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KEY POINTS: 32 

Question: Can a deep learning algorithm applied to echocardiography videos 33 

effectively identify chronic liver diseases including cirrhosis and steatotic liver disease 34 

(SLD)? 35 

 36 

Findings: This retrospective observational cohort study utilized 1,596,640  37 

echocardiography videos from 66,922 studies of 24,276 patients. The deep learning 38 

model with a computer vision pipeline (EchoNet-Liver) demonstrated strong 39 

performance to detect cirrhosis and SLD. External validation at a geographically distinct 40 

site demonstrated similar discriminative ability. 41 

 42 

Meaning: The application of EchoNet-Liver to echocardiography could aid 43 

opportunistic screening of chronic liver diseases, providing a unique cost-effective 44 

angle to improve patient management. 45 

 46 

 47 

 48 

Abbreviations: 49 

AI : Artificial intelligence 50 

AUROC: Area under receiver operating characteristic 51 

AUPRC: Area Under precision recall curve  52 

CLD: chronic liver disease 53 

CVD: cardiovascular disease 54 

LVEF: Left ventricular ejection fraction 55 

PR: Precision-recall 56 

SLD: steatotic liver disease 57 

PPV: positive predictive value  58 

NPV: negative predictive value 59 

MRI: magnetic resonance imaging 60 

MRS: magnetic resonance spectroscopy 61 

PDFF: proton density fat fraction 62 

 63 
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ABSTRACT  64 

Importance: Chronic liver disease affects more than 1.5 billion adults worldwide, 65 

however the majority of cases are asymptomatic and undiagnosed. Echocardiography is 66 

broadly performed and visualizes the liver; but this information is not leveraged.  67 

Objective: To develop and evaluate a deep learning algorithm on echocardiography 68 

videos to enable opportunistic screening for chronic liver disease. 69 

Design: Retrospective observational cohorts 70 

Setting: Two large urban academic medical centers 71 

Participants: Adult patients who received echocardiography and abdominal imaging 72 

(either abdominal ultrasound or abdominal magnetic resonance imaging) with ≤30 days 73 

between tests, between July 4, 2012, to June 4, 2022. 74 

Exposure: Deep learning model predictions from a deep-learning computer vision 75 

pipeline that identifies subcostal view echocardiogram videos and detects the presence 76 

of cirrhosis or steatotic liver disease (SLD). 77 

Main Outcome and Measures: Clinical diagnosis by paired abdominal ultrasound or 78 

magnetic resonance imaging (MRI). 79 

Results: A total of 1,596,640 echocardiogram videos (66,922 studies from 24,276 80 

patients) from Cedars-Sinai Medical Center (CSMC) were used to develop 81 

EchoNet-Liver, an automated pipeline that identifies high quality subcostal images from 82 

echocardiogram studies and detects the presence of cirrhosis or SLD. In the held-out 83 

CSMC test cohort, EchoNet-Liver was able to detect the presence of cirrhosis with an 84 

AUC of 0.837 (0.789 - 0.880) and SLD with an AUC of 0.799 (0.758 - 0.837). In a 85 

separate test cohort with paired abdominal MRIs, cirrhosis was detected with an AUC 86 

of 0.704 (0.689-0.718) and SLD was detected with an AUC of 0.726 (0.659-0.790). In 87 

an external test cohort of 106 patients (n = 5,280 videos), the model detected cirrhosis 88 

with an AUC of 0.830 (0.738 - 0.909) and SLD with an AUC of 0.768 (0.652 – 0.875). 89 

Conclusions and Relevance: Deep learning assessment of clinical echocardiography 90 

enables opportunistic screening of SLD and cirrhosis. Application of this algorithm may 91 

identify patients who may benefit from further diagnostic testing and treatment for 92 

chronic liver disease. 93 
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Introduction 94 

   Chronic liver disease (CLD) affects an estimated 1.5 billion people worldwide 95 

and 100 million in the United States and can result in malignancy, end-stage liver 96 

disease, or mortality1. The prevalence of chronic liver disease is sharply increasing2,3, 97 

particularly related to steatotic liver disease (SLD) as a result of increased burden of 98 

obesity and metabolic disease, however the vast majority of patients are undiagnosed4,5. 99 

This issue affects many individuals with known cardiovascular disease as well as 100 

individuals with even severe end-stage liver disease, such as cirrhosis, which is 101 

frequently missed in the earlier stages of fibrosis4.  102 

Multiple approaches are available for screening and diagnosis of chronic liver 103 

disease, including serological risk scores, qualitative and quantitative ultrasound and 104 

magnetic resonance imaging (MRI), and invasive biopsy6,7. However, accuracy, 105 

availability, and cost all limit the sufficiency of these pathways to address 106 

underdiagnosis. Echocardiography, or ultrasound of the heart and associated structures, 107 

is a first-line diagnostic ultrasound test, and is frequently performed across the spectrum 108 

of patients with metabolic and cardiovascular diseases8. Included within a standard 109 

echocardiographic examination are subcostal views which visualize the inferior vena 110 

cava and provide clear visualization of hepatic tissue quality as well as liver contour. 111 

The full clinical utility of these images for identification of hepatic disease is 112 

underutilized as cardiologists are not trained in the assessment of liver pathologies by 113 

ultrasound. 114 

Artificial intelligence (AI) can identify diseases and characteristics that may 115 

not be readily observable by the human eye9–13, predict disease progression14, 116 

mortality15, and improve measurement accuracy of cardiac parameters16–19. Our study 117 

aims to develop and validate an AI computer vision approach to leverage 118 

echocardiographic images and videos to detect CLD. We hypothesize that a 119 

deep-learning pipeline can identify high-quality subcostal view videos and detect SLD 120 

and cirrhosis in a high-throughput fashion. We trained and evaluated the model 121 

performance in internal and external validations across multiple cohorts. AI-based 122 

analysis of hepatic tissue visible within standard subcostal echocardiography videos 123 
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may provide opportunistic screening of chronic liver disease from standard 124 

echocardiography without additional costs.  125 

  126 
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Methods 127 

Cohort Selection 128 

We included adult patients over 18 years who received an echocardiogram at 129 

Cedars-Sinai Medical Center (CSMC) within 30 days of abdominal ultrasound and no 130 

history of liver transplant between July 2012 and June 2022. Clinical diagnoses from 131 

the abdominal ultrasound report including normal liver, steatotic liver, and cirrhotic 132 

liver, were paired with the echocardiogram images as labels for training and validation. 133 

In addition, we created an independent test cohort of patients with echocardiography 134 

and a matched abdominal MRI for cross-modal validation. Studies from patients 135 

included within any test cohort (ultrasound or MRI) were excluded from training cohort 136 

(Supplementary Tables 1 - 4). A cohort of patients from Stanford Healthcare (SHC) 137 

who had echocardiography and abdominal ultrasound within 30 days were included as 138 

external validation. An overall flowchart for model development and evaluation is 139 

provided in Figure 1. Approval for this study was obtained from the Cedars-Sinai 140 

Medical Center and Stanford Healthcare Institutional Review Boards, and the 141 

requirement for informed consent was waived for retrospective data analysis without 142 

patient contact.  143 

 144 

Disease Definitions 145 

 146 

Echocardiography studies were matched to the closest abdominal ultrasound 147 

study within 30 days. CLD labels were derived from the abdominal ultrasound reports 148 

and categorized studies into normal, cirrhosis, or SLD based on text describing the liver 149 

parenchyma. If an echocardiography study had greater than one abdominal ultrasound 150 

within 30 days, labels were taken from the radiologist confirmed clinical report closest 151 

in time. Controls were identified when the report specified the liver parenchyma was 152 

normal In the abdominal MRI group, diagnosis labels for cirrhosis was taken from the 153 

clinical MRI report; for SLD, we focused on the subset of cases where magnetic 154 

resonance imaging-derived proton density fat fraction (MRI-PDFF) or magnetic 155 

resonance spectroscopy (MRS) fat signal was measured, with larger than 5.0% being 156 

diagnostic of SLD25. 157 

 158 
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View Selection and Image Processing 159 

A standard echocardiogram study often contains 50-100 videos, of which 160 

typically only 1-2 videos per study capture the liver in sufficient quality for assessment 161 

of the liver echotexture and contour. Echocardiography videos were initially obtained as 162 

Digital Imaging and Communications in Medicine (DICOM) files and underwent 163 

de-identification and processing into AVI videos. We developed a pipeline of two deep 164 

learning models for view classification (identification of the subcostal view videos) and 165 

quality control (excluding videos with severe motion artifact and low image quality). 166 

Two video-based convolutional neural networks (R2+1D)23 were used with standardized 167 

112 × 112 pixel videos for input. A dataset of 11,778 manually curated videos of 4,991 168 

patients was used model training, classified by both view type and image quality 169 

(representative ground truth images in Supplemental Figure 1). To evaluate the 170 

performance of view selection and quality checking, we randomly selected 100 CSMC 171 

echocardiogram studies (n = 2,315 videos) and two cardiologists manually identified 172 

high quality subcostal and low-quality subcostal view videos for comparison with 173 

model output. 174 

 175 

Chronic Liver Disease Detection 176 

For the training and evaluation of the liver disease detection models, we 177 

utilized an image-based model (DenseNet26), to focus on hepatic tissue texture for the 178 

prediction of cirrhosis and SLD. Given the focus on texture, the input data were still 179 

frame images from high quality subcostal echocardiogram videos at native resolution 180 

(480 × 640 pixels). We trained the model to minimize binary cross-entropy loss using an 181 

AdamW optimizer with an initial learning rate of 1x10-5 at a batch size of 40 for 100 182 

epochs. A variety of hyperparameters and architectures were compared prior to 183 

development of the final EchoNet-Liver model (Supplemental Table 5). All model 184 

training and evaluation were conducted using Python 3.8, PyTorch 2.2, and torchvision 185 

0.17.  186 

 187 

Statistical analysis 188 

Model performance was determined by measuring the area under the receiver 189 

operating curve (AUC) on held out test cohorts. Area under the precision-recall curves 190 
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(AUPRC), sensitivity, specificity, positive predictive value, and negative predictive 191 

value were similarly reported at the Youden index. All 95% confidence intervals were 192 

calculated with 10,000 bootstrapping samples. Data analysis was performed using both 193 

Python (version 3.8.0) and R (version 4.2.2) programming languages. This study was 194 

carried out following the TRIPOD-AI guideline (Supplemental Material 1)27. Saliency 195 

maps were generated to identify the areas of interest for the classifier across all test 196 

datasets. Each saliency map was produced using Grad-CAM28, which captures the 197 

gradient information directed into the final convolutional layer of the trained deep 198 

learning model. We input the final layer of the fourth DenseBlock for this approach. 199 

 200 

Code and Data Availability  201 

Code is available at https://github.com/echonet/liver/ and training data is 202 

available with submission of a research protocol and approval by CSMC and SHC 203 

IRBs.  204 

  205 
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RESULTS 206 

Patient characteristics 207 

Using a total of 1,596,640 videos from 66,922 CSMC echocardiography 208 

studies of 24,276 patients were identified and split 8:1:1 by patient into training, 209 

validation, and held-out test cohorts. The patient cohorts exhibited a variety of 210 

comorbidities consistent with patients that receive both echocardiography and 211 

abdominal ultrasound studies with prevalent hypertension (28.8%), hyperlipidemia 212 

(20.1%), diabetes (19.3%), hepatitis B (1.2%) and hepatitis C (3.7%) (Table 1). The 213 

average BMI was 26.5± 6.2, and 5.3% of the patients regularly consumed alcohol. The 214 

median duration between the echocardiography and abdominal ultrasound examinations 215 

was 0 days (interquartile range, -4 to +3 days). In this cohort, there were 371 (8.8%) 216 

cirrhosis and 645 (14.0%) SLD cases based on abdominal ultrasound reports.  217 

We identified an additional test population of 6,959 echocardiogram videos 218 

from 4,145 studies across 2,335 CSMC patients who underwent abdominal MRI for 219 

cirrhosis and MRI with PDFF/MRS for SLD, and echocardiography within 365 days. 220 

The patients in this additional test cohort were not included in training and validation 221 

cohort of disease detection models. In the SHC cohort for EchoNet-Liver evaluation, we 222 

identified 66 studies of individual patients who have a total of 130 high-quality 223 

subcostal videos. Of all patients, 10 and 11 patients were diagnosed with cirrhosis and 224 

SLD respectively based on abdominal ultrasound. Patient characteristics are presented 225 

in Table 1. Patient characteristics in each model development (i.e., view-classifier 226 

model, quality-control model, cirrhosis detection model and SLD detection model) were 227 

demonstrated in Supplemental Tables 1-4.  228 

 229 

 230 

View Classifier and Quality Control Performance Across Two Institutions 231 

A total 11,419 subcostal view videos were used for training a subcostal view 232 

classifier model, with all other videos labeled as non-subcostal controls. On an 233 

independent test set of 100 CSMC studies (n = 2,315 videos), the view classifier model 234 

identified 186 out of 196 subcostal view videos with an AUC of 0.991 (0.984 – 0.997). 235 

The sensitivity was 0.949 (0.910-0.974) and specificity was 0.999 (0.998-1.00). In the 236 

SHC population, the subcostal view classifier identified 149 out of 228 subcostal videos 237 
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from a total of 5,280 total videos with an AUC of 0.965 (0.956 - 0.974). The sensitivity 238 

was 0.654 (0.591 – 0.716) and specificity was 0.993 (0.991 – 0.995). In comparison of 239 

image quality by two cardiologists, the quality-control model demonstrated an AUC of 240 

0.855 (0.800-0.905) in CSMC and an AUC of 0.785 (0.722-0.843) in SHC. 241 

 242 

Disease Detection Performance Across Two Institutions 243 

In the held-out CSMC test ultrasound dataset, the EchoNet-Liver detected 244 

chronic liver disease with an AUC of 0.837 (95% CI 0.789 - 0.880) for cirrhosis and 245 

0.799 (0.758 - 0.837) for SLD (Figure 2). For cirrhosis, the AUPRC was 0.309 (0.206 – 246 

0.417) , PPV was 0.238 (0.180 - 0.299), and NPV was 0.976 (0.965 - 0.986). For SLD, 247 

the AUPRC was 0.408 (0.325 – 0.491), the PPV was 0.275 (0.232 - 0.319) and the NPV 248 

was 0.951 (0.935 - 0.966). In the CSMC test cohort, the algorithm showed a sensitivity 249 

of 0.696 (0.582 - 0.803) and a specificity of 0.847 (0.824 - 0.868) for detecting of 250 

cirrhosis and sensitivity of 0.741 (0.669 - 0.812) and specificity of 0.720 (0.692 - 0.747) 251 

for detecting SLD. In the SHC cohort, EchoNet-Liver detected cirrhosis and SLD with 252 

an AUC of 0.830 (0.738 - 0.909) and 0.768 (0.652 – 0.875) respectively. For cirrhosis, 253 

the AUPRC was 0.500 (0.278 – 0.708), PPV was 0.334 (0.203 - 0.471), and NPV was 254 

0.952 (0.901 - 0.989). For SLD, the AUPRC was 0.518 (0.299 – 0.705), the PPV was 255 

0.370 (0.219 - 0.528) and the NPV was 0.924 (0.864 - 0.976). In the SHC test cohort, 256 

EchoNet-Liver demonstrated a sensitivity of 0.802 (0.611 - 0.957) and a specificity of 257 

0.709 (0.623 - 0.789) for detecting of cirrhosis and sensitivity of 0.667 (0.450 - 0.867) 258 

and specificity of 0.781 (0.701 - 0.855) for detecting SLD. Evaluation metrics are 259 

summarized in Table 2. 260 

 261 

Comparison with Diagnosis by Magnetic Resonance Imaging 262 

 In order to evaluate the performance of EchoNet-Liver across multiple 263 

diagnostic pathways, the algorithm was evaluated in a cohort of patients that both 264 

received echocardiography and abdominal MRI at CSMC. In the MRI paired cohort, 265 

EchoNet-Liver detected the presence of cirrhosis with an AUC of 0.704 (95% CI 266 

0.689–0.718) (Figure 2-A). and a AUPRC of 0.493 (95% CI 0.468–0.518) 267 

(Supplementary Figure 2-A). When evaluated in the MRS/PDFF steatosis cohort, the 268 

model detected the presence of SLD with an AUC of 0.726 (95% CI 0.659–0.790) 269 
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(Figure 2-B) and an AUPRC of 0.626 (95%CI 0.519–0.731) (Supplementary Figure 270 

2-B) 271 

 272 

Model Explainability 273 

We generated saliency maps for representative echocardiography images from 274 

the two test datasets (CSMC held-out dataset and SHC external dataset shown in Figure 275 

3). For both cirrhosis and SLD, EchoNet-Liver highlighted the liver of the subcostal 276 

echocardiographic images as regions of interest, with a diffuse activation throughout the 277 

hepatic parenchyma. 278 

  279 
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Discussion  280 

In this study, we demonstrated strong performance of a deep learning pipeline 281 

(EchoNet-Liver) for detecting cirrhosis and SLD from clinical echocardiography images. 282 

The discriminative ability of the model was confirmed in a geographically distinct 283 

external health-care system cohort as well as in a cohort of patients with paired 284 

abdominal MRI imaging. Across diverse populations and disease definitions, deep 285 

learning-enhanced echocardiography enabled high-throughput automated detection of 286 

chronic liver disease, which could enable opportunistic screening for asymptomatic 287 

liver disease.  288 

Chronic liver disease often remains undiagnosed due to the asymptomatic 289 

nature of early disease. Despite the significant prevalence and morbidity, routine 290 

screening is not recommended given the high cost of imaging and lack of evidence of its 291 

cost-effectiveness23. Opportunistic screening from echocardiogram images can identify 292 

a high-risk population of patients with concurrent cardiovascular risk and liver disease 293 

in a cost-effective manner. By harnessing pre-existing imaging indicated for other 294 

diagnostic reason, our AI-enhanced workflow can increase the potential utility of 295 

imaging examinations29. By incorporating view classification, quality control, and 296 

disease detection in one pipeline, automation with AI can enable high-throughput 297 

evaluation of this non-invasive and common cardiovascular diagnostic test. 298 

There are several limitations in the present study to consider. This study is a 299 

retrospective study conducted at two tertiary care centers for patients who have 300 

undergone both abdominal ultrasound and echocardiography, which may result in 301 

selection bias. The spectrum of age, gender, race, and comorbidities in the study dataset 302 

may not represent the general population and may bias towards patients with more 303 

comorbidity, necessitating further external validation. Comparison between disparate 304 

imaging modalities such as ultrasound and MRI will have inherent limitations due to 305 

different modality-specific accuracy. However, in totality this study suggests that the 306 

clinical utility of high throughput disease screening using AI is promising, particularly 307 

for early disease, and enhances the utility of pre-existing imaging data11,12,30. Further 308 

studies are warranted to establish the optimal clinical workflow for opportunistic liver 309 

disease screening among CVD patients and downstream treatment.  By improving 310 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 14, 2024. ; https://doi.org/10.1101/2024.06.13.24308898doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.13.24308898
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

diagnosis of subclinical CLD, we may be able to limit or reverse disease progression 311 

20–22 and improve patient care by triaging patients toward appropriate clinical and 312 

diagnostic management23,24.  313 

In conclusion, we found that EchoNet-Liver, a deep learning pipeline using 314 

echocardiography to detect the presence of SLD and cirrhosis, had strong performance 315 

in multiple populations and disease definitions. The findings were consistent across two 316 

institutions and with comparison to abdominal magnetic resonance imaging. Deep 317 

learning applied to echocardiography may offer an opportunity for opportunistic and 318 

cost-effective screening for chronic liver disease.  319 

 320 
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Tables 344 

Table 1:  Patient characteristics of the study cohort 345 

Characteristic CSMC cohort, 
N = 24,276 

CSMC Ultrasound 
Test cohort 
N = 1,486 

CSMC MRI Test 
cohort,  
N = 2,335 

SHC External 
Validation cohort,  
N = 106 

Number of studies 66,922 6,996 6,751 106 
Number of video files 1,596,640 163,736 164,579 5,388 
Age, mean (SD) 65.1 (17.1) 63.0 (17.3) 62.7 (14.6) 59.3 (16.8) 
BMI, mean (SD) 27.1 (6.6) 26.9 (6.6) 26.9 (6.2) 27.0 (7.9) 
Gender, female 11,892 (49.1%) 666 (44.9%) 1,200 (51.4%) 48 (45.3%) 
Race/Ethnicity     
White 16,347 (67.3%) 972 (65.4%) 1,572 (67.3%) 49 (46.2%) 
Black 3,962 (16.3%) 279 (18.8%) 335 (14.3%) 2 (1.9%) 
Asian 1,699 (7.0%) 95 (6.4%) 184 (7.9%) 21 (19.8%) 
Other 2,268 (9.3%) 140 (9.4%) 244 (10.5%) 34 (32.0%) 
Hypertension 6,989 (28.8%) 454 (30.6%) 549 (23.5%) 72 (67.9%) 
Dyslipidemia 4,879 (20.1%) 328 (22.1%) 367 (15.7%) 45 (42.5%) 
Diabetes 4,675 (19.3%) 310 (20.9%) 449 (19.2%) 43 (40.6%) 
Stroke 1,626 (6.7%) 113 (7.6%) 107 (4.6%) 7 (6.6%) 
Atrial Fibrillation 802 (3.3%) 71 (4.8%) 42 (1.8%) 36 (34.0%) 
Heart Failure 2,964 (12.2%) 276 (18.6%) 105 (4.5%) 47 (44.3%) 
Coronary Artery 
Disease 

4,517 (18.6%) 342 (23.0%) 259 (11.1%) 29 (27.4%) 
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LVEF, mean (SD) 58.1 (14.9) 56.5 (16.5) 63.0 (10.1) 55.4 (13.8) 
Active Smoking 1,208 (5.0%) 100 (6.7%) 101 (4.3%) 4 (3.8%) 
HBV 284 (1.2%) 15 (1.0%) 72 (3.1%) 9 (8.5%) 
HCV 908 (3.7%) 53 (3.6%) 201 (8.6%) 9 (8.5%) 
Alcohol 1,243 (5.1%) 92 (6.2%) 211 (9.0%) 26 (24.5%) 

 346 

LVEF: Left Ventricular Ejection Fraction; BMI: Body Mass Index; SD: Standard Deviation; SLD: Steatotic liver disease, 347 

HBV: hepatitis B, HCV: hepatitis C 348 

 349 

  350 
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Table 2: Prediction of liver disease by deep learning analysis of echocardiography using labels from abdominal ultrasound held-out test 351 

population. 352 

 AUROC AUPRC Sensitivity Specificity PPV NPV 

(a)  CSMC held-out test cohort    

Cirrhosis 0.837  

(0.789 - 0.880) 

0.309 

(0.206 – 0.417) 

0.696  

(0.582 - 0.803) 

0.847  

(0.824 - 0.868) 

0.238  

(0.180 - 0.299) 

0.976  

(0.965 - 0.986) 

SLD 0.799  

(0.758 - 0.837) 

0.408 

(0.325 – 0.491) 

0.741  

(0.669 - 0.812) 

0.720  

(0.692 - 0.747) 

0.275  

(0.232 - 0.319) 

0.951  

(0.935 - 0.966) 

(b) SHC external validation test cohort   

Cirrhosis 0.830  

(0.738 - 0.909) 

0.500  

(0.278 – 0.708) 

0.802  

(0.611 - 0.957) 

0.709  

(0.623 - 0.789) 

0.334  

(0.203 - 0.471) 

0.952  

(0.901 - 0.989) 

SLD 0.768  

(0.652 - 0.875) 

0.518 

(0.299 – 0.705) 

0.667  

(0.450 - 0.867) 

0.781  

(0.701 - 0.855) 

0.370  

(0.219 - 0.528) 

0.924  

(0.864 - 0.976) 

PPV: positive predictive value. NPV: positive predictive value. AUROC: Area under receiver operating characteristic. SLD: Steatotic 353 

liver disease. 354 

  355 
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Figures 356 

Figure 1: Overview of the study pipeline 357 

 358 

More than 2M echocardiogram videos were used to train EchoNet-Liver, an automated 359 

pipeline for deep learning view classification, image quality assessment, and detection 360 

of chronic liver disease. Evaluation of EchoNet-Liver was performed 3 held-out test 361 

cohorts, including patients with paired echocardiograms and abdominal ultrasounds 362 

(CSMC), abdominal MRI (CSMC), and an ultrasound external test dataset (SHC). SLD: 363 

steatotic liver disease, MRI: magnetic resonance imaging. 364 
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Figure 2. Model Performance of Echo-Net-Liver  365 

 366 

Performance of a deep learning model using high-quality subcostal echocardiography 367 

videos for cirrhosis (A) and SLD (B). Model was evaluated in an internal CSMC 368 

held-out test dataset (black), external SHC abdominal ultrasound dataset (red) and 369 

abdominal MRI test dataset (green).  370 

US: ultrasound, MRI: Magnetic resonance imaging, SLD: Steatotic liver disease 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 
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Figure 3: Representative saliency maps for the two test datasets 387 

 388 

 389 

Corresponding pairs of input echocardiogram frames and Grad-CAM visualization of 390 

both cirrhosis and steatotic liver disease (SLD) (CSMC dataset (A) and Stanford 391 

Healthcare dataset (B)) Pixels brighter in color and closer to blue were more salient to 392 

model predictions, while those darker in color were less important to the model’s final 393 

prediction.   394 
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