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A dynamic microRNA profile that tracks a chemotherapy resistance phenotype in osteosarcoma.

Implications for novel therapeutics.
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ABSTRACT

Osteosarcoma is a rare primary bone tumor for which no significant therapeutic advancement has been made
since the late 1980s despite ongoing efforts. Overall, the five-year survival rate remains about 65%, and is much
lower in patients with tumors unresponsive to methotrexate, doxorubicin, and cisplatin therapy. Genetic studies
have not revealed actionable drug targets, but our group, and others, have reported that epigenomic biomarkers,
including regulatory RNAs, may be useful prognostic tools for osteosarcoma. We tested if microRNA (miRNA)
transcriptional patterns mark the transition from a chemotherapy sensitive to resistant tumor phenotype. Small
RNA sequencing was performed using 14 patient matched pre-chemotherapy biopsy and post-chemotherapy
resection high-grade osteosarcoma frozen tumor samples. Independently, small RNA sequencing was performed
using 14 patient matched biopsy and resection samples from untreated tumors. Separately, miRNA specific
Illumina DASL arrays were used to assay an independent cohort of 65 pre-chemotherapy biopsy and 26 patient
matched post-chemotherapy resection formalin fixed paraffin embedded (FFPE) tumor samples. mRNA specific
Illumina DASL arrays were used to profile 37 pre-chemotherapy biopsy and five post-chemotherapy resection
FFPE samples, all of which were also used for [llumina DASL miRNA profiling. The National Cancer Institute
Therapeutically Applicable Research to Generate Effective Treatments dataset, including PCR based miRNA
profiling and RNA-seq data for 86 and 93 pre-chemotherapy tumor samples, respectively, was also used. Paired
differential expression testing revealed a profile of 17 miRNAs with significantly different transcriptional levels
following chemotherapy. Genes targeted by the miRNAs were differentially expressed following chemotherapy,
suggesting the miRNAs may regulate transcriptional networks. Finally, an in vitro pharmacogenomic screen
using miRNAs and their target transcripts predicted response to a set of candidate small molecule therapeutics
which potentially reverse the chemotherapy resistance phenotype and synergize with chemotherapy in otherwise
treatment resistant tumors. Importantly, these novel therapeutic targets are distinct from targets identified by a
similar pharmacogenomic analysis of previously published prognostic miRNA profiles from pre chemotherapy
biopsy specimens.
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INTRODUCTION

Osteosarcoma is the most common primary bone malignancy, with approximately 1,000 new cases per year in
the United States (Meltzer & Helman, 2021). Diagnosis is most commonly made in adolescents and young
adults, but there is a second incidence peak in later adulthood, the cases of which are often associated with
prior radiation exposure. The tumor most often originates in the metaphysis of long bones, with the distal
femur and proximal tibia being especially common sites. Location of the tumor in the axial skeleton, such as
tumors of the skull or pelvic girdle, is often associated with worse outcome.

Osteosarcoma patients typically first present with pain at the site of the tumor or pathological fracture, for
which these patients are especially susceptible because of tumor induced osteolysis (Zhou et al., 2017).
Additionally, we have previously found evidence of more aggressive tumor biology in patients who present
with pathologic fractures, who often go on to have worse long-term outcomes (Lozano Calderon et al., 2019).
While there are specific imaging findings suggestive of osteosarcoma, definitive diagnosis requires pathological
evaluation of a biopsy specimen, often a retrieved through a core needle biopsy (Beird et al., 2022).
Osteosarcomas are typically classified as either low or high grade (Bertoni & Bacchini, 1998). While low grade
tumors are generally associated with low metastatic propensity and treated with surgical resection alone, high
grade tumors, the focus of the present study, are at an elevated risk of progressing to metastatic disease and
are thus additionally treated with chemotherapy.

Known osteosarcoma risk factors are primarily genetic, but specific environmental factors, like prior radiation
exposure, also exist (Cole et al., 2022; Mirabello et al., 2009). Cancer predisposition syndromes such as Bloom
syndrome, Diamond-Blackfan anemia, Li-Fraumeni syndrome, radial ray defect patellae and palate abnormality
diarrhea and dislocated joints limb abnormality little size slender nose and normal intelligence (RAPADILINO)
syndrome, retinoblastoma, Rothmund-Thomson Syndrome, and Werner syndrome are known risk factors.
However, only about 28% of patients carry a likely pathogenic germline mutation in a cancer susceptibility
gene (Chauveinc et al., 2001; German, 1997; Ishikawa et al., 2000; Larizza et al., 2010; F. P. Li et al., 1988;
Lipton et al., 2001; Mirabello et al., 2020; Siitonen et al., 2009). This suggests that other, potentially epigenetic,
mechanisms are also important in this disease’s biology. Additionally, most of these mutations are rare,
affecting a very small percentage of patients, making efforts to develop therapeutics for these patients more
difficult.

For approximately 60-65 percent of high-grade osteosarcoma patients, standard chemotherapeutic treatment
and surgical excision of the primary tumor is curative. However, approximately 20 percent of patients present
with metastatic disease (Gill & Gorlick, 2021), and in these patients, along with those with unresected or
recurrent disease, prognosis is much worse, with long term survival rates at about 30 percent. The current
treatment approach for osteosarcoma was developed in the 1980’s, and includes surgical resection of the
tumor, and multi-agent chemotherapy including methotrexate, doxorubicin, and cisplatin (MAP) (Rosen et al.,
1976, 1979, 1982). Surgical treatment involves complete tumor resection and is often performed with a limb
sparing approach rather than amputation. Marginal resections are associated with increased risk of
recurrence, but for tumors resected with negative margins, the local recurrence rate is low, at less than five
percent (Picci et al., 1994).

Despite ongoing efforts to develop new systemic therapies, little progress in improving disease outcomes has
been made since the 1980’s (Beird et al., 2022). The most recent large-scale, international clinical trial in the
disease, EURAMOS-1, sought to improve patient outcomes by risk stratifying patients for alternate adjuvant
therapies (Whelan et al., 2015). However, the study failed to improve survival in either the high or low risk
patient groups (Bielack et al., 2015; Marina et al., 2016). The trial’s failure suggests that the use of
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pathologically assessed necrosis in the operative specimen following chemotherapy is not a useful tool for risk

stratification and drug novel therapeutic application in this disease.

Currently, however, there is a lack of alternative biomarkers for further study. Osteosarcomas are known to
have a chaotic genomic landscape, frequently characterized by kaetagis (a large number of localized base pair
mutations) and chromothripsis (clustered chromosomal rearrangements), however, few of the genomic
aberrations are recurrent or actionable (X. Chen et al., 2014; Lorenz et al., 2016; Perry et al., 2014; Sayles et al.,
2019; Yamaguchi et al., 1992). It has been found that some aberrations, such as MYC gene amplification, are
prognostic, but these factors have not yet been developed for clinical applications, and generally apply only to
a small fraction of patients (Feng et al., 2020; Sayles et al., 2019). Thus, current opinion is that conventional
approaches targeting specific single genetic aberrations are unlikely to be successful in osteosarcoma, and
other approaches better aligned with biology, potentially including epigenomic markers, are needed (Bishop et
al., 2016; Meltzer & Helman, 2021; Roberts et al., 2019).

To this end, we previously reported panels of microRNAs (miRNAs), profiled at the time of diagnostic biopsy,
which are prognostic of patient survival (Kelly et al, 2013; Hill et al, 2017; Lietz et al, 2020). MiRNAs are small,
about 20 nucleotides long, non-coding RNAs which regulate large fractions of the coded genome post-
transcriptionally. They have been shown to play a variety of roles in cancer (Calin et al., 2005; Calin & Croce,
2006; Esquela-Kerscher & Slack, 2006; J. Lu et al., 2005; Mi et al., 2007; Ooi et al., 2011). While we have
previously investigated the static expression of miRNAs in osteosarcoma biopsy specimens, the dynamic
changes in these regulatory species induced by chemotherapy have yet to be studied. In the analyses
described here, a specific set of miRNAs marking chemotherapy resistance is identified. Pharmacogenomic
analysis using the miRNAs provides a set of candidate drugs which may reverse the chemoresistant phenotype,
and thus synergize with chemotherapy, providing drug response hypotheses for further study, clinical testing,
and future targeted application to improve patient outcomes.
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RESULTS
The MGH and Longwood miRNA datasets provide for dynamic chemotherapy response testing.

Two miRNA transcriptional profiling datasets were generated, both including pre- and post-chemotherapy high
grade osteosarcoma specimens from the same patients. The datasets differ with respect to the sample
collections dates, type of clinical specimen, and miRNA assay technology (Table 1). Herein, we refer to these
datasets as the MGH and Longwood paired specimen datasets, with the dataset names reflecting the origin of
the patient samples. The MGH and Longwood miRNA datasets contained 7 and 26 pairs of patient-matched
pre-chemotherapy biopsy and post-chemotherapy resection samples, respectively. The MGH dataset
additionally contained 7 pairs of patient-matched, paired pre-chemotherapy biopsy and pre-chemotherapy
resection specimens. Detailed demographic information is presented in Supplementary Table 1 and summary
statistics for the chemoresistant samples, classified as tumors with less than 90 percent necrosis in the
operative specimen (Meltzer & Helman, 2021), in Table 1. We previously partly reported the samples in the
Longwood dataset as part of a separate study testing association between miRNA expression and patient
survival using primarily pre-chemotherapy biopsy specimens (Kelly et al., 2013).

In general, both the MGH and Longwood cohorts were composed predominately of adolescent patients, and
the cohorts’ age distributions were similar. The MGH cohort contained a larger fraction of male patients.
Chemotherapy regimens were similar in both cohorts, with most patients receiving at least MAP. A small
fraction of patients only received Adriamycin (doxorubicin) and cisplatin (AP), and others additionally received
adjuvant etoposide and ifosfamide as front-line therapy. The majority of patients in both cohorts underwent
the standard treatment course of neoadjuvant therapy, surgical resection, and adjuvant therapy, except in the
minority of cases where surgery was performed prior to induction chemotherapy, such as in the case of a
pathologic fracture. In the MGH cohort, these unique cases provided both a biopsy and a resection specimen
prior to the initiation of chemotherapy, offering the opportunity to control for other biologic or technical
differences between biopsy and resection specimens when assessing the effect of chemotherapy on miRNA
profile changes over time.

While histological subtype information was not available for the Longwood cohort, in the MGH cohort, five of
the seven chemoresistant samples were of the most common osteoblastic subtype, and the remaining two
were of the chondroblastic subtype. While histologic subtype is not currently used as a predictive or prognostic
tool, it has been suggested that osteoblastic and chondroblastic histologies tend to be more clinically
aggressive (Bacci et al., 2003). Both the Longwood and MGH cohorts have relatively long follow up times at 42
and 78 months, respectively, for censored patients.

The MGH dataset was generated using fresh frozen tissue samples, and small RNAs were profiled using small
RNA sequencing. The Longwood dataset was generated using formalin fixed paraffin embedded (FFPE)
samples, and small RNAs were profiled using lllumina cDNA mediated annealing, selection, extension, and
ligation (DASL) arrays, which were optimized for partially degraded RNA, such as that from FFPE samples (Fan
et al., 2004).

Identification of a Consensus Dynamic Chemoresponse miRNA Profile.

The paired nature of the MGH and Longwood samples with respect to chemotherapy were first leveraged to
test if specific miRNAs may be markers of a chemoresistant phenotype, with the reasoning that the molecular
readout from the post-chemotherapy specimens would represent a chemotherapy resistant cell population, as
they had survived treatment. Given that the MGH dataset was generated using frozen samples and small RNA
sequencing, and the Longwood dataset was generated using FFPE samples and DASL microarray technology,
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miRNAs with similar patterns of differential expression in both datasets, despite these technical differences,
may be robust markers of an OSA chemotherapy resistance phenotype. The 321 miRNAs which passed filtering
criteria and could be mapped to both datasets were used for statistical analysis. Note that the DASL microarray
platform used in the Longwood dataset interrogates only a subset of miRNAs and miRNA expression is tissue
specific, thus the total number of analyzed miRNAs is less than the approximately 2,500 coded in the human
genome (Kozomara et al., 2019).

DESeq?2 based paired differential expression analysis was used to test for miRNA transcriptional differences
pre- and post-chemotherapy in the MGH sequencing dataset (Love et al., 2014). Analysis was performed,
separately, using the 14 chemotherapy treated samples and the 14 untreated samples, which served to control
for miRNA transcriptional differences between biopsy and resection specimens not related to chemotherapy.
MiRNAs with p < 0.05 were considered differentially expressed. False discovery rate (FDR) corrected p values
were not considered in this initial discovery analysis given the small sample size and that the resulting miRNAs
will be further tested in independent datasets. 50 miRNAs were differentially expressed following
chemotherapy in the MGH dataset (Fig. 1), whereas 19 miRNAs were differentially expressed in the untreated
group of control pairs with the same sample size. Despite the small sample size, 23 of the 50 differentially
expressed miRNAs still had an FDR less than 0.1 (Benjamini & Hochberg, 1995). The larger number of
significant findings in the treated compared to untreated pairs served as initial evidence that the discovered
molecular differences were due to chemotherapy rather than other factors. Additionally, only two of the
miRNAs differentially expressed in the untreated samples were differentially expressed in the treated samples
but the direction of change was opposite, further suggesting the observed changes in treated samples may be
due to chemotherapy.

Limma based paired differential expression analysis was used to test for miRNA transcriptional differences
between pre and post chemotherapy specimens in the Longwood microarray dataset (Ritchie et al., 2015). 166
miRNAs were differentially expressed (Fig. 1b), and all 166 also had an FDR corrected p value less than 0.1. A
larger number of significant findings were identified in the Longwood dataset potentially because it has about
four times as many samples, and thus is more statistically powerful. Only two of the 166 differentially
expressed miRNAs were significant and had the same direction of change between the MGH untreated
samples.

To identify the most robust miRNA markers of chemotherapy resistance, the intersection of miRNAs
differentially expressed following chemotherapy in both datasets was identified. 17 of the 18 identified
miRNAs had the same direction of fold change between two datasets (hypergeometric test, p = 6.868 x 10°),
suggesting the differentially expressed miRNAs were reproducible genomic changes. These 17 miRNAs were
thus considered candidate biomarkers for further testing and are hereafter referred to as the Consensus
Dynamic Chemotherapy Response Profile (CDCRP) miRNAs. None of the CDCRP miRNAs were differentially
expressed between the untreated MGH samples (Fig. 1).

The 17 CDCRP miRNAs were encoded across the genome, without enrichment for a specific locus (Table 2).
While the majority of the CDCRP miRNAs had greater expression in the pre-chemotherapy samples, two were
measured at increased levels in the post-chemotherapy specimens. This increased confidence in the biologic
origin of the miRNA differences, as unidirectional changes could have reflected overall decreased miRNA levels
in the more necrotic post-chemotherapy resection specimen, as well as artifacts related to surgical resection of
the tumor. The two miRNAs with elevated transcriptional levels post-chemotherapy were the 5" and 3’ arms
derived from the same precursor miRNA, mir-654, processed from a primary miRNA encoded on the 14g32
locus. We and others have previously found that a collection of miRNAs from this locus is predictive of patient
survival in osteosarcoma (Hill et al., 2017; Kelly et al., 2013; Lietz et al., 2020; Sarver et al., 2013). However,
none of the CDCRP miRNAs overlapped with our previously published profile of prognostic miRNAs, suggesting
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that different biological pathways are involved in chemotherapy response and long-term outcome. There also
existed initial evidence that each of the 17 CDCRP miRNAs are connected to chemotherapy response (Bhatia et
al., 2019; Cao et al., 2016; Y. Chen et al., 2019; Duan et al., 2017; Hou et al., 2014; Ji et al., 2018; Jin et al.,
2019; Lai et al., 2019; H.-Y. Li et al., 2017; M. Lu et al., 2018; Niu et al., 2020; Schreiber et al., 2016; Tie et al.,
2018; Wang et al., 2018; M. Xu et al., 2018; Zhang et al., 2018; Zhao et al., 2017; Zhu et al., 2020). This
included many connections to MAP based chemotherapy, including reports finding that at least 10 of the
miRNAs are associated with cisplatin response, and at least 4 of the miRNAs are associated with doxorubicin
response.

The CDCRP was also able to differentiate between pre- and post-chemotherapy specimens in the MGH and
Longwood datasets, suggesting that variation between pre and post chemotherapy samples was greater than
across patient variation (Fig. 2). Hierarchical clustering of the samples using the CDCRP miRNAs generated two
groups of samples significantly associated with chemotherapy treatment in both the MGH and Longwood
datasets (MGH: X2 = 4.667, Odds Ratio (OR) = 5.000, p = 0.031; Longwood: X? = 8.694, OR = 2.174, p = 0.004),
suggesting that the CDCRP miRNAs are useful markers of chemotherapy response in combination and that the
observed changes induced by chemotherapy are relatively consistent across patients. While the CDCRP
miRNAs were defined in these two datasets, the profile was not guaranteed to differentiate between pre- and
post-chemotherapy specimens across the entire dataset, as within patient changes were used to generate the
profile, and the component of across patient variability could have driven the clustering patterns. While the
clustering patterns were imperfect, it was observed that when pre- and post-chemotherapy were grouped
together, they were, in some cases, found to be most molecularly similar to the sample from the same patient,
indicating that there are patient level differences CDCRP miRNAs. Additionally, the CDCRP miRNAs did not
differentiate between the untreated MGH samples (X? = 0.424, OR = 0.833, p = 0.515, Supplementary Figure
1).

Gene targets of the CDCRP miRNAs have altered transcriptional patterns following chemotherapy.

The genes targeted by the CDCRP miRNAs were defined using the DIANA-microT-CDS target prediction
algorithm using the DIANA-microTv5.0 server using a microT threshold of 0.7 (Paraskevopoulou et al., 2013).
The median number of computationally predicted targets per CDCRP miRNA was 960, and the range was from
16 to 1847 targets. Computationally predicted targets were used because they are not limited by the
incompleteness of experimental miRNA target validation, potential biases introduced by performing these
experiments in specific tissue types, or targets which may be of current research interest. The CDCRP miRNAs
were correlated with their predicted targets to identify a refined list of genes which may be more biologically
relevant in osteosarcoma, with the understanding that not all predicted target interactions occur in vivo, and
that relevant miRNA - gene interactions may be tissue type specific. As the best understood role of miRNAs is
to induce mRNA translocation to processing bodies (P-bodies) and subsequent mRNA degradation (Jonas &
Izaurralde, 2015; Liu et al., 2005), anti-correlated miRNA and mRNA levels were considered significant (Pearson
correlation, one-tailed p < 0.05).

MiRNA — gene target correlations were performed in both the expanded set of biopsy specimens previously
reported in the Longwood dataset (Kelly et al., 2013), as well as the NCI sponsored publicly available TARGET
osteosarcoma dataset, which provided both TagMan rt-PCR miRNA data and RNAseq gene expression data for
84 samples. Both datasets were used to identify a set of osteosarcoma relevant set of gene targets with
reproducible relationships across different assay platforms and sample types. The TARGET dataset was used in
lieu of the MGH dataset, for which only small RNAseq data was generated.

Raw miRNA expression and RNAseq data was downloaded from the TARGET data portal and processed using
the 22 and DESeq2 based median of ratios approaches, respectively (Livak & Schmittgen, 2001; Love et al.,
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2014). 16 of the 17 CDCRP miRNAs were interrogated by the TagMan platform. The percent of gene targets
significantly anticorrelated with each CDCRP miRNA ranged from 2.26 — 15.87% (Supplementary Table 2).

In the Longwood dataset, the correlation analysis was performed excluding the subset of samples for which
both pre- and post-chemotherapy gene expression data were generated (n = 5), such that this subgroup could
later be used as an independent statistical testing environment for candidate genes which we found
anticorrelated with their targeting CDCRP miRNA. This provided 32 samples for correlation analysis in the
Longwood dataset. The percent of gene targets significantly anticorrelated with each CDCRP miRNA ranged
from 2.92 — 14.72% (Supplementary Table 2). Individual miRNA-gene target correlations were not correlated
(rho <0.001, p >0.999) in the MGH and Longwood datasets, highlighting the value of searching for gene
targets which display expected patterns of regulation to be further developed as markers rather than using the
entire predicted target set.

222 CDCRP miRNA — predicted target pairs were found to be significantly anticorrelated in both the MGH and
Longwood datasets, including 198 unique genes and 15 of 16 evaluable CDCRP miRNAs (one of the CDCRP
miRNAs was not interrogated by the TagMan platform used to generate the TARGET dataset). Limma based
differential expression testing was then performed using this set of genes in the five pairs of pre- and post-
chemotherapy samples in the Longwood dataset for which gene expression data was generated. None of these
pairs, neither pre- nor post-chemotherapy sample, was used for correlation analysis, and they thus represent
an independent test of chemotherapy induced gene expression changes. 30 of the anticorrelated miRNAs were
differentially expressed, and 28 of 30 were differentially expressed with the expected log fold change sign
based on dynamic change in miRNA expression, with the expected sign being opposite of that of the targeting
miRNA, suggesting that the CDCRP miRNAs may be involved in a larger regulatory network relevant to
chemotherapy response (hypergeometric test, p = 1.4 x 10°%; Fig. 3; Table 3).

Gene targets of the CDCRP miRNAs provide additional insight into the biology of chemotherapy resistance.

Functional annotation analysis of the genes predicted to be targets of the CDCRP miRNAs was performed using
DIANA-miRPath v3.0 (Vlachos et al., 2015). Gene sets from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) databases were analyzed on the DIANA web server using both standard
hypergeometric distributions and more stringent unbiased empirical distributions to account for biases
encountered by traditional enrichment statistics with miRNA target gene sets (Ashburner et al., 2000; Bleazard
et al., 2015; Consortium, 2021; Kanehisa et al., 2019, 2023; Kanehisa & Goto, 2000). Meta analysis statistics,
which provides a single pooled enrichment statistic for pathways enriched in target sets of multiple miRNAs,
are also employed to account for the combined effect of multiple miRNAs targeting the same set of pathways.
31 KEGG pathways and 69 GO categories were found significant (FDR < 0.05) by the hypergeometric test. Five
and zero of the KEGG and GO terms were also significant in the empirical distribution tests, respectively,
potentially representing regulated pathways most specific to the CDCRP miRNAs (Fig. 4).

Pathways potentially related to chemoresistance, such as the KEGG pathway “Signaling Pathways Regulating
Pluripotency of Stem Cells”, were identified, invoking the idea that the chemoresistant cell population may
harbor cancer stem cells (Batlle & Clevers, 2017), which have been shown to be responsible for treatment
resistance in many tumor types, including osteosarcoma (Brown et al., 2017).

The CDCRP miRNAs and genes predict response to novel therapeutics.
Given that the CDCRP miRNAs were found to mark the emergence of chemoresistance to standard

methotrexate, doxorubicin, and cisplatin-based therapy (MAP), it was tested if they could also mark the
sensitivity to novel therapeutics which may be useful in resistant tumors. These therapeutics may then be used
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to synergize with MAP. The large-scale Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) drug
screening dataset, which profiled the sensitivity of 930 genomically characterized cell lines to 4,518 drugs, was
first leveraged to test if static levels of the CDCRP miRNAs predict response to novel agents (Corsello et al.,
2020; Yu et al., 2016). Drug dose-response sensitivity from the PRISM secondary screen and miRNA data from
the Cancer Cell Line Encyclopedia (CCLE) project, which genomically characterized the same cell lines used in
the PRISM drug response screen, were downloaded using the Cancer Dependency Map (DepMap) data portal
(Barretina et al., 2012; Ghandi et al., 2019; Tsherniak et al., 2017). Cell lines were randomly assigned to
independent training sets (2/3 of cell lines) and test sets (1/3 of cell lines).

Simple linear regression using the CDCRP miRNAs to predict AUC values was performed using the gimnet R
package (Friedman et al., 2010; Tibshirani, 1996). Models were trained for drugs with at least 20 cell lines in
the training set. 31 miRNA drug combinations were found to have significant predictive capacity in the training
set (FDR < 0.05), significant and positive correlation between prediction and actual AUC in the testing set (p <
0.05), and a positive correlation between prediction and actual AUC in the small subset of OSA cell lines (Table
4). Definitive statistical analysis could not be performed for the very few osteosarcoma cell lines, at most five,
and the osteosarcoma cell lines were intentionally not excluded from the training set such that these most
informative datapoints could be used to train the models.

While a diverse set of drug mechanisms of action were represented in Table 4, multiple agents interfering with
microtubule polymerization and stability, aurora kinase inhibitors, and epigenetic modifying agents, such as
histone deacetylase and methyltransferase inhibitors were identified. These drug classes may be entry points
into future osteosarcoma drug development efforts.

Given that expression levels of the CDCRP miRNAs reflect a change towards a chemoresistant phenotype,
drugs which reverse these genomic changes back towards chemosensitivity could be valuable in synergizing
with standard chemotherapy. Connectivity Map (CMap) analysis was performed using the CLUE.io web server
to test for such drugs in a dynamic setting (Lamb et al., 2006; Subramanian et al., 2005, 2017). The expression
datasets used in the pipeline do not include miRNAs, so we used the 27 targets of the CDCRP miRNAs which
were found to have the strongest evidence of involvement in the miRNA regulated chemoresistance network
as input for the CMap analysis. Of the 23 drugs presented in Table 4, perturbation data was available for 15.
Fourteen of the 15 drugs had preliminary evidence of a connectivity score that would reverse the
chemoresistant phenotype towards the chemosensitive phenotype, given their negative connectivity scores.
These proof of principle results suggest the CDCRP miRNAs and their regulatory networks may be actionably
targeted by novel therapeutics to reverse MAP based chemotherapy resistance.

Pre chemotherapy survival associated miRNAs predict response to distinct therapeutics compared to the
CDCRP miRNAs.

Our previously published prognostic 22-miRNA profile miRNAs were also tested via linear regression using the
same CCLE miRNA and PRISM drug response data (Kelly et al, 2013). 19 miRNA drug combinations were found
to have significant predictive capacity in the training set (FDR < 0.05), significant and positive correlation
between prediction and actual AUC in the testing set (p < 0.05), and a positive correlation between prediction
and actual AUC in the small subset of OSA cell lines (Table 5). Of the 19 drugs, seven inhibited MEK, including
MEK inhibitor PD-0325901 (mirdametinib) which was previously identified in separate gene expression, and
methylation-based screens for drugs with effect in OSA (Lietz et al, 2019; Lietz et al, 2022). Additionally, four
other drugs acted upstream of MEK in the MAPK pathway through RAF.
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Of the 19 drugs presented in Table 5, perturbation data in CMap was available for 17, and 14 of these drugs
had negative connectivity scores, offering preliminary evidence they may reverse a poor prognosis phenotype
towards a phenotype with longer survival.

Of the 39 unique drugs in Table 4 and Table 5, only three were identified in both analyses, CGS-15943, RAF265,
and fluvastatin. Further examination of the drugs identified in Table 4 and Table 5 also reveals that they
predominantly act through distinct mechanisms, an observation with significant biologic and therapeutic
implications discussed below.
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DISCUSSION

Current treatments for osteosarcoma were developed about four decades ago, and, despite ongoing efforts,
patient outcomes have improved little since that time (Meltzer & Helman, 2021). While about 60-65 percent of
patients are cured by surgical resection and systemic chemotherapy, the other 40 percent are still subjected to
the toxic effects of treatment but see little or no survival benefit as the tumor spreads and becomes the cause
of significant morbidity and mortality. There thus exists an unmet need to develop new drugs for patients who
do not respond to current therapies.

Regulatory miRNAs were tested as biomarkers for chemotherapy resistance, and candidate markers were
developed as tool to stratify patients for additional therapies which may synergize with the MAP regimen. A
profile of 17 miRNAs marking the transition to a chemoresistant state, the consensus dynamic chemoresponse
signature (CDCRP), was discovered. The profile was contextualized using the pathways potentially regulated by
the miRNAs, and it was used to identify a set of novel drugs for future testing. Thus, the CDCRP provides both
an insight into chemoresistance and is a possible biomarker to be further developed for application in
conjunction with new therapies. While this is the first report describing an in depth genome wide evaluation of
the dynamic changes of miRNA expression with chemoresistance in human samples, all 17 of the miRNAs in
the CDCRP have individually and independently been reported to be associated with chemotherapy response,
and most to at least one of the MAP agents (Bhatia et al., 2019; Cao et al., 2016; Y. Chen et al., 2019; Duan et
al., 2017; Hou et al., 2014; Ji et al., 2018; Jin et al., 2019; Lai et al., 2019; H.-Y. Li et al., 2017; M. Lu et al., 2018;
Niu et al., 2020; Schreiber et al., 2016; Tie et al., 2018; Wang et al., 2018; M. Xu et al., 2018; Zhang et al., 2018;
Zhao et al., 2017; Zhu et al., 2020). This includes the miRNA hsa-miR-15b-5p, which was previously
independently studied by our group in the context of osteosarcoma doxorubicin resistance (Duan et al., 2017).
In the study, hsa-miR-15b-5p downregulation was also found to be associated with chemoresistance. The
relationship was discovered using different methodology, by performing differential expression testing
between parent and doxorubicin resistant cell lines, and then the association was validated in a small human
cohort. These congruent results support the use of cell lines for further study of our markers, and specifically,
their use in the present pharmacogenomic analysis to discover new drugs which may synergize with MAP
chemotherapy.

Given the dynamic nature of the CDCRP, it was reasoned that drugs which prevent the transition to the
chemoresistant profile may be useful in combination with MAP to enhance response in otherwise resistant
tumors. To identify these drug candidates, a pharmacogenomic screen was performed using the CCLE and
PRISM miRNA profiling and drug response datasets (Corsello et al., 2020; Ghandi et al., 2019), and identified a
set of 13 candidate drugs. A limitation of the study is that these drugs were discovered by associating the static
levels of the CDCRP miRNAs in untreated cell lines. Ideally, a perturbational dataset with miRNA profiling
before and after treatment would have been used for our predictive modeling analysis. However, no such
dataset currently exists. Instead, the L1000 Touchstone CMAP LINCS 2020 dataset (Lamb et al., 2006;
Subramanian et al., 2005, 2017), which provides dynamic gene expression data before and after cell line
treatment with a broad range or perturbagens, was leveraged. For 90% of the proposed drugs which were
tested in the L1000 Touchstone CMAP LINCS 2020 dataset, there was initial evidence that a cell’s gene
expression profile can be changed in the opposite direction as that seen during the evolution to a
chemoresistant phenotype. This suggested these drugs may synergize with MAP based chemotherapy and
potentially reverse or mitigate resistance to chemotherapy.

The candidate drug list largely contained drugs currently being developed as anti-cancer therapies, specifically
tubulin inhibitors, kinase inhibitors, and epigenetic modifying agents, despite the fact the PRISM dataset was
designed to also include a large fraction of so-called non-oncology drugs (Corsello et al., 2020). Multi-kinase
inhibitors and epigenetic modifying agents were recently proposed as top drug classes for further testing in
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osteosarcoma based on expert review of current experimental evidence (Whittle et al., 2021). Given the
alignment of the drug classes coming out of the analysis with those independently hypothesized to have effect
in the disease, further testing of the proposed candidate drugs in conjunction with the CDCRP markers may be
warranted and could lead to improved tailored application of novel drugs and optimal individual patient
outcomes.

Finally, it should be noted that drugs identified in Table 4 and Table 5 predominantly act through distinct
mechanisms, further suggesting that survival and chemotherapy resistance networks are different, a concept
also supported by the non-overlap between the CDCRP miRNAs presented in this study and the miRNAs
prognostic of survival in pre-treatment tumors, that we presented in our previous work (Kelly et al, 2013; Lietz
et al 2020). Additionally, this observation also suggests that different drugs may be optimal candidates to
therapeutically target these different poor outcome phenotypes. Ultimately, promising therapeutic hypotheses
identified by the bioinformatic analysis of public experimental in vitro data presented here, should be studied
in a targeted manner using in vivo models, in order to select the best candidates for clinical testing. Our
comprehensive bioinformatic analysis presented here, thus substantially facilitates, and expedites this process
by providing rational biomarker-based selection and prioritization of drugs for further development.
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METHODS

Generation of the Massachusetts General Hospital microRNA dataset.

All experiments were approved by the Massachusetts General Hospital (MGH). The MGH IRB waived the
requirement of informed consent for this retrospective tissue and clinical information protocol which obtained
tissue discarded from routine medical care. All experiments were performed in accordance with relevant
guidelines and regulations. Twenty-one pairs of samples, one biopsy and one resection specimen from the
same patient per pair, frozen tumor samples from patients with high grade osteosarcoma were retrieved from
the archives of the Department of Pathology at MGH. Samples were banked between 1998 to 2010. Samples
selection was performed chronologically. Hematoxylin and eosin stained slides generated from the frozen high
grade osteosarcomas tissue specimens were reviewed by an expert study pathologist to confirm the diagnosis
of high grade osteosarcoma and to determine tumor cellularity. Samples for which there was no available
tissue or that failed pathology confirmation of high grade osteosarcoma were excluded from the study, leaving
14 pairs for further analysis. Seven pairs of pre-chemotherapy biopsy specimens and post-chemotherapy
resection specimens from neoadjuvant chemotherapy treated patients were included for chemotherapy
response analysis. Seven pairs of biopsy and resection specimens from patients who did not receive
neoadjuvant therapy were used as untreated control pairs.

RNA was isolated with the QIAGEN RNeasy® Plus Universal Mini Kit (Qiagen) using an adapted protocol
designed to increase the quality of extracted RNA from frozen bone specimens (Carter et al., 2012).
Sequencing was performed at the Center for Cancer Computational Biology at Dana Farber Cancer Institute
(Boston, MA). Qubit was used to determine RNA quantity using the Qubit RNA High Sensitivity Assay Kit
reagents (Life Tech). Then, RNA quality was assessed using a Bioanalyzer and Agilent RNA Pico Kit. The
NEBNext Multiplex Small RNA Library Prep Kit for lllumina (NEB) was used to convert 100 ng of total RNA into a
DNA library following the manufacturer’s protocol, without modifications. Qubit High Sensitivity DNA Kit (Life
Tech) was used to determine library quantity and Bioanalyzer High Sensitivity Chip Kit (Agilent) was used to
determine library size. Additionally, libraries were assessed via qPCR using the Universal Library Quantification
Kit for lllumina (Kapa Biosystems) and 7900HT Fast gPCR machine (ABI). All libraries passing quality control
were then diluted to 2 nM, combined into library pools, and sequenced on the NextSeq 500 (lllumina) at a final
concentration of 2 pM. Sequencing was performed using three NextSeq Single Read 75 Cycle High Throughput
V2 flowcells following standard protocols. The sRNAtoolbox sRNAbench tool was then used to process and
guantify small RNA reads (Rueda et al., 2015). SRNAtoolbox identified and removed adapter sequences from
the input fastq files. Hierarchal read mapping was performed, first mapping reads to the UniVec database of
common laboratory contaminants, then to rRNAs, followed by other small RNA species. Bowtie was used to
perform the preprocessing steps (Langmead et al., 2009). MiRNA reads were mapped to human miRNAs
annotated in miRbase version 21 (Kozomara et al., 2019). Independent mapping and quantification were
performed for mature and precursor miRNAs. Prior to analysis, the raw mature miRNA read counts were
normalized and log base 2 transformed using the DESeq2 R package (Love et al., 2014). MiRNAs with a median
raw read count of less than five were filtered out.

Generation of the Longwood paired microRNA and gene expression datasets.

We previously reported the Longwood paired miRNA and gene expression datasets, in the context of a larger
cohort consisting of 91 samples including 26 pre-chemotherapy diagnostic biopsy specimens paired with 26
post-chemotherapy resection specimens from the same patients, as part of a separate study testing pre
chemotherapy biopsy-based miRNA associations with patient survival (Kelly et al., 2013). In our previous
publications this dataset is referred to as the “Boston” dataset (Hill et al., 2017; Kelly et al., 2013; Lietz et al.,
2020). The Longwood paired dataset presented in the current study is part of the “Boston” dataset, that was
not previously analyzed in depth as it relates to dynamic expression changes. All studies were approved by the
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Beth Israel Deaconess Medical Center and Boston Children’s Hospital IRB, and archival tissue collection was
approved by the IRB at both institutions. All experiments were performed in accordance with relevant
guidelines and regulations. Detailed methodology is presented in Kelly et al., 2013. In short [llumina cDNA-
mediated annealing, selection, extension, and ligation arrays (DASL arrays) generated miRNA profiling data for
91 FFPE samples, and mRNA profiling data for 42 FFPE samples. For pre and post chemotherapy miRNA
differential expression testing, miRNAs with expression variance in the bottom tercile across the entire dataset
were filtered out. MiRNA and gene expression data for the Longwood miRNA and gene expression datasets are
available at the Gene Expression Omnibus under accession GSE39058.

Public data acquisition and processing.

The National Cancer Institute Therapeutically Applicable Research to Generate Effective Treatments (TARGET)
initiative’s publicly available osteosarcoma Applied Biosystems MegaPlex TagMan miRNA and mRNA-seq
datasets were downloaded from the TARGET data matrix (https://ocg.cancer.gov/programs/target/data-
matrix). At the time data was downloaded, the miRNA and mRNA-seq datasets provided data for 86 and 93
clinically annotated high grade osteosarcoma samples, respectively. Sample selection, experimental, and data
processing methodology carried out by the TARGET working group is provided on the TARGET Project
Experimental Methods page (https://ocg.cancer.gov/programs/target/target-methods). We applied the 22
transformation to the downloaded normalized miRNA data prior to analysis (Schmittgen & Livak, 2008). The
gene read count level RNA-seq was further processed by filtering out transcripts less than 200 bases in length
and applying DESeq2 based normalization and log base 2 transformation to the data (Love et al., 2014).

Differential expression testing and standard statistical tests.

DESeq2 was used to test for differential expression testing or RNA-seq data (Love et al., 2014). A paired analysis
design was used for instances where biopsy and resection samples were collected from the same patient.
Limma was used for differential expression testing of microarray data (Ritchie et al., 2015). A paired analysis
design was again used in instances where biopsy and resection samples were collected from the same patient.
Where specified, the false discovery rate (FDR) was calculated using the Benjamini and Hochberg step up
procedure (Benjamini & Hochberg, 1995). Pearson’s r statistic were used to test correlations between two
variables. The hypergeometric test was used to test enrichment. Association between categorical variables
were evaluated with the chi-square test. Hierarchical clustering was performed using the correlation distance
and average linkage approaches.

MIiRNA target prediction and pathway enrichment.

MiRNA targets were predicted computationally using the DIANA-microTv5.0 server using a microT threshold of
0.7 (Paraskevopoulou et al., 2013). The threshold was tuned to maximize the number of targets per miRNA in
the candidate profiles to between 500 and 1500.

Functional annotation of miRNA target genes was performed using DIANA-miRPath v3.0 (Vlachos et al., 2015).
Genesets from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases
were analyzed on the DIANA web server using both standard hypergeometric distributions and more stringent
unbiased empirical distributions to account for biases encountered by traditional enrichment statistics with
miRNA target gene sets (Ashburner et al., 2000; Bleazard et al., 2015; Consortium, 2021; Kanehisa et al., 2023;
Kanehisa & Goto, 2000; Paraskevopoulou et al., 2013). MiRPath analysis was run using the meta-analysis
pathways union analysis mode for the hypergeometric distribution and empirical distribution tests. The meta-
analysis approach pools pathway enrichment from each miRNA'’s target set and then provides a single


https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.06.19.24309087; this version posted June 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .
enrichment estimate for the entire miRNA profile, similar to a meta-analysis. Clustered heatmaps depicting the

significantly enriched pathways was generated using the MiRPath server.
Predictive biomarker discovery.

The Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) secondary screen with dose-dependent
drug response information and the Broad Institute-Novartis Institutes for BioMedical Research Cancer Cell Line
Encyclopedia (CCLE) project NanoString miRNA data were downloaded from the Cancer Dependency Map
(DepMap) data portal (Barretina et al., 2012; Corsello et al., 2020; Ghandi et al., 2019; Tsherniak et al., 2017;
Yu et al., 2016).

Normalized miRNA levels and drug response area under the curve (AUC) values were used for analysis. Prior to
modelling response to a given drug, two thirds of available cell lines with drug sensitivity data were randomly
assigned to a training set and the other third to a test set, while maintaining proportional tissue type
representation in each set. Simple linear regression was performed using the gimnet R package using miRNAs
to predict drug response AUC values in the training set (Friedman et al., 2010). The resulting models were then
tested in the statistically independent test set. The models were also tested in the small number of available
osteosarcoma cell lines. These osteosarcoma cell lines were not excluded from the test set as it was
theoretically advantageous to use these most representative datapoints in model training. Statistical testing of
the models was not performed in this small subset of cell lines for this reason, as well as the small sample size,
avoiding circular logic.

Connectivity Map (CMap) analysis using miRNA gene targets was performed on the CLUE.io web server CLUE
Query app (Lamb et al., 2006; Subramanian et al., 2005, 2017). The query was performed with the L1000
Touchstone CMap LINCS 2020 dataset and individual query mode.

Statistical software.

Analysis was performed using SPSS version 24, and NCI BRB-ArrayTools v4.6.0 (Simon et al., 2007), CLUE.io web
server (Subramanian et al., 2017), DIANA web server (Paraskevopoulou et al., 2013), and R version 3.5.1 and
4.1.0 with packages amap (Lucas, 2019), dendsort (Sakai et al., 2014), DESeq2 (Love et al., 2014),
EnhancedVolcano (Blighe et al., 2021), ggplot2 (Wickham, 2009), gimnet (Friedman et al., 2010), hmisc (Harrell
& Dupont, 2021), limma (Ritchie et al., 2015) , lumi (Du et al., 2008), miRBaseConverter (T. Xu et al., 2018),
pheatmap (Kolde, 2019), and RColorBrewer (Neuwirth, 2014).
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DATA AVAILABILTY
The Longwood dataset has been deposited in the Gene Expression Omnibus and is publicly available under
accession GSE39058. The CCLE miRNA and PRISM drug response datasets are available through the Broad
Institute DepMap Portal (https://depmap.org/portal/). The results published here are in part based upon data
generated by the Therapeutically Applicable Research to Generate Effective Treatments
(https://ocg.cancer.gov/programs/target) initiative, phs000218. The data used for this analysis are available
at https://portal.gdc.cancer.gov/projects.
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TABLES

Table 1. Characteristics of the MGH and Longwood datasets.

Dataset MGH Longwood
sample type frozen FFPE
[llumina Human v2 MicroRNA
miRNA assay SRNA-seq Expression BeadChip
n (biopsy) 7 26
n (resection) 7 26
[Mllumina HT-12 WG_DASL v4.0 R2
mRNA assay fone Expression BeadChip
n (biopsy) NA 22
n (resection) NA 5
sex
male 6 11
female 1 15
age
median 16 12.5
range 14-60 4-71
median necrosis 75 50
recurrence (percent) 71.4 61.5

death (percent) 71.4 34.6
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Table 2. The 17 CDCRP miRNAs. Fold change (FC) color coding is carried over from Fig. 1. FC values were
calculated as pre-chemotherapy / post-chemotherapy, so positive loga(FC) values indicate greater expression in
the pre-chemotherapy samples (blue), and negative log(FC) indicate greater expression in the post-
chemotherapy samples (red).

in vitro
miRNA locus Log:(FCycn) Loga(FCrongwood) PMGH PLongwooa chemotherapy
associations
miR-103a-3p 5934 /20p13 0.9 1.2 4.E-04 2.E-04 cisplatin
miR-454-3p 17q22 1.4 1.1 0.001 3.E-05 doxorubicin
miR-130b-3p 22q11.21 1.7 1.5 0.002 4.E-05 cisplatin
miR-98-5p Xpll.22 0.9 13 0.003  0.003 cisplatin
miR-210-3p 11p15.5 1.5 1.1 0.005 0.001 cisplatin
miR-105-5p Xq28/Xq28 1.6 0.7 0.006  0.003 cisplatin
miR-654-3p 14q32.31 22 12 0.008 0.002 cisplatin
miR-374b-5p Xql3.2 0.8 13 0.014 0.001 cisplatin
miR-15b-3p 3q25.33 0.8 0.7 0.014  0.001 5-FU
miR-421 Xql3.2 1.2 0.9 0.025 0.004  doxorubicin
let-7d-Sp 9q22.32 0.6 1.2 0.029  0.001 cisplatin
let-7f-5p Xpl1.2/9q22.32 0.8 0.9 0.031  0.006 5-FU
miR-149-5p 2q37.3 1.2 0.7 0.033 0.018 cisplatin
miR-15b-5p 3q25.33 0.9 1.0 0.037 1.E-04 doxorubicin
miR-30d-5p 8q24.22 0.6 0.4 0.037  0.002 5-FU
miR-7-5p  15q26.1/ 19p13.3/9q21.32 0.9 0.6 0.037 0.044  doxorubicin

miR-654-5p 14q32.31 -1.3 -0.8 0.049  0.011 cisplatin
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Table 3. CDCRP miRNA anticorrelated gene targets significantly differentially expressed (DE) with expected fold
change (FC) direction between pre and post chemotherapy specimens in the Longwood (LW) dataset.

miR gene DElog2(FC) DEp TARGETr TARGETp LWr LWp
miR_15b_5p SLC29A2 -1.4739 0.0065 -0.2537 0.0099 -0.4121 0.0096
miR_15b_5p DNAIC5 -1.2176 0.0550 -0.2124 0.0262 -0.2998 0.0478
miR_130b_3p  FASTK -1.1203 0.0741 -0.1900 0.0418 -0.3724 0.0179
miR_105 5p  BRIP1  -1.5564 0.0089 -0.1901 0.0417 -0.4909 0.0022

miR_105_5p WAC -1.1844 0.0192 -0.2615 0.0081 -0.4284 0.0072
miR_105_5p  NAASO -1.3219 0.0635 -0.2208 0.0218 -0.4156 0.0090
miR_105_5p PPIE -1.4344 0.0736 -0.2016 0.0329 -0.3372 0.0296

let_7d 5p  ZFYVE16 -1.3959 0.0076 -0.1816 0.0491 -0.3560 0.0228
miR_654 5p  TANK 1.8639 0.0261 -0.3266 0.0012 -0.4712 0.0032
miR_654 5p EFNA1  1.5361 0.0390 -0.4377 1.57E-05 -0.3133 0.0404
miR_654 5p PTPRD  1.0426 0.0405 -0.2364 0.0152 -0.3230 0.0357
miR_654 5p  TNK2 2.9069 0.0878 -0.2890 0.0038 -0.3612 0.0211
miR_149 5p LARP4  -1.4344 0.0004 -0.2573 0.0091 -0.4783 0.0028
miR_149 5p PANX1  -1.8365 0.0006 -0.2624 0.0079 -0.4777 0.0028
miR_149 5p  FLNA  -1.9434 0.0134 -0.2728 0.0060 -0.6079 0.0001
miR_149 5p CHCHD3 -1.6439 0.0631 -0.2186 0.0229 -0.3452 0.0265
miR_149 5p PHACTR4 -1.4739 0.0823 -0.2207 0.0218 -0.6056 0.0001
miR_454 3p WDR47  -1.1520 0.0010 -0.2070 0.0294 -0.5642 0.0004
miR_454 3p RTKN  -1.1844 0.0079 -0.2139 0.0254 -0.4173 0.0087
miR_7 5p CAMKK2 -1.3959 0.0022 -0.2738 0.0059 -0.6287 0.0001
miR_7 5p  ZMAT3  -1.4344 0.0098 -0.2196 0.0224 -0.5634 0.0004
miR_7 5p  WDFY3  -1.0589 0.0202 -0.2470 0.0117 -0.4016 0.0114
miR_7_5p POLH  -1.1203 0.0552 -0.1820 0.0488 -0.6536 2.49E-05
miR_7 5p TNRC6B  -1.0589 0.0752 -0.2007 0.0336 -0.3168 0.0386
miR_374b_5p ZNF644 -1.7859 0.0020 -0.2039 0.0314 -0.3173 0.0384
miR_374b 5p BRIP1  -1.5564 0.0089 -0.2773 0.0053 -0.4662 0.0036
miR_374b 5p LYSMD3  -1.1844 0.0875 -0.3364 0.0009 -0.5243 0.0010
miR_654 3p  HEY2 42965 0.0190 -0.3309 0.0011 -0.3422 0.0276
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Table 4. CDCRP miRNA based predictive drug response model performance in the training, test, and
osteosarcoma (OSA) cell line sets.

n()
miRNA drug MoA target coef training FDR  test cor test p OSA cor  connectivity
hits
30d-5p vinblastine tubulin polymerization inhibitor JUN, tubulin 0.327 5.64E-08 0.258 0.002 0.575 9
30d-5p verubulin tubulin polymerization inhibitor TUBB 0.287 6.35E-06 0.256 0.003 0.619 NA
30d-5p BNC105 tubulin polymerization inhibitor NA 0.289 1.52E-05 0.209 0.015 0.473 NA
30d-5p VU0238429 acetylcholine receptor allosteric modulator CHRM5 0.286 2.74E-05 0.180 0.041 0.401 NA
30d-5p vindesine tubulin polymerization inhibitor TUBB, TUBB1 0.259 1.88E-04 0.275 0.001 0.483 2
let-7d-5p  NSC-697923 ubiquitin-conjugating enzyme inhibitor UBE2N 0.195 0.001 0.297 4.56E-04 0.274 0
let-7f-5p ryuvidine histone lysine methyltransferase inhibitor, CDK inhbitor KDMS5A, CDK2, CDK4 0.167 0.001 0.283 0.001 0.696 7
654-3p canertinib EGFR inhibitor AKT1, EGFR, ERBB2, ERBB4 -0.784 0.001 0.381 1.19E-04 0.908 10
let-7f-5p  NSC-697923 ubiquitin-conjugating enzyme inhibitor UBE2N 0.165 0.001 0.179 0.037 0.411 0
30d-5p axitinib PDGFR nhibitor, VEGFR inhibitor CSF1, FLT1, FLT4, KDR, PLK4 0.286 0.001 0.290 0.005 0.127 2
30d-5p fluvastatin HMGCR inhibitor HMGCR 0.235 0.001 0.302 3.53E-04 0.513 2
654-3p lapatinib EGFR inhibitor EGFR, ERBB2 -0.799 0.001 0.271 0.013 NA 19
374b-5p  fluvastatin HMGCR inhibitor HMGCR 0.228 0.004 0.242 0.005 0.124 2
let-7d-5p ryuvidine histone lysine methyltransferase inhibitor, CDK inhbitor CDK2, CDK4 0.173 0.005 0.238 0.006 0.651 7
103a-3p  CGS-15943 adenosine receptor antagonist ADORA -0.273 0.005 0.373 2.66E-04 NA 1
103a-3p  fluvastatin HMGCR inhibitor HMGCR 0.212 0.006 0.332 8.06E-05 0.551 2
30d-5p selinexor exportin antagonist XPO1 0.211 0.006 0.284 0.001 0.754 NA
30d-5p daunorubicin topoisomerase inhibitor TOP2A, TOP2B 0.224 0.006 0.179 0.048 0.756 17
30d-5p vinorelbine tubulin polymerization inhibitor tublin 0.210 0.009 0.293 0.001 0.008 8
130b-3p  R0-90-7501 NA APP -0.553 0.009 0.603 0.002 NA 3
421 CGS-15943 adenosine receptor antagonist ADORA -0.418 0.013 0.225 0.032 NA 1
454-3p RAF265 RAF inhibitor, VEGFR inhibitor BRAF 0.311 0.013 0.326 4.08E-04 NA NA
let-7d-5p gambogic-acid caspase activator BCL2 0.165 0.015 0.177 0.043 0.757 NA
454-3p hesperadin Aurora kinase inhibitor AURKB 0.318 0.017 0.212 0.031 NA NA
654-3p ibrutinib Bruton's tyrosine kinase (BTK) inhibitor BLK, BMX, BTK -0.689 0.027 0.323 0.006 NA 11
30d-5p R547 CDK inhibitor CDK1, CDK2, CDK4, CDK7 0.206 0.029 0316 0.001 0.225 NA
210-3p erastin ion channel antagonist VDAC2 -0.198 0.029 0.322 0.001 0.957 3
421 givinostat HDAC inhibitor pan-HDAC -0.337 0.032 0.208 0.017 0.563 5
454-3p BNC105 tubulin polymerization inhibitor NA 0.274 0.032 0.252 0.003 0.186 0
454-3p  daunorubicin topoisomerase inhibitor TOP2A, TOP2B 0.281 0.034 0.258 0.004 0.578 17
98-5p NSC-697923 ubiquitin-conjugating enzyme inhibitor UBE2N 0.142 0.050 0.210 0.014 0.555 0
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Table 5. Prognostic 22-miRNA profile based predictive drug response model performance in the training, test,
and osteosarcoma (OSA) cell line sets.

n(-)
miRNA drug MoA target coef training FDR testcor testp OSA cor connectivity

hits
514a-3p dabrafenib RAF inhibitor BRAF, LIMK1, NEK11, RAF1, SIK1 -0.511 2.25E-08 0.543 6.29E-06 NA 4
514a-3p vemurafenib RAF inhibitor BRAF, RAF1 -0.500 3.48E-08 0.405 3.41E-04 NA 3
514a-3p cobimetinib MEK inhibitor NA -0.441 1.56E-06 0.418 8.31E-05 NA 3
514a-3p binimetinib MEK inhibitor MAP2K1, MAP2K2 -0.410 2.53E-06 0.389 6.91E-06 0.353 NA
514a-3p TAK-733 MEK inhibitor MAP2K1 -0.397 4.13E-06 0.254 0.004 0.766
514a-3p Ro-4987655 MEK inhibitor MAP2K1 -0.397 4.13E-06 0.349 5.83E-05 0.214
514a-3p  PD-0325901 MEK inhibitor MAP2K1 -0.352 2.25E-04 0.221 0.015 0.445 11
125b-5p CGS-15943 adenosine receptor antagonist ADORA1, ADORA2A, ADORA2B, ADORA3 0.135 3.99E-04 0.301 0.004 NA 3
125b-5p tetrandrine calcium channel blocker SLC6A3 0.105 0.002 0.255 0.003 0.468 0
125b-5p LY2874455 FGFR antagonist FGFR1, FGFR2, FGFR3, FGFR4, KDR -0.103 0.002 0.254 0.003 0.230 NA
514a-3p CNX-774 Bruton's tyrosine kinase (BTK) inhibitor BTK -0.330 0.003 0.352 4.70E-04 NA 0
514a-3p RAF265 RAF inhibitor, VEGFR inhibitor BRAF -0.326 0.004 0.356 1.03E-04 NA NA
125b-5p fluvastatin HMGCR inhibitor HMGCR -0.097 0.005 0.178 0.038 0.053 0
125b-5p neratinib EGFR inhibitor EGFR, ERBB2, KDR 0.108 0.009 0.345 3.63E-04 0.165 8
514a-3p AS-703026 MEK inhibitor MAP2K1, MAP2K2 -0.315 0.010 0.399 1.18E-04 NA 3
125b-5p tucatinib EGFR inhibitor ERBB2 0.099 0.025 0.326 0.001 0.656 NA
514a-3p ABT-702 adenosine kinase inhibitor ADK -0.305 0.031 0.388 1.61E-04 NA 3
514a-3p PD-318088 MEK inhibitor MAP2K1 -0.273 0.039 0.345 3.59E-04 0.671 NA
514a-3p GDC-0879 RAF inhibitor BRAF -0.337 0.048 0.623 0.001 NA 10


https://doi.org/10.1101/2024.06.19.24309087
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.06.19.24309087; this version posted June 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

FIGURES
a bs 7
4 -
37 47 .
o
=, -
o2
o 27 .
17 ®
®
1 Sl .
O T 1 0 L T T T T
-4 - 0 -2 -1 0 1 2
e — L e
log,(FC)
Consensus Dynamic Chemoresponse Profile —=ag upregulated pre-chemo

@ MGH control analysis p < 0.05 and concordant FC sign s upregulated post-chemo
Figure 1. Defining a consensus dynamic chemoresponse profile through miRNA differential expression analysis
in the MGH and Longwood Datasets. a Volcano plot of paired differential miRNA expression between biopsy
and resection samples from chemotherapy treated patients in the MGH dataset. b Volcano plot of paired
differential miRNA expression between biopsy and resection samples from chemotherapy treated patients in
the Longwood dataset. Dashed lines at p = 0.05.
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Figure 2. CDCRP expression profiles in the MGH and Longwood datasets. a Hierarchical clustering of the MGH
chemotherapy treated cohort using expression levels of the CDCRP miRNAs. b Hierarchical clustering of the

Longwood cohort using expression levels of the CDCRP miRNAs.
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Figure 3. Differential expression of the CDCRP miRNA anticorrelated gene targets in the five chemotherapy
treated pairs with both miRNA and gene expression profiling in the Longwood dataset which were not used for
correlation analysis.
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Figure 4. Clustered heatmap of a KEGG and b GO terms significantly enriched (FDR < 0.05) in the CDCRP miRNA
gene target set by miRPath hypergeometric meta-analysis.
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