dataset, which profiled the sensiGvity of 930 genomically characterized cell lines to 4,518 drugs, was 
first leveraged to test if staGc levels of the CDCRP miRNAs predict response to novel agents (Corsello et al., 
2020; Yu et al., 2016). Drug dose-response sensiGvity from the PRISM secondary screen and miRNA data from 
the Cancer Cell Line Encyclopedia (CCLE) project, which genomically characterized the same cell lines used in 
the PRISM drug response screen, were downloaded using the Cancer Dependency Map (DepMap) data portal 
(BarreGna et al., 2012; Ghandi et al., 2019; Tsherniak et al., 2017). Cell lines were randomly assigned to 
independent training sets (2/3 of cell lines) and test sets (1/3 of cell lines). 
 
Simple linear regression using the CDCRP miRNAs to predict AUC values was performed using the glmnet R 
package (Friedman et al., 2010; Tibshirani, 1996). Models were trained for drugs with at least 20 cell lines in 
the training set. 31 miRNA drug combinaGons were found to have significant predicGve capacity in the training 
set (FDR < 0.05), significant and posiGve correlaGon between predicGon and actual AUC in the tesGng set (p < 
0.05), and a posiGve correlaGon between predicGon and actual AUC in the small subset of OSA cell lines (Table 
4). DefiniGve staGsGcal analysis could not be performed for the very few osteosarcoma cell lines, at most five, 
and the osteosarcoma cell lines were intenGonally not excluded from the training set such that these most 
informaGve datapoints could be used to train the models.  
 
While a diverse set of drug mechanisms of acGon were represented in Table 4, mulGple agents interfering with 
microtubule polymerizaGon and stability, aurora kinase inhibitors, and epigeneGc modifying agents, such as 
histone deacetylase and methyltransferase inhibitors were idenGfied. These drug classes may be entry points 
into future osteosarcoma drug development efforts.  
 
Given that expression levels of the CDCRP miRNAs reflect a change towards a chemoresistant phenotype, 
drugs which reverse these genomic changes back towards chemosensiGvity could be valuable in synergizing 
with standard chemotherapy. ConnecGvity Map (CMap) analysis was performed using the CLUE.io web server 
to test for such drugs in a dynamic sexng (Lamb et al., 2006; Subramanian et al., 2005, 2017). The expression 
datasets used in the pipeline do not include miRNAs, so we used the 27 targets of the CDCRP miRNAs which 
were found to have the strongest evidence of involvement in the miRNA regulated chemoresistance network 
as input for the CMap analysis. Of the 23 drugs presented in Table 4, perturbaGon data was available for 15. 
Fourteen of the 15 drugs had preliminary evidence of a connecGvity score that would reverse the 
chemoresistant phenotype towards the chemosensiGve phenotype, given their negaGve connecGvity scores. 
These proof of principle results suggest the CDCRP miRNAs and their regulatory networks may be acGonably 
targeted by novel therapeuGcs to reverse MAP based chemotherapy resistance. 
 
Pre chemotherapy survival associated miRNAs predict response to dis8nct therapeu8cs compared to the 
CDCRP miRNAs. 
 
Our previously published prognosGc 22-miRNA profile miRNAs were also tested via linear regression using the 
same CCLE miRNA and PRISM drug response data (Kelly et al, 2013). 19 miRNA drug combinaGons were found 
to have significant predicGve capacity in the training set (FDR < 0.05), significant and posiGve correlaGon 
between predicGon and actual AUC in the tesGng set (p < 0.05), and a posiGve correlaGon between predicGon 
and actual AUC in the small subset of OSA cell lines (Table 5). Of the 19 drugs, seven inhibited MEK, including 
MEK inhibitor PD-0325901 (mirdameGnib) which was previously idenGfied in separate gene expression, and 
methylaGon-based screens for drugs with effect in OSA (Lietz et al, 2019; Lietz et al, 2022). AddiGonally, four 
other drugs acted upstream of MEK in the MAPK pathway through RAF. 
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Of the 19 drugs presented in Table 5, perturbaGon data in CMap was available for 17, and 14 of these drugs 
had negaGve connecGvity scores, offering preliminary evidence they may reverse a poor prognosis phenotype 
towards a phenotype with longer survival. 
 
Of the 39 unique drugs in Table 4 and Table 5, only three were idenGfied in both analyses, CGS-15943, RAF265, 
and fluvastaGn. Further examinaGon of the drugs idenGfied in Table 4 and Table 5 also reveals that they 
predominantly act through disGnct mechanisms, an observaGon with significant biologic and therapeuGc 
implicaGons discussed below. 
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DISCUSSION 
 
Current treatments for osteosarcoma were developed about four decades ago, and, despite ongoing efforts, 
paGent outcomes have improved liUle since that Gme (Meltzer & Helman, 2021). While about 60-65 percent of 
paGents are cured by surgical resecGon and systemic chemotherapy, the other 40 percent are sGll subjected to 
the toxic effects of treatment but see liUle or no survival benefit as the tumor spreads and becomes the cause 
of significant morbidity and mortality. There thus exists an unmet need to develop new drugs for paGents who 
do not respond to current therapies. 
 
Regulatory miRNAs were tested as biomarkers for chemotherapy resistance, and candidate markers were 
developed as tool to straGfy paGents for addiGonal therapies which may synergize with the MAP regimen. A 
profile of 17 miRNAs marking the transiGon to a chemoresistant state, the consensus dynamic chemoresponse 
signature (CDCRP), was discovered. The profile was contextualized using the pathways potenGally regulated by 
the miRNAs, and it was used to idenGfy a set of novel drugs for future tesGng. Thus, the CDCRP provides both 
an insight into chemoresistance and is a possible biomarker to be further developed for applicaGon in 
conjuncGon with new therapies. While this is the first report describing an in depth genome wide evaluaGon of 
the dynamic changes of miRNA expression with chemoresistance in human samples, all 17 of the miRNAs in 
the CDCRP have individually and independently been reported to be associated with chemotherapy response, 
and most to at least one of the MAP agents (BhaGa et al., 2019; Cao et al., 2016; Y. Chen et al., 2019; Duan et 
al., 2017; Hou et al., 2014; Ji et al., 2018; Jin et al., 2019; Lai et al., 2019; H.-Y. Li et al., 2017; M. Lu et al., 2018; 
Niu et al., 2020; Schreiber et al., 2016; Tie et al., 2018; Wang et al., 2018; M. Xu et al., 2018; Zhang et al., 2018; 
Zhao et al., 2017; Zhu et al., 2020). This includes the miRNA hsa-miR-15b-5p, which was previously 
independently studied by our group in the context of osteosarcoma doxorubicin resistance (Duan et al., 2017). 
In the study, hsa-miR-15b-5p downregulaGon was also found to be associated with chemoresistance. The 
relaGonship was discovered using different methodology, by performing differenGal expression tesGng 
between parent and doxorubicin resistant cell lines, and then the associaGon was validated in a small human 
cohort. These congruent results support the use of cell lines for further study of our markers, and specifically, 
their use in the present pharmacogenomic analysis to discover new drugs which may synergize with MAP 
chemotherapy. 
 
Given the dynamic nature of the CDCRP, it was reasoned that drugs which prevent the transiGon to the 
chemoresistant profile may be useful in combinaGon with MAP to enhance response in otherwise resistant 
tumors. To idenGfy these drug candidates, a pharmacogenomic screen was performed using the CCLE and 
PRISM miRNA profiling and drug response datasets (Corsello et al., 2020; Ghandi et al., 2019), and idenGfied a 
set of 13 candidate drugs. A limitaGon of the study is that these drugs were discovered by associaGng the staGc 
levels of the CDCRP miRNAs in untreated cell lines. Ideally, a perturbaGonal dataset with miRNA profiling 
before and aber treatment would have been used for our predicGve modeling analysis. However, no such 
dataset currently exists. Instead, the L1000 Touchstone CMAP LINCS 2020 dataset (Lamb et al., 2006; 
Subramanian et al., 2005, 2017), which provides dynamic gene expression data before and aber cell line 
treatment with a broad range or perturbagens, was leveraged. For 90% of the proposed drugs which were 
tested in the L1000 Touchstone CMAP LINCS 2020 dataset, there was iniGal evidence that a cell’s gene 
expression profile can be changed in the opposite direcGon as that seen during the evoluGon to a 
chemoresistant phenotype. This suggested these drugs may synergize with MAP based chemotherapy and 
potenGally reverse or miGgate resistance to chemotherapy. 
 
The candidate drug list largely contained drugs currently being developed as anG-cancer therapies, specifically 
tubulin inhibitors, kinase inhibitors, and epigeneGc modifying agents, despite the fact the PRISM dataset was 
designed to also include a large fracGon of so-called non-oncology drugs (Corsello et al., 2020). MulG-kinase 
inhibitors and epigeneGc modifying agents were recently proposed as top drug classes for further tesGng in 
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osteosarcoma based on expert review of current experimental evidence (WhiUle et al., 2021). Given the 
alignment of the drug classes coming out of the analysis with those independently hypothesized to have effect 
in the disease, further tesGng of the proposed candidate drugs in conjuncGon with the CDCRP markers may be 
warranted and could lead to improved tailored applicaGon of novel drugs and opGmal individual paGent 
outcomes. 
 
Finally, it should be noted that drugs idenGfied in Table 4 and Table 5 predominantly act through disGnct 
mechanisms, further suggesGng that survival and chemotherapy resistance networks are different, a concept 
also supported by the non-overlap between the CDCRP miRNAs presented in this study and the miRNAs 
prognosGc of survival in pre-treatment tumors, that we presented in our previous work (Kelly et al, 2013; Lietz 
et al 2020).  AddiGonally, this observaGon also suggests that different drugs may be opGmal candidates to 
therapeuGcally target these different poor outcome phenotypes. UlGmately, promising therapeuGc hypotheses 
idenGfied by the bioinformaGc analysis of public experimental in vitro data presented here, should be studied 
in a targeted manner using in vivo models, in order to select the best candidates for clinical tesGng. Our 
comprehensive bioinformaGc analysis presented here, thus substanGally facilitates, and expedites this process 
by providing raGonal biomarker-based selecGon and prioriGzaGon of drugs for further development. 
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METHODS 
 
Genera8on of the MassachuseOs General Hospital microRNA dataset. 
All experiments were approved by the MassachuseUs General Hospital (MGH). The MGH IRB waived the 
requirement of informed consent for this retrospecGve Gssue and clinical informaGon protocol which obtained 
Gssue discarded from rouGne medical care. All experiments were performed in accordance with relevant 
guidelines and regulaGons. Twenty-one pairs of samples, one biopsy and one resecGon specimen from the 
same paGent per pair, frozen tumor samples from paGents with high grade osteosarcoma were retrieved from 
the archives of the Department of Pathology at MGH. Samples were banked between 1998 to 2010. Samples 
selecGon was performed chronologically. Hematoxylin and eosin stained slides generated from the frozen high 
grade osteosarcomas Gssue specimens were reviewed by an expert study pathologist to confirm the diagnosis 
of high grade osteosarcoma and to determine tumor cellularity. Samples for which there was no available 
Gssue or that failed pathology confirmaGon of high grade osteosarcoma were excluded from the study, leaving 
14 pairs for further analysis. Seven pairs of pre-chemotherapy biopsy specimens and post-chemotherapy 
resecGon specimens from neoadjuvant chemotherapy treated paGents were included for chemotherapy 
response analysis. Seven pairs of biopsy and resecGon specimens from paGents who did not receive 
neoadjuvant therapy were used as untreated control pairs. 
 
RNA was isolated with the QIAGEN RNeasyâ Plus Universal Mini Kit (Qiagen) using an adapted protocol 
designed to increase the quality of extracted RNA from frozen bone specimens (Carter et al., 2012). 
Sequencing was performed at the Center for Cancer ComputaGonal Biology at Dana Farber Cancer InsGtute 
(Boston, MA). Qubit was used to determine RNA quanGty using the Qubit RNA High SensiGvity Assay Kit 
reagents (Life Tech). Then, RNA quality was assessed using a Bioanalyzer and Agilent RNA Pico Kit. The 
NEBNext MulGplex Small RNA Library Prep Kit for Illumina (NEB) was used to convert 100 ng of total RNA into a 
DNA library following the manufacturer’s protocol, without modificaGons. Qubit High SensiGvity DNA Kit (Life 
Tech) was used to determine library quanGty and Bioanalyzer High SensiGvity Chip Kit (Agilent) was used to 
determine library size. AddiGonally, libraries were assessed via qPCR using the Universal Library QuanGficaGon 
Kit for Illumina (Kapa Biosystems) and 7900HT Fast qPCR machine (ABI). All libraries passing quality control 
were then diluted to 2 nM, combined into library pools, and sequenced on the NextSeq 500 (Illumina) at a final 
concentraGon of 2 pM. Sequencing was performed using three NextSeq Single Read 75 Cycle High Throughput 
V2 flowcells following standard protocols. The sRNAtoolbox sRNAbench tool was then used to process and 
quanGfy small RNA reads (Rueda et al., 2015). SRNAtoolbox idenGfied and removed adapter sequences from 
the input fastq files. Hierarchal read mapping was performed, first mapping reads to the UniVec database of 
common laboratory contaminants, then to rRNAs, followed by other small RNA species. BowGe was used to 
perform the preprocessing steps (Langmead et al., 2009). MiRNA reads were mapped to human miRNAs 
annotated in miRbase version 21 (Kozomara et al., 2019). Independent mapping and quanGficaGon were 
performed for mature and precursor miRNAs. Prior to analysis, the raw mature miRNA read counts were 
normalized and log base 2 transformed using the DESeq2 R package (Love et al., 2014). MiRNAs with a median 
raw read count of less than five were filtered out. 
 
Genera8on of the Longwood paired microRNA and gene expression datasets. 
 
We previously reported the Longwood paired miRNA and gene expression datasets, in the context of a larger 
cohort consisGng of 91 samples including 26 pre-chemotherapy diagnosGc biopsy specimens paired with 26 
post-chemotherapy resecGon specimens from the same paGents, as part of a separate study tesGng pre 
chemotherapy biopsy-based miRNA associaGons with paGent survival (Kelly et al., 2013). In our previous 
publicaGons this dataset is referred to as the “Boston” dataset (Hill et al., 2017; Kelly et al., 2013; Lietz et al., 
2020). The Longwood paired dataset presented in the current study is part of the “Boston” dataset, that was 
not previously analyzed in depth as it relates to dynamic expression changes. All studies were approved by the 
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Beth Israel Deaconess Medical Center and Boston Children’s Hospital IRB, and archival Gssue collecGon was 
approved by the IRB at both insGtuGons. All experiments were performed in accordance with relevant 
guidelines and regulaGons. Detailed methodology is presented in Kelly et al., 2013. In short Illumina cDNA-
mediated annealing, selecGon, extension, and ligaGon arrays (DASL arrays) generated miRNA profiling data for 
91 FFPE samples, and mRNA profiling data for 42 FFPE samples. For pre and post chemotherapy miRNA 
differenGal expression tesGng, miRNAs with expression variance in the boUom tercile across the enGre dataset 
were filtered out. MiRNA and gene expression data for the Longwood miRNA and gene expression datasets are 
available at the Gene Expression Omnibus under accession GSE39058. 
 
Public data acquisi8on and processing. 
 
The NaGonal Cancer InsGtute TherapeuGcally Applicable Research to Generate EffecGve Treatments (TARGET) 
iniGaGve’s publicly available osteosarcoma Applied Biosystems MegaPlex TaqMan miRNA and mRNA-seq 
datasets were downloaded from the TARGET data matrix (hUps://ocg.cancer.gov/programs/target/data-
matrix). At the Gme data was downloaded, the miRNA and mRNA-seq datasets provided data for 86 and 93 
clinically annotated high grade osteosarcoma samples, respecGvely. Sample selecGon, experimental, and data 
processing methodology carried out by the TARGET working group is provided on the TARGET Project 
Experimental Methods page (hUps://ocg.cancer.gov/programs/target/target-methods). We applied the 2-DCt 
transformaGon to the downloaded normalized miRNA data prior to analysis (SchmiUgen & Livak, 2008). The 
gene read count level RNA-seq was further processed by filtering out transcripts less than 200 bases in length 
and applying DESeq2 based normalizaGon and log base 2 transformaGon to the data (Love et al., 2014). 
 
Differen8al expression tes8ng and standard sta8s8cal tests. 
 
DESeq2 was used to test for differenGal expression tesGng or RNA-seq data (Love et al., 2014). A paired analysis 
design was used for instances where biopsy and resecGon samples were collected from the same paGent. 
Limma was used for differenGal expression tesGng of microarray data (Ritchie et al., 2015). A paired analysis 
design was again used in instances where biopsy and resecGon samples were collected from the same paGent. 
Where specified, the false discovery rate (FDR) was calculated using the Benjamini and Hochberg step up 
procedure (Benjamini & Hochberg, 1995). Pearson’s r staGsGc were used to test correlaGons between two 
variables. The hypergeometric test was used to test enrichment. AssociaGon between categorical variables 
were evaluated with the chi-square test. Hierarchical clustering was performed using the correlaGon distance 
and average linkage approaches. 
 
MiRNA target predic8on and pathway enrichment. 
 
MiRNA targets were predicted computaGonally using the DIANA-microTv5.0 server using a microT threshold of 
0.7 (Paraskevopoulou et al., 2013). The threshold was tuned to maximize the number of targets per miRNA in 
the candidate profiles to between 500 and 1500.  
 
FuncGonal annotaGon of miRNA target genes was performed using DIANA-miRPath v3.0 (Vlachos et al., 2015). 
Genesets from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases 
were analyzed on the DIANA web server using both standard hypergeometric distribuGons and more stringent 
unbiased empirical distribuGons to account for biases encountered by tradiGonal enrichment staGsGcs with 
miRNA target gene sets (Ashburner et al., 2000; Bleazard et al., 2015; ConsorGum, 2021; Kanehisa et al., 2023; 
Kanehisa & Goto, 2000; Paraskevopoulou et al., 2013). MiRPath analysis was run using the meta-analysis 
pathways union analysis mode for the hypergeometric distribuGon and empirical distribuGon tests. The meta-
analysis approach pools pathway enrichment from each miRNA’s target set and then provides a single 
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enrichment esGmate for the enGre miRNA profile, similar to a meta-analysis. Clustered heatmaps depicGng the 
significantly enriched pathways was generated using the MiRPath server. 
 
Predic8ve biomarker discovery. 
 
The Profiling RelaGve InhibiGon Simultaneously in Mixtures (PRISM) secondary screen with dose-dependent 
drug response informaGon and the Broad InsGtute-NovarGs InsGtutes for BioMedical Research Cancer Cell Line 
Encyclopedia (CCLE) project NanoString miRNA data were downloaded from the Cancer Dependency Map 
(DepMap) data portal (BarreGna et al., 2012; Corsello et al., 2020; Ghandi et al., 2019; Tsherniak et al., 2017; 
Yu et al., 2016). 
 
Normalized miRNA levels and drug response area under the curve (AUC) values were used for analysis. Prior to 
modelling response to a given drug, two thirds of available cell lines with drug sensiGvity data were randomly 
assigned to a training set and the other third to a test set, while maintaining proporGonal Gssue type 
representaGon in each set. Simple linear regression was performed using the glmnet R package using miRNAs 
to predict drug response AUC values in the training set (Friedman et al., 2010). The resulGng models were then 
tested in the staGsGcally independent test set. The models were also tested in the small number of available 
osteosarcoma cell lines. These osteosarcoma cell lines were not excluded from the test set as it was 
theoreGcally advantageous to use these most representaGve datapoints in model training. StaGsGcal tesGng of 
the models was not performed in this small subset of cell lines for this reason, as well as the small sample size, 
avoiding circular logic. 
 
ConnecGvity Map (CMap) analysis using miRNA gene targets was performed on the CLUE.io web server CLUE 
Query app (Lamb et al., 2006; Subramanian et al., 2005, 2017). The query was performed with the L1000 
Touchstone CMap LINCS 2020 dataset and individual query mode. 
 
Sta8s8cal soVware. 
Analysis was performed using SPSS version 24, and NCI BRB-ArrayTools v4.6.0 (Simon et al., 2007), CLUE.io web 
server (Subramanian et al., 2017), DIANA web server (Paraskevopoulou et al., 2013), and R version 3.5.1 and 
4.1.0 with packages amap (Lucas, 2019), dendsort (Sakai et al., 2014), DESeq2 (Love et al., 2014), 
EnhancedVolcano (Blighe et al., 2021), ggplot2 (Wickham, 2009), glmnet (Friedman et al., 2010), hmisc (Harrell 
& Dupont, 2021), limma (Ritchie et al., 2015) , lumi (Du et al., 2008), miRBaseConverter (T. Xu et al., 2018), 
pheatmap (Kolde, 2019), and RColorBrewer (Neuwirth, 2014). 
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DATA AVAILABILTY 
The Longwood dataset has been deposited in the Gene Expression Omnibus and is publicly available under 
accession GSE39058. The CCLE miRNA and PRISM drug response datasets are available through the Broad 
InsGtute DepMap Portal (hUps://depmap.org/portal/). The results published here are in part based upon data 
generated by the TherapeuGcally Applicable Research to Generate EffecGve Treatments 
(hUps://ocg.cancer.gov/programs/target) iniGaGve, phs000218. The data used for this analysis are available 
at hUps://portal.gdc.cancer.gov/projects.   
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TABLES 
 
Table 1. CharacterisGcs of the MGH and Longwood datasets. 

Dataset MGH Longwood 
sample type frozen FFPE 

miRNA assay sRNA-seq Illumina Human v2 MicroRNA 
Expression BeadChip 

n (biopsy) 7 26 
n (resection) 7 26 

mRNA assay none Illumina HT-12 WG_DASL v4.0 R2 
Expression BeadChip 

n (biopsy) NA 22 
n (resection) NA 5 

sex     
male 6 11 

female 1 15 
age     

median 16 12.5 
range 14-60 4-71 

median necrosis 75 50 
recurrence (percent) 71.4 61.5 

death (percent) 71.4 34.6 
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Table 2. The 17 CDCRP miRNAs. Fold change (FC) color coding is carried over from Fig. 1. FC values were 
calculated as pre-chemotherapy / post-chemotherapy, so posiGve log2(FC) values indicate greater expression in 
the pre-chemotherapy samples (blue), and negaGve log2(FC) indicate greater expression in the post-
chemotherapy samples (red). 

 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309087doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Table 3. CDCRP miRNA anGcorrelated gene targets significantly differenGally expressed (DE) with expected fold 
change (FC) direcGon between pre and post chemotherapy specimens in the Longwood (LW) dataset. 
 

 
 
  

miR gene DE log2(FC) DE p TARGET r TARGET p LW r LW p
miR_15b_5p SLC29A2 -1.4739 0.0065 -0.2537 0.0099 -0.4121 0.0096
miR_15b_5p DNAJC5 -1.2176 0.0550 -0.2124 0.0262 -0.2998 0.0478
miR_130b_3p FASTK -1.1203 0.0741 -0.1900 0.0418 -0.3724 0.0179
miR_105_5p BRIP1 -1.5564 0.0089 -0.1901 0.0417 -0.4909 0.0022
miR_105_5p WAC -1.1844 0.0192 -0.2615 0.0081 -0.4284 0.0072
miR_105_5p NAA50 -1.3219 0.0635 -0.2208 0.0218 -0.4156 0.0090
miR_105_5p PPIE -1.4344 0.0736 -0.2016 0.0329 -0.3372 0.0296
let_7d_5p ZFYVE16 -1.3959 0.0076 -0.1816 0.0491 -0.3560 0.0228

miR_654_5p TANK 1.8639 0.0261 -0.3266 0.0012 -0.4712 0.0032
miR_654_5p EFNA1 1.5361 0.0390 -0.4377 1.57E-05 -0.3133 0.0404
miR_654_5p PTPRD 1.0426 0.0405 -0.2364 0.0152 -0.3230 0.0357
miR_654_5p TNK2 2.9069 0.0878 -0.2890 0.0038 -0.3612 0.0211
miR_149_5p LARP4 -1.4344 0.0004 -0.2573 0.0091 -0.4783 0.0028
miR_149_5p PANX1 -1.8365 0.0006 -0.2624 0.0079 -0.4777 0.0028
miR_149_5p FLNA -1.9434 0.0134 -0.2728 0.0060 -0.6079 0.0001
miR_149_5p CHCHD3 -1.6439 0.0631 -0.2186 0.0229 -0.3452 0.0265
miR_149_5p PHACTR4 -1.4739 0.0823 -0.2207 0.0218 -0.6056 0.0001
miR_454_3p WDR47 -1.1520 0.0010 -0.2070 0.0294 -0.5642 0.0004
miR_454_3p RTKN -1.1844 0.0079 -0.2139 0.0254 -0.4173 0.0087
miR_7_5p CAMKK2 -1.3959 0.0022 -0.2738 0.0059 -0.6287 0.0001
miR_7_5p ZMAT3 -1.4344 0.0098 -0.2196 0.0224 -0.5634 0.0004
miR_7_5p WDFY3 -1.0589 0.0202 -0.2470 0.0117 -0.4016 0.0114
miR_7_5p POLH -1.1203 0.0552 -0.1820 0.0488 -0.6536 2.49E-05
miR_7_5p TNRC6B -1.0589 0.0752 -0.2007 0.0336 -0.3168 0.0386

miR_374b_5p ZNF644 -1.7859 0.0020 -0.2039 0.0314 -0.3173 0.0384
miR_374b_5p BRIP1 -1.5564 0.0089 -0.2773 0.0053 -0.4662 0.0036
miR_374b_5p LYSMD3 -1.1844 0.0875 -0.3364 0.0009 -0.5243 0.0010
miR_654_3p HEY2 4.2965 0.0190 -0.3309 0.0011 -0.3422 0.0276
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Table 4. CDCRP miRNA based predicGve drug response model performance in the training, test, and 
osteosarcoma (OSA) cell line sets.  
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Table 5. PrognosGc 22-miRNA profile based predicGve drug response model performance in the training, test, 
and osteosarcoma (OSA) cell line sets.  
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FIGURES 
 
 

Figure 1. Defining a consensus dynamic chemoresponse profile through miRNA differenGal expression analysis 
in the MGH and Longwood Datasets. a Volcano plot of paired differenGal miRNA expression between biopsy 
and resecGon samples from chemotherapy treated paGents in the MGH dataset. b Volcano plot of paired 
differenGal miRNA expression between biopsy and resecGon samples from chemotherapy treated paGents in 
the Longwood dataset. Dashed lines at p = 0.05. 
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Figure 2. CDCRP expression profiles in the MGH and Longwood datasets. a Hierarchical clustering of the MGH 
chemotherapy treated cohort using expression levels of the CDCRP miRNAs. b Hierarchical clustering of the 
Longwood cohort using expression levels of the CDCRP miRNAs. 
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Figure 3. DifferenGal expression of the CDCRP miRNA anGcorrelated gene targets in the five chemotherapy 
treated pairs with both miRNA and gene expression profiling in the Longwood dataset which were not used for 
correlaGon analysis. 
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Figure 4. Clustered heatmap of a KEGG and b GO terms significantly enriched (FDR < 0.05) in the CDCRP miRNA 
gene target set by miRPath hypergeometric meta-analysis. 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309087doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
REFERENCES 
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. 
S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., 
Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene Ontology: tool for the unificaGon of biology. Nature 
GeneGcs, 25(1), 25–29. hUps://doi.org/10.1038/75556 
Bacci, G., Bertoni, F., Longhi, A., Ferrari, S., Forni, C., Biagini, R., Bacchini, P., DonaG, D., Manfrini, M., Bernini, 
G., & Lari, S. (2003). Neoadjuvant chemotherapy for high-grade central osteosarcoma of the extremity. 
Histologic response to preoperaGve chemotherapy correlates with histologic subtype of the tumor. Cancer, 
97(12), 3068–3075. hUps://doi.org/10.1002/cncr.11456 
BarreGna, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehar, J., Kryukov, 
G. v, Sonkin, D., Reddy, A., Liu, M., Murray, L., Berger, M. F., Monahan, J. E., Morais, P., Meltzer, J., Korejwa, A., 
Jane-Valbuena, J., … Garraway, L. A. (2012). The Cancer Cell Line Encyclopedia enables predicGve modelling of 
anGcancer drug sensiGvity. Nature, 483(7391), 603–607. hUps://doi.org/nature11003 [pii] 
10.1038/nature11003 
Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature Medicine, 23(10), 1124–1134. 
hUps://doi.org/10.1038/nm.4409 
Beird, H. C., Bielack, S. S., Flanagan, A. M., Gill, J., Heymann, D., Janeway, K. A., Livingston, J. A., Roberts, R. D., 
Strauss, S. J., & Gorlick, R. (2022). Osteosarcoma. Nature Reviews Disease Primers, 8(1), 77. 
hUps://doi.org/10.1038/s41572-022-00409-y 
Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A PracGcal and Powerful Approach to 
MulGple TesGng. Journal of the Royal StaGsGcal Society. Series B (Methodological), 57(1), 289–300. 
hUp://www.jstor.org/stable/2346101 
Bertoni, F., & Bacchini, P. (1998). ClassificaGon of bone tumors. European Journal of Radiology, 27, S74–S76. 
hUps://doi.org/10.1016/S0720-048X(98)00046-1 
BhaGa, V., Yadav, A., Tiwari, R., Nigam, S., Goel, S., Carskadon, S., Gupta, N., Goel, A., Palanisamy, N., & Ateeq, 
B. (2019). EpigeneGc Silencing of miRNA-338-5p and miRNA-421 Drives SPINK1-PosiGve Prostate Cancer. 
Clinical Cancer Research, 25(9), 2755–2768. hUps://doi.org/10.1158/1078-0432.CCR-18-3230 
Bielack, S. S., Smeland, S., Whelan, J. S., Marina, N., Jovic, G., Hook, J. M., Krailo, M. D., Gebhardt, M., Papai, Z., 
Meyer, J., Nadel, H., Randall, R. L., Deffenbaugh, C., Nagarajan, R., Brennan, B., Letson, G. D., Teot, L. A., Goorin, 
A., Baumhoer, D., … invesGgators, E.-. (2015). Methotrexate, Doxorubicin, and CisplaGn (MAP) Plus 
Maintenance Pegylated Interferon Alfa-2b Versus MAP Alone in PaGents With Resectable High-Grade 
Osteosarcoma and Good Histologic Response to PreoperaGve MAP: First Results of the EURAMOS-1 Good 
Response Randomized Controlled Trial. Journal of Clinical Oncology, 33(20), 2279–2287. 
hUps://doi.org/10.1200/JCO.2014.60.0734 
Bishop, M. W., Janeway, K. A., & Gorlick, R. (2016). Future direcGons in the treatment of osteosarcoma. Current 
Opinions in Pediatrics, 28(1), 26–33. hUps://doi.org/10.1097/MOP.0000000000000298 [doi] 
Bleazard, T., Lamb, J. A., & Griffiths-Jones, S. (2015). Bias in microRNA funcGonal enrichment analysis. 
BioinformaGcs, 31(10), 1592–1598. hUps://doi.org/10.1093/bioinformaGcs/btv023 
Blighe, K., Rana, S., & Lewis, M. (2021). EnhancedVolcano: publicaGon-ready volcano plots with enhanced 
colouring and labelling. hUps://github.com/kevinblighe/EnhancedVolcano 
Brown, H. K., Tellez-Gabriel, M., & Heymann, D. (2017). Cancer stem cells in osteosarcoma. Cancer LeUers, 386, 
189–195. hUps://doi.org/hUps://doi.org/10.1016/j.canlet.2016.11.019 
Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6(11), 857–
866. hUps://doi.org/nrc1997 [pii] 10.1038/nrc1997 
Calin, G. A., Ferracin, M., Cimmino, A., di Leva, G., Shimizu, M., Wojcik, S. E., Iorio, M. v, Visone, R., Sever, N. I., 
Fabbri, M., Iuliano, R., Palumbo, T., Pichiorri, F., Roldo, C., Garzon, R., Sevignani, C., RassenG, L., Alder, H., 
Volinia, S., … Croce, C. M. (2005). A MicroRNA signature associated with prognosis and progression in chronic 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309087doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/


lymphocyGc leukemia. New England Journal of Medicine, 353(17), 1793–1801. hUps://doi.org/353/17/1793 
[pii] 10.1056/NEJMoa050995 
Cao, Z. G., Li, J. J., Yao, L., Huang, Y. N., Liu, Y. R., Hu, X., Song, C. G., & Shao, Z. M. (2016). High expression of 
microRNA-454 is associated with poor prognosis in triple-negaGve breast cancer. Oncotarget, 7(40), 64900–
64909. 
Carter, L. E., Kilroy, G., Gimble, J. M., & Floyd, Z. E. (2012). An improved method for isolaGon of RNA from bone. 
BMC Biotechnology, 12, 5. hUps://doi.org/1472-6750-12-5 [pii] 10.1186/1472-6750-12-5 [doi] 
Chauveinc, L., Mosseri, V., Quintana, E., Desjardins, L., Schlienger, P., Doz, F., & Dutrillaux, B. (2001). 
Osteosarcoma following reGnoblastoma: Age at onset and latency period. Ophthalmic GeneGcs, 22(2), 77–88. 
hUps://doi.org/10.1076/opge.22.2.77.2228 
Chen, X., Bahrami, A., Pappo, A., Easton, J., Dalton, J., Hedlund, E., Ellison, D., Shurtleff, S., Wu, G., Wei, L., 
Parker, M., Rusch, M., NagahawaUe, P., Wu, J., Mao, S., Boggs, K., Mulder, H., Yergeau, D., Lu, C., … st. Jude 
Childrenâ€TMs Research Hospitalâ€“Washington University Pediatric Cancer Genome, P. (2014). Recurrent 
somaGc structural variaGons contribute to tumorigenesis in pediatric osteosarcoma. Cell Reports, 7(1), 104–
112. hUps://doi.org/10.1016/j.celrep.2014.03.003 
Chen, Y., Ren, C., Yang, L., Nai, M., Xu, Y., Zhang, F., & Liu, Y. (2019). MicroRNA let 7d 5p rescues ovarian cancer 
cell apoptosis and restores chemosensiGvity by regulaGng the p53 signaling pathway via HMGA1. InternaGonal 
Journal of Oncology, 54(5), 1771–1784. 
Cole, S., Gianferante, D. M., Zhu, B., & Mirabello, L. (2022). Osteosarcoma: a Surveillance, Epidemiology, and 
End Results program-based analysis from 1975 to 2017. Cancer, n/a(n/a). 
hUps://doi.org/hUps://doi.org/10.1002/cncr.34163 
ConsorGum, T. G. O. (2021). The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Research, 
49(D1), D325–D334. hUps://doi.org/10.1093/nar/gkaa1113 
Corsello, S. M., BiUker, J. A., Liu, Z., Gould, J., McCarren, P., Hirschman, J. E., Johnston, S. E., Vrcic, A., Wong, B., 
Khan, M., Asiedu, J., Narayan, R., Mader, C. C., Subramanian, A., & Golub, T. R. (2017). The Drug Repurposing 
Hub: a next-generaGon drug library and informaGon resource. Nature Medicine, 23(4), 405–408. 
hUps://doi.org/nm.4306 [pii] 10.1038/nm.4306 
Corsello, S. M., Nagari, R. T., Spangler, R. D., Rossen, J., Kocak, M., Bryan, J. G., Humeidi, R., Peck, D., Wu, X., 
Tang, A. A., Wang, V. M., Bender, S. A., Lemire, E., Narayan, R., Montgomery, P., Ben-David, U., Garvie, C. W., 
Chen, Y., Rees, M. G., … Golub, T. R. (2020). Discovering the anGcancer potenGal of non-oncology drugs by 
systemaGc viability profiling. Nature Cancer, 1(2), 235–248. hUps://doi.org/10.1038/s43018-019-0018-6 
Du, P., Kibbe, W. A., & Lin, S. M. (2008). lumi: a pipeline for processing Illumina microarray. BioinformaGcs, 
24(13), 1547–1548. hUps://doi.org/btn224 [pii] 10.1093/bioinformaGcs/btn224 
Duan, Z., Gao, Y., Shen, J., Choy, E., Cote, G., Harmon, D., Bernstein, K., Lozano-Calderon, S., Mankin, H., & 
Hornicek, F. J. (2017). miR-15b modulates mulGdrug resistance in human osteosarcoma in vitro and in vivo. 
Molecular Oncology, 11(2), 151–166. hUps://doi.org/hUps://doi.org/10.1002/1878-0261.12015 
Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs — microRNAs with a role in cancer. Nature Reviews Cancer, 
6(4), 259–269. hUps://doi.org/10.1038/nrc1840 
Fan, J.-B., Yeakley, J. M., Bibikova, M., Chudin, E., Wickham, E., Chen, J., Doucet, D., Rigault, P., Zhang, B., Shen, 
R., McBride, C., Li, H.-R., Fu, X.-D., Oliphant, A., Barker, D. L., & Chee, M. S. (2004). A VersaGle Assay for High-
Throughput Gene Expression Profiling on Universal Array Matrices. Genome Research, 14(5), 878–885. 
Feng, W., Dean, D. C., Hornicek, F. J., Spentzos, D., Hoffman, R. M., Shi, H., & Duan, Z. (2020). Myc is a 
prognosGc biomarker and potenGal therapeuGc target in osteosarcoma. TherapeuGc Advances in Medical 
Oncology, 12, 1758835920922055–1758835920922055. hUps://doi.org/10.1177/1758835920922055 
Friedman, J. H., HasGe, T., & Tibshirani, R. (2010). RegularizaGon Paths for Generalized Linear Models via 
Coordinate Descent. Journal of StaGsGcal Sobware, 33(1), 1–22. hUps://doi.org/10.18637/jss.v033.i01 
German, J. (1997). Bloom’s syndrome. XX. The first 100 cancers. Cancer GeneGcs and CytogeneGcs, 93(1), 100–
106. hUps://doi.org/hUps://doi.org/10.1016/S0165-4608(96)00336-6 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309087doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ghandi, M., Huang, F. W., Jane-Valbuena, J., Kryukov, G. v, Lo, C. C., McDonald 3rd, E. R., BarreGna, J., Gelfand, 
E. T., Bielski, C. M., Li, H., Hu, K., Andreev-Drakhlin, A. Y., Kim, J., Hess, J. M., Haas, B. J., Aguet, F., Weir, B. A., 
Rothberg, M. v, Paolella, B. R., … Sellers, W. R. (2019). Next-generaGon characterizaGon of the Cancer Cell Line 
Encyclopedia. Nature, 569(7757), 503–508. hUps://doi.org/10.1038/s41586-019-1186-3 [doi] 10.1038/s41586-
019-1186-3 [pii] 
Gill, J., & Gorlick, R. (2021). Advancing therapy for osteosarcoma. Nature Reviews Clinical Oncology, 18(10), 
609–624. hUps://doi.org/10.1038/s41571-021-00519-8 
Glaich, O., Parikh, S., Bell, R. E., Mekahel, K., Donyo, M., Leader, Y., Shayevitch, R., Sheinboim, D., Yannai, S., 
Hollander, D., Melamed, Z., Lev-Maor, G., Ast, G., & Levy, C. (2019). DNA methylaGon directs microRNA 
biogenesis in mammalian cells. Nature CommunicaGons, 10(1), 5657. hUps://doi.org/10.1038/s41467-019-
13527-1 
Hanahan, D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12(1), 31–46. 
hUps://doi.org/10.1158/2159-8290.CD-21-1059 
Harrell, F., & Dupont, C. (2021). Harrell Miscellaneous. hUps://cran.r-
project.org/web/packages/Hmisc/index.html 
Hill, K. E., Kelly, A. D., Kuijjer, M. L., Barry, W., RaUani, A., GarbuU, C. C., Kissick, H., Janeway, K., Perez-Atayde, 
A., Goldsmith, J., Gebhardt, M. C., Arredouani, M. S., Cote, G., Hornicek, F., Choy, E., Duan, Z., Quackenbush, J., 
Haibe-Kains, B., & Spentzos, D. (2017). An imprinted non-coding genomic cluster at 14q32 defines clinically 
relevant molecular subtypes in osteosarcoma across mulGple independent datasets. Journal of Hematology & 
Oncology, 10(1), 107. hUps://doi.org/10.1186/s13045-017-0465-4 10.1186/s13045-017-0465-4 [pii] 
Hou, N., Han, J., Li, J., Liu, Y., Qin, Y., Ni, L., Song, T., & Huang, C. (2014). MicroRNA Profiling in Human Colon 
Cancer Cells during 5-Fluorouracil-Induced Autophagy. PLOS ONE, 9(12), e114779-. 
hUps://doi.org/10.1371/journal.pone.0114779 
Ishikawa, Y., Miller, R. W., Machinami, R., Sugano, H., & Goto, M. (2000). Atypical Osteosarcomas in Werner 
Syndrome (Adult Progeria). Japanese Journal of Cancer Research, 91(12), 1345–1349. 
hUps://doi.org/hUps://doi.org/10.1111/j.1349-7006.2000.tb00924.x 
Ji, D., Zhan, T., Li, M., Yao, Y., Jia, J., Yi, H., Qiao, M., Xia, J., Zhang, Z., Ding, H., Song, C., Han, Y., & Gu, J. (2018). 
Enhancement of SensiGvity to Chemo/RadiaGon Therapy by Using miR-15b against DCLK1 in Colorectal Cancer. 
Stem Cell Reports, 11(6), 1506–1522. hUps://doi.org/hUps://doi.org/10.1016/j.stemcr.2018.10.015 
Jin, Y., Wei, J., Xu, S., Guan, F., Yin, L., & Zhu, H. (2019). miR 210 3p regulates cell growth and affects cisplaGn 
sensiGvity in human ovarian cancer cells via targeGng E2F3. Molecular Medicine Reports, 19(6), 4946–4954. 
Johnstone, S. E., Reyes, A., Qi, Y., Adriaens, C., Hegazi, E., Pelka, K., Chen, J. H., Zou, L. S., Drier, Y., Hecht, V., 
Shoresh, N., Selig, M. K., Lareau, C. A., Iyer, S., Nguyen, S. C., Joyce, E. F., Hacohen, N., Irizarry, R. A., Zhang, B., 
… Bernstein, B. E. (2020). Large-Scale Topological Changes Restrain Malignant Progression in Colorectal Cancer. 
Cell, 182(6), 1474-1489.e23. hUps://doi.org/hUps://doi.org/10.1016/j.cell.2020.07.030 
Jonas, S., & Izaurralde, E. (2015). Towards a molecular understanding of microRNA-mediated gene silencing. 
Nature Reviews GeneGcs, 16(7), 421–433. hUps://doi.org/10.1038/nrg3965 
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-
based analysis of pathways and genomes. Nucleic Acids Research, 51(D1), D587–D592. 
hUps://doi.org/10.1093/nar/gkac963 
Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 
28(1), 27–30. hUps://doi.org/10.1093/nar/28.1.27 
Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., & Tanabe, M. (2019). New approach for understanding 
genome variaGons in KEGG. Nucleic Acids Research, 47(D1), D590–D595. hUps://doi.org/5128935 [pii] 
10.1093/nar/gky962 [doi] 
Kelly, A. D., Haibe-Kains, B., Janeway, K. A., Hill, K. E., Howe, E., Goldsmith, J., Kurek, K., Perez-Atayde, A. R., 
Francoeur, N., Fan, J. B., April, C., Schneider, H., Gebhardt, M. C., Culhane, A., Quackenbush, J., & Spentzos, D. 
(2013). MicroRNA paraffin-based studies in osteosarcoma reveal reproducible independent prognosGc profiles 
at 14q32. Genome Medicine, 5(1), 2. hUps://doi.org/gm406 [pii] 10.1186/gm406 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309087doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kolde, R. (2019). PreUy Heatmaps. hUps://cran.r-project.org/web/packages/pheatmap/index.html 
Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to funcGon. 
Nucleic Acids Research, 47(D1), D155–D162. hUps://doi.org/5179337 [pii] 10.1093/nar/gky1141 [doi] 
Lai, J., Yang, H., Zhu, Y., Ruan, M., Huang, Y., & Zhang, Q. (2019). MiR-7-5p-mediated downregulaGon of PARP1 
impacts DNA homologous recombinaGon repair and resistance to doxorubicin in small cell lung cancer. BMC 
Cancer, 19(1), 602. hUps://doi.org/10.1186/s12885-019-5798-7 
Lamb, J., Crawford, E. D., Peck, D., Modell, J. W., Blat, I. C., Wrobel, M. J., Lerner, J., Brunet, J.-P., Subramanian, 
A., Ross, K. N., Reich, M., Hieronymus, H., Wei, G., Armstrong, S. A., Haggarty, S. J., Clemons, P. A., Wei, R., Carr, 
S. A., Lander, E. S., & Golub, T. R. (2006). The ConnecGvity Map: Using Gene-Expression Signatures to Connect 
Small Molecules, Genes, and Disease. Science, 313(5795), 1929–1935. 
hUps://doi.org/10.1126/science.1132939 
Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short 
DNA sequences to the human genome. Genome Biology, 10(3), R25. hUps://doi.org/gb-2009-10-3-r25 [pii] 
10.1186/gb-2009-10-3-r25 
Larizza, L., Roversi, G., & Volpi, L. (2010). Rothmund-Thomson syndrome. Orphanet Journal of Rare Diseases, 
5(1), 2. hUps://doi.org/10.1186/1750-1172-5-2 
Li, F. P., Fraumeni Jr., J. F., Mulvihill, J. J., BlaUner, W. A., Dreyfus, M. G., Tucker, M. A., & Miller, R. W. (1988). A 
Cancer Family Syndrome in Twenty-four Kindreds1. Cancer Research, 48(18), 5358–5362. 
Li, H.-Y., Liang, J.-L., Kuo, Y.-L., Lee, H.-H., Calkins, M. J., Chang, H.-T., Lin, F.-C., Chen, Y.-C., Hsu, T.-I., Hsiao, M., 
Ger, L.-P., & Lu, P.-J. (2017). miR-105/93-3p promotes chemoresistance and circulaGng miR-105/93-3p acts as a 
diagnosGc biomarker for triple negaGve breast cancer. Breast Cancer Research, 19(1), 133. 
hUps://doi.org/10.1186/s13058-017-0918-2 
Lietz, C. E., GarbuU, C., Barry, W. T., Deshpande, V., Chen, Y.-L., Lozano-Calderon, S. A., Wang, Y., Lawney, B., 
Ebb, D., Cote, G. M., Duan, Z., Hornicek, F. J., Choy, E., Nielsen, G. P., Haibe-Kains, B., Quackenbush, J., & 
Spentzos, D. (2020). MicroRNA-mRNA networks define translatable molecular outcome phenotypes in 
osteosarcoma. ScienGfic Reports, 10(4409). hUps://doi.org/hUps://doi.org/10.1038/s41598-020-61236-3 
Lietz, C. E., Newman, E. T., Kelly, A. D., Xiang, D. H., Zhang, Z., Luscko, C. A., Lozano-Calderon, S. A., Ebb, D. H., 
Raskin, K. A., Cote, G. M., Choy, E., Nielsen, G. P., Haibe-Kains, B., Aryee, M. J., & Spentzos, D. (2022). Genome-
wide DNA methylaGon paUerns reveal clinically relevant predicGve and prognosGc subtypes in human 
osteosarcoma. CommunicaGons Biology, 5(1), 213. hUps://doi.org/10.1038/s42003-022-03117-1 
Lin, S. M., Du, P., Huber, W., & Kibbe, W. A. (2008). Model-based variance-stabilizing transformaGon for Illumina 
microarray data. Nucleic Acids Research, 36(2), e11. hUps://doi.org/gkm1075 [pii] 10.1093/nar/gkm1075 
Lipton, J. M., Federman, N., Khabbaze, Y., Schwartz, C. L., Hilliard, L. M., Clark, J. I., & Vlachos, A. (2001). 
Osteogenic Sarcoma Associated With Diamond[ndash]Blackfan Anemia[colon] A Report From the 
Diamond[ndash]Blackfan Anemia Registry. Journal of Pediatric Hematology/Oncology, 23(1). 
hUps://journals.lww.com/jpho-online/Fulltext/2001/01000/Osteogenic_Sarcoma_Associated_With.9.aspx 
Liu, J., Valencia-Sanchez, M. A., Hannon, G. J., & Parker, R. (2005). MicroRNA-dependent localizaGon of 
targeted mRNAs to mammalian P-bodies. Nature Cell Biology, 7(7), 719–723. hUps://doi.org/10.1038/ncb1274 
Livak, K. J., & SchmiUgen, T. D. (2001). Analysis of relaGve gene expression data using real-Gme quanGtaGve 
PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402–408. hUps://doi.org/10.1006/meth.2001.1262 
[doi] S1046-2023(01)91262-9 [pii] 
Lorenz, S., Baroy, T., Sun, J., Nome, T., Vodak, D., Bryne, J. C., Hakelien, A. M., Fernandez-Cuesta, L., 
Mohlendick, B., Rieder, H., Szuhai, K., Zaikova, O., Ahlquist, T. C., Thomassen, G. O., Skotheim, R. I., Lothe, R. A., 
Tarpey, P. S., Campbell, P., Flanagan, A., … Meza-Zepeda, L. A. (2016). Unscrambling the genomic chaos of 
osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 
aberraGons. Oncotarget, 7(5), 5273–5288. hUps://doi.org/6567 [pii] 10.18632/oncotarget.6567 [doi] 
Love, M. I., Huber, W., & Anders, S. (2014). Moderated esGmaGon of fold change and dispersion for RNA-seq 
data with DESeq2. Genome Biology, 15(12), 550. hUps://doi.org/s13059-014-0550-8 [pii] 10.1186/s13059-014-
0550-8 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309087doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lozano Calderon, S. A., GarbuU, C., Kim, J., Lietz, C. E., Chen, Y. L., Bernstein, K., Chebib, I., Nielsen, G. P., 
Deshpande, V., Rubio, R., Wang, Y. E., Quackenbush, J., Delaney, T., Raskin, K., Schwab, J., Cote, G., & Spentzos, 
D. (2019). Clinical and Molecular Analysis of Pathologic Fracture-associated Osteosarcoma: MicroRNA profile Is 
Different and Correlates with Prognosis. Clinical Orthopaedics and Related Research, 477(9), 2114–2126. 
hUps://doi.org/10.1097/CORR.0000000000000867 [doi] 
Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., 
Ferrando, A. A., Downing, J. R., Jacks, T., Horvitz, H. R., & Golub, T. R. (2005). MicroRNA expression profiles 
classify human cancers. Nature, 435(7043), 834–838. hUps://doi.org/nature03702 [pii] 10.1038/nature03702 
Lu, M., Wang, C., Chen, W., Mao, C., & Wang, J. (2018). miR-654-5p Targets GRAP to Promote ProliferaGon, 
Metastasis, and Chemoresistance of Oral Squamous Cell Carcinoma Through Ras/MAPK Signaling. DNA and Cell 
Biology, 37(4), 381–388. hUps://doi.org/10.1089/dna.2017.4095 
Lucas, A. (2019). Another MulGdimensional Analysis Package. hUps://cran.r-
project.org/web/packages/amap/index.html 
Marina, N. M., Smeland, S., Bielack, S. S., Bernstein, M., Jovic, G., Krailo, M. D., Hook, J. M., Arndt, C., van den 
Berg, H., Brennan, B., Brichard, B., Brown, K. L., BuUerfass-Bahloul, T., Calaminus, G., Daldrup-Link, H. E., 
Eriksson, M., Gebhardt, M. C., Gelderblom, H., Gerss, J., … Whelan, J. S. (2016). Comparison of MAPIE versus 
MAP in paGents with a poor response to preoperaGve chemotherapy for newly diagnosed high-grade 
osteosarcoma (EURAMOS-1): an open-label, internaGonal, randomised controlled trial. Lancet Oncology, 
17(10), 1396–1408. hUps://doi.org/S1470-2045(16)30214-5 [pii] 10.1016/S1470-2045(16)30214-5 
Meltzer, P. S., & Helman, L. J. (2021). New Horizons in the Treatment of Osteosarcoma. New England Journal of 
Medicine, 385(22), 2066–2076. hUps://doi.org/10.1056/NEJMra2103423 
Mi, S., Lu, J., Sun, M., Li, Z., Zhang, H., Neilly, M. B., Wang, Y., Qian, Z., Jin, J., Zhang, Y., Bohlander, S. K., le Beau, 
M. M., Larson, R. A., Golub, T. R., Rowley, J. D., & Chen, J. (2007). MicroRNA expression signatures accurately 
discriminate acute lymphoblasGc leukemia from acute myeloid leukemia. Proceedings of the NaGonal Academy 
of Sciences, 104(50), 19971–19976. hUps://doi.org/0709313104 [pii] 10.1073/pnas.0709313104 
Mirabello, L., Troisi, R. J., & Savage, S. A. (2009). Osteosarcoma incidence and survival rates from 1973 to 2004: 
data from the Surveillance, Epidemiology, and End Results Program. Cancer, 115(7), 1531–1543. 
hUps://doi.org/10.1002/cncr.24121 
Mirabello, L., Zhu, B., Koster, R., Karlins, E., Dean, M., Yeager, M., Gianferante, M., Spector, L. G., Morton, L. M., 
Karyadi, D., Robison, L. L., Armstrong, G. T., BhaGa, S., Song, L., Pankratz, N., Pinheiro, M., GasGer-Foster, J. M., 
Gorlick, R., de Toledo, S. R. C., … Savage, S. A. (2020). Frequency of Pathogenic Germline Variants in Cancer-
SuscepGbility Genes in PaGents With Osteosarcoma. JAMA Oncology, 6(5), 724–734. hUps://doi.org/2762589 
[pii] coi200005 [pii] 10.1001/jamaoncol.2020.0197 [doi] 
Neuwirth, E. (2014). ColorBrewer PaleUes. hUps://cran.r-project.org/web/packages/RColorBrewer/index.html 
Niu, Y., Tong, J., Shi, X., & Zhang, T. (2020). MicroRNA 654 3p enhances cisplaGn sensiGvity by targeGng QPRT 
and inhibiGng the PI3K/AKT signaling pathway in ovarian cancer cells. Experimental and TherapeuGc Medicine, 
20(2), 1467–1479. 
Ooi, C. H., Oh, H. K., Wang, H. Z., Tan, A. L., Wu, J., Lee, M., Rha, S. Y., Chung, H. C., Virshup, D. M., & Tan, P. 
(2011). A densely interconnected genome-wide network of microRNAs and oncogenic pathways revealed using 
gene expression signatures. PLoS GeneGcs, 7(12), e1002415. hUps://doi.org/10.1371/journal.pgen.1002415 
PGENETICS-D-11-00909 [pii] 
Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., Baehner, F. L., Walker, M. G., Watson, D., Park, T., Hiller, 
W., Fisher, E. R., Wickerham, D. L., Bryant, J., & Wolmark, N. (2004). A mulGgene assay to predict recurrence of 
tamoxifen-treated, node-negaGve breast cancer. New England Journal of Medicine, 351(27), 2817–2826. 
hUps://doi.org/NEJMoa041588 [pii] 10.1056/NEJMoa041588 
Paraskevopoulou, M. D., Georgakilas, G., Kostoulas, N., Vlachos, I. S., Vergoulis, T., Reczko, M., Filippidis, C., 
Dalamagas, T., & Hatzigeorgiou, A. G. (2013). DIANA-microT web server v5.0: service integraGon into miRNA 
funcGonal analysis workflows. Nucleic Acids Research, 41(W1), W169–W173. 
hUps://doi.org/10.1093/nar/gkt393 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309087doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/


Perry, J. A., Kiezun, A., Tonzi, P., van Allen, E. M., Carter, S. L., Baca, S. C., Cowley, G. S., BhaU, A. S., Rheinbay, E., 
Pedamallu, C. S., Helman, E., Taylor-Weiner, A., McKenna, A., DeLuca, D. S., Lawrence, M. S., Ambrogio, L., 
Sougnez, C., Sivachenko, A., Walensky, L. D., … Janeway, K. A. (2014). Complementary genomic approaches 
highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proceedings of the NaGonal 
Academy of Sciences, 111(51), E5564-73. hUps://doi.org/10.1073/pnas.1419260111 
Picci, P., Sangiorgi, L., Rougraff, B. T., Neff, J. R., Casadei, R., & Campanacci, M. (1994). RelaGonship of 
chemotherapy-induced necrosis and surgical margins to local recurrence in osteosarcoma. Journal of Clinical 
Oncology, 12(12), 2699–2705. hUps://doi.org/10.1200/JCO.1994.12.12.2699 
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differenGal 
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47–e47. 
hUps://doi.org/10.1093/nar/gkv007 
Roberts, R. D., Lizardo, M. M., Reed, D. R., Hingorani, P., Glover, J., Allen-Rhoades, W., Fan, T., Khanna, C., 
Sweet-Cordero, E. A., Cash, T., Bishop, M. W., Hegde, M., SerGl, A. R., Koelsche, C., Mirabello, L., Malkin, D., 
Sorensen, P. H., Meltzer, P. S., Janeway, K. A., … Crompton, B. D. (2019). ProvocaGve quesGons in osteosarcoma 
basic and translaGonal biology: A report from the Children’s Oncology Group. Cancer, 125(20), 3514–3525. 
hUps://doi.org/10.1002/cncr.32351 [doi] 
Rosen, G., Caparros, B., Huvos, A. G., Kosloff, C., Nirenberg, A., Cacavio, A., Marcove, R. C., Lane, J. M., Mehta, 
B., & Urban, C. (1982). PreoperaGve chemotherapy for osteogenic sarcoma: SelecGon of postoperaGve 
adjuvant chemotherapy based on the response of the primary tumor to preoperaGve chemotherapy. Cancer, 
49(6), 1221–1230. hUps://doi.org/hUps://doi.org/10.1002/1097-0142(19820315)49:6<1221::AID-
CNCR2820490625>3.0.CO;2-E 
Rosen, G., Marcove, R. C., Caparros, B., Nirenberg, A., Kosloff, C., & Huvos, A. G. (1979). Primary osteogenic 
sarcoma: the raGonale for preoperaGve chemotherapy and delayed surgery. Cancer, 43(6), 2163–2177. 
hUps://doi.org/10.1002/1097-0142(197906)43:6<2163::aid-cncr2820430602>3.0.co;2-s [doi] 
Rosen, G., Murphy, M. L., Huvos, A. G., GuGerrez, M., & Marcove, R. C. (1976). Chemotherapy, en bloc 
resecGon, and prostheGc bone replacement in the treatment of osteogenic sarcoma. Cancer, 37(1), 1–11. 
hUps://doi.org/hUps://doi.org/10.1002/1097-0142(197601)37:1<1::AID-CNCR2820370102>3.0.CO;2-3 
Rueda, A., Barturen, G., Lebron, R., Gomez-MarGn, C., Alganza, A., Oliver, J. L., & Hackenberg, M. (2015). 
sRNAtoolbox: an integrated collecGon of small RNA research tools. Nucleic Acids Research, 43(W1), W467-73. 
hUps://doi.org/gkv555 [pii] 10.1093/nar/gkv555 [doi] 
Sakai, R., Winand, R., Verbeiren, T., Moere, A. v, & Aerts, J. (2014). dendsort: modular leaf ordering methods 
for dendrogram representaGons in R. F1000Research, 3, 177. hUps://doi.org/10.12688/f1000research.4784.1 
[doi] 
Sarver, A. L., Thayanithy, V., ScoU, M. C., Cleton-Jansen, A. M., Hogendoorn, P. C., Modiano, J. F., & 
Subramanian, S. (2013). MicroRNAs at the human 14q32 locus have prognosGc significance in osteosarcoma. 
Orphanet Journal of Rare Diseases, 8, 7. hUps://doi.org/1750-1172-8-7 [pii] 10.1186/1750-1172-8-7 
Sayles, L. C., Breese, M. R., Koehne, A. L., Leung, S. G., Lee, A. G., Liu, H. Y., Spillinger, A., Shah, A. T., Tanasa, B., 
Straessler, K., Hazard, F. K., Spunt, S. L., Marina, N., Kim, G. E., Cho, S. J., Avedian, R. S., Mohler, D. G., Kim, M. 
O., DuBois, S. G., … Sweet-Cordero, E. A. (2019). Genome-Informed Targeted Therapy for Osteosarcoma. 
Cancer Discovery, 9(1), 46–63. hUps://doi.org/2159-8290.CD-17-1152 [pii] 10.1158/2159-8290.CD-17-1152 
[doi] 
SchmiUgen, T. D., & Livak, K. J. (2008). Analyzing real-Gme PCR data by the comparaGve C(T) method. Nature 
Protocols, 3(6), 1101–1108. hUps://doi.org/10.1038/nprot.2008.73 [doi] 
Schreiber, R., Mezencev, R., Matyunina, L. v, & McDonald, J. F. (2016). Evidence for the role of microRNA 374b 
in acquired cisplaGn resistance in pancreaGc cancer cells. Cancer Gene Therapy, 23(8), 241–245. 
hUps://doi.org/10.1038/cgt.2016.23 
Siitonen, H. A., Sotkasiira, J., Biervliet, M., Benmansour, A., Capri, Y., Cormier-Daire, V., Crandall, B., Hannula-
Jouppi, K., Hennekam, R., Herzog, D., Keymolen, K., Lipsanen-Nyman, M., Miny, P., Plon, S. E., Riedl, S., Sarkar, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309087doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/


A., Vargas, F. R., Verloes, A., Wang, L. L., … KesGlä, M. (2009). The mutaGon spectrum in RECQL4 diseases. 
European Journal of Human GeneGcs, 17(2), 151–158. hUps://doi.org/10.1038/ejhg.2008.154 
Simon, R., Lam, A., Li, M. C., Ngan, M., Menenzes, S., & Zhao, Y. (2007). Analysis of gene expression data using 
BRB-ArrayTools. Cancer InformaGcs, 3, 11–17. 
Subramanian, A., Narayan, R., Corsello, S. M., Peck, D. D., Natoli, T. E., Lu, X., Gould, J., Davis, J. F., Tubelli, A. A., 
Asiedu, J. K., Lahr, D. L., Hirschman, J. E., Liu, Z., Donahue, M., Julian, B., Khan, M., Wadden, D., Smith, I. C., 
Lam, D., … Golub, T. R. (2017). A Next GeneraGon ConnecGvity Map: L1000 Plaporm and the First 1,000,000 
Profiles. Cell, 171(6), 1437-1452 e17. hUps://doi.org/S0092-8674(17)31309-0 [pii] 10.1016/j.cell.2017.10.049 
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., GilleUe, M. A., Paulovich, A., Pomeroy, 
S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based 
approach for interpreGng genome-wide expression profiles. Proceedings of the NaGonal Academy of Sciences, 
102(43), 15545–15550. hUps://doi.org/10.1073/pnas.0506580102 
Tie, Y., Chen, C., Qian, Z., Yuan, H., Wang, H., Tang, H., Peng, Y., Du, X., & Liu, B. (2018). UpregulaGon of let 7f 5p 
promotes chemotherapeuGc resistance in colorectal cancer by directly repressing several pro apoptoGc 
proteins. Oncology LeUers, 15(6), 8695–8702. 
Tsherniak, A., Vazquez, F., Montgomery, P. G., Weir, B. A., Kryukov, G., Cowley, G. S., Gill, S., Harrington, W. F., 
Pantel, S., Krill-Burger, J. M., Meyers, R. M., Ali, L., Goodale, A., Lee, Y., Jiang, G., Hsiao, J., Gerath, W. F. J., 
Howell, S., Merkel, E., … Hahn, W. C. (2017). Defining a Cancer Dependency Map. Cell, 170(3), 564-576.e16. 
hUps://doi.org/hUps://doi.org/10.1016/j.cell.2017.06.010 
Vlachos, I. S., Zagganas, K., Paraskevopoulou, M. D., Georgakilas, G., Karagkouni, D., Vergoulis, T., Dalamagas, T., 
& Hatzigeorgiou, A. G. (2015). DIANA-miRPath v3.0: deciphering microRNA funcGon with experimental 
support. Nucleic Acids Research, 43(W1), W460–W466. hUps://doi.org/10.1093/nar/gkv403 
Wang, Y., Bao, W., Liu, Y., Wang, S., Xu, S., Li, X., Li, Y., & Wu, S. (2018). miR-98-5p contributes to cisplaGn 
resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeGng Dicer1. Cell Death & 
Disease, 9(5), 447. hUps://doi.org/10.1038/s41419-018-0390-7 
Whelan, J. S., Bielack, S. S., Marina, N., Smeland, S., Jovic, G., Hook, J. M., Krailo, M., Anninga, J., BuUerfass-
Bahloul, T., Bohling, T., Calaminus, G., Capra, M., Deffenbaugh, C., Dhooge, C., Eriksson, M., Flanagan, A. M., 
Gelderblom, H., Goorin, A., Gorlick, R., … collaborators, E. (2015). EURAMOS-1, an internaGonal randomised 
study for osteosarcoma: results from pre-randomisaGon treatment. Annals of Oncology, 26(2), 407–414. 
hUps://doi.org/10.1093/annonc/mdu526 
WhiUle, S. B., Offer, K., Roberts, R. D., LeBlanc, A., London, C., Majzner, R. G., Huang, A. Y., Houghton, P., 
Alejandro Sweet Cordero, E., Grohar, P. J., Isakoff, M., Bishop, M. W., Stewart, E., Slotkin, E. K., Greengard, E., 
Borinstein, S. C., Navid, F., Gorlick, R., Janeway, K. A., … Hingorani, P. (2021). CharGng a path for prioriGzaGon of 
novel agents for clinical trials in osteosarcoma: A report from the Children’s Oncology Group New Agents for 
Osteosarcoma Task Force. Pediatric Blood & Cancer, e29188. hUps://doi.org/10.1002/pbc.29188 [doi] 
Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. 
Xu, M., Xiao, J., Chen, M., Yuan, L., Li, J., Shen, H., & Yao, S. (2018). miR 149 5p promotes chemotherapeuGc 
resistance in ovarian cancer via the inacGvaGon of the Hippo signaling pathway. InternaGonal Journal of 
Oncology, 52(3), 815–827. 
Xu, T., Su, N., Liu, L., Zhang, J., Wang, H., Zhang, W., Gui, J., Yu, K., Li, J., & Le, T. D. (2018). miRBaseConverter: an 
R/Bioconductor package for converGng and retrieving miRNA name, accession, sequence and family 
informaGon in different versions of miRBase. BMC BioinformaGcs, 19(19), 514. 
hUps://doi.org/10.1186/s12859-018-2531-5 
Yamaguchi, T., Toguchida, J., Yamamuro, T., Kotoura, Y., Takada, N., Kawaguchi, N., Kaneko, Y., Nakamura, Y., 
Sasaki, M. S., & Ishizaki, K. (1992). Allelotype Analysis in Osteosarcomas: Frequent Allele Loss on 3q, 13q, 17p, 
and 18q. Cancer Research, 52(9), 2419. hUp://cancerres.aacrjournals.org/content/52/9/2419.abstract 
Yu, C., Mannan, A. M., Yvone, G. M., Ross, K. N., Zhang, Y.-L., Marton, M. A., Taylor, B. R., Crenshaw, A., Gould, J. 
Z., Tamayo, P., Weir, B. A., Tsherniak, A., Wong, B., Garraway, L. A., Shamji, A. F., Palmer, M. A., Foley, M. A., 
Winckler, W., Schreiber, S. L., … Golub, T. R. (2016). High-throughput idenGficaGon of genotype-specific cancer 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309087doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/


vulnerabiliGes in mixtures of barcoded tumor cell lines. Nature Biotechnology, 34(4), 419–423. 
hUps://doi.org/10.1038/nbt.3460 
Zhang, Q., Zhang, B., Sun, L., Yan, Q., Zhang, Y., Zhang, Z., Su, Y., & Wang, C. (2018). MicroRNA-130b targets 
PTEN to induce resistance to cisplaGn in lung cancer cells by acGvaGng Wnt/β-catenin pathway. Cell 
Biochemistry and FuncGon, 36(4), 194–202. hUps://doi.org/hUps://doi.org/10.1002/cbf.3331 
Zhao, C., Zhao, Q., Zhang, C., Wang, G., Yao, Y., Huang, X., Zhan, F., Zhu, Y., Shi, J., Chen, J., Yan, F., & Zhang, Y. 
(2017). miR-15b-5p resensiGzes colon cancer cells to 5-fluorouracil by promoGng apoptosis via the NF-κB/XIAP 
axis. ScienGfic Reports, 7(1), 4194. hUps://doi.org/10.1038/s41598-017-04172-z 
Zhou, Y., Lu, Q., Xu, J., Yan, R., Zhu, J., Xu, J., Jiang, X., Li, J., & Wu, F. (2017). The effect of pathological fractures 
on the prognosis of paGents with osteosarcoma: a meta-analysis of 14 studies. Oncotarget, 8(42), 73037–
73049. 
Zhu, H., Yang, J., & Yang, S. (2020). MicroRNA 103a 3p potenGates chemoresistance to cisplaGn in non small 
cell lung carcinoma by targeGng neurofibromatosis 1. Experimental and TherapeuGc Medicine, 19(3), 1797–
1805. 
Ziller, M. J., Gu, H., Müller, F., Donaghey, J., Tsai, L. T.-Y., Kohlbacher, O., de Jager, P. L., Rosen, E. D., BenneU, D. 
A., Bernstein, B. E., Gnirke, A., & Meissner, A. (2013). CharGng a dynamic DNA methylaGon landscape of the 
human genome. Nature, 500(7463), 477–481. hUps://doi.org/10.1038/nature12433 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2024. ; https://doi.org/10.1101/2024.06.19.24309087doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/

