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Summary 26 

Cannabis is one of the most widely used drugs globally. Decriminalization of cannabis is further 27 

increasing cannabis consumption. We performed genome-wide association studies (GWASs) of 28 

lifetime (N=131,895) and frequency (N=73,374) of cannabis use. Lifetime cannabis use GWAS 29 

identified two loci, one near CADM2 (rs11922956, p=2.40E-11) and another near GRM3 30 

(rs12673181, p=6.90E-09). Frequency of use GWAS identified one locus near CADM2 31 

(rs4856591, p=8.10E-09; r2=0.76 with rs11922956). Both traits were heritable and genetically 32 

correlated with previous GWASs of lifetime use and cannabis use disorder (CUD), as well as 33 

other substance use and cognitive traits. Polygenic scores (PGSs) for lifetime and frequency of 34 

cannabis use associated cannabis use phenotypes in AllofUs participants. Phenome-wide 35 

association study of lifetime cannabis use PGS in a hospital cohort replicated associations with 36 

substance use and mood disorders, and uncovered associations with celiac and infectious 37 

diseases. This work demonstrates the value of GWASs of CUD transition risk factors. 38 

Keywords: genome-wide association study, cannabis, addiction, genetic correlations, polygenic 39 

score, phenome-wide association study, CADM2, GRM3  40 
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Introduction 41 

Approximately 209 million people globally reported using cannabis in 20201. The number 42 

of people who use cannabis regularly is expected to increase as cannabis is decriminalized in 43 

many jurisdictions2-4. While people report using cannabis for medicinal purposes5, there is 44 

increasing evidence that cannabis use has short- and long-term adverse consequences across 45 

psychiatric, cognitive, and physical health6-14. Up to 27% of those who use cannabis in their 46 

lifetime are estimated to develop cannabis use disorder (CUD)15, in which cannabis use becomes 47 

problematic to an individual’s intra- and interpersonal wellbeing16. However, it is currently unclear 48 

what factors contribute most to the development of CUD, and thus of clinical interest to identify 49 

what makes an individual vulnerable to cannabis use and its negative effects. 50 

Problematic cannabis use is estimated to be 51-78% heritable based on twin studies17-19 51 

and recent genome-wide association studies (GWASs) have implicated hundreds of loci 52 

associated with CUD20-23. While CUD GWASs are of paramount importance, they come with three 53 

major caveats. First, these studies only examine one extreme of the addiction spectrum and 54 

neglect other substance-related behaviors and stages between substance initiation to substance 55 

use disorder (SUD) diagnosis (e.g., recreational use, escalating intake, dependence)24. These 56 

pre-addiction phenotypes25 are thought to dictate an individual’s progression to SUD26-32 and are 57 

heritable17,26,31,33. However, aside from GWASs of lifetime cannabis use (having ever versus never 58 

used cannabis in one’s lifetime) using data from the International Cannabis Consortium (ICC) and 59 

other sources34,35, which represents the opposing end of the addiction spectrum to CUD, the 60 

genetics of other pre-addiction cannabis traits are understudied36,37. Second, only a portion of 61 

those engaging in frequent cannabis use seek treatment or have a CUD diagnosis38,39. It is 62 

therefore unlikely that CUD GWASs and downstream analyses fully characterize the genetics of 63 

regular, potentially harmful cannabis use and its relationships with physical and mental health. 64 

Third, curating case/control SUD GWASs are costly and laborious because they require individual 65 
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psychological assessments for both cases and controls. Pre-addiction phenotypes can be rapidly 66 

and inexpensively collected in large population-based cohorts via self-report questionnaires40.  67 

We collected data from 23andMe, Inc. research participants by asking if they had ever 68 

used cannabis (N=131,895). Those who responded yes were asked a follow-up question about 69 

the number of days they used cannabis in their heaviest use period (N=73,374) as a measure of 70 

cannabis use frequency. We performed GWASs of lifetime and frequency of cannabis use, 71 

followed by a battery of secondary analyses to compare biological, genetic, and phenotypic 72 

associations. Because the frequency of cannabis use phenotype better distinguished between 73 

light and heavy use, we hypothesized that the genetics of frequency of cannabis use would more 74 

closely resemble CUD compared to lifetime cannabis use genetics. 75 

  76 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2024. ; https://doi.org/10.1101/2024.06.14.24308946doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.14.24308946
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

 

Results 77 

GWASs of Lifetime Cannabis Use and Frequency of Cannabis Use Uncover Associations with 78 

CADM2 and GRM3 79 

Participant demographics are described in Supplementary Table 1. The cohort was 80 

65.2% female with a mean age of 52.8±0.04 years old. Participant responses to surveys about 81 

lifetime and frequency of cannabis use are available in Supplementary Table 2 and 82 

Supplementary Fig. 1. 83 

For single nucleotide polymorphisms (SNPs) quality control, see Supplementary Table 84 

3. Genomic control inflation factors for lifetime cannabis use (λ=1.08) and frequency of cannabis 85 

use (λ=1.03) suggested no substantial inflation due to population stratification for either GWAS. 86 

SNP-based heritability (h2SNP) was 12.88%±0.97 for lifetime cannabis use, greater than the h2SNP 87 

for lifetime cannabis use from the ICC (h2SNP =6.63%±0.43)34. h2SNP for frequency of cannabis 88 

use was 4.12%±0.72 (Supplementary Table 4). 89 

We identified two genome-wide significant (p<5.00E-08) loci for lifetime cannabis use on 90 

chromosomes 3 and 7 (Fig 1A, Supplementary Fig. 2-3, Supplementary Table 5). The most 91 

significant association was with rs11922956 (p=2.40E-11, chr3p12.1) located upstream the Cell 92 

adhesion molecule 2 gene (CADM2), replicating findings from previous lifetime use34 and CUD22,23 93 

GWASs. CADM2 encodes a glycoprotein primarily expressed in the brain with functions in cell-94 

cell adhesion, synaptic formation, excitatory neurotransmission, and energy homeostasis 41,42. We 95 

also found a novel association between lifetime cannabis use and rs12673181 (p=6.90E-09, 96 

chr7q21.11), which is a SNP upstream of Metabotropic glutamate receptor 3 gene (GRM3) 97 

encoding mGlu3. mGlu3 is an inhibitory group II receptor affecting a range of intracellular signaling 98 

cascades and cellular processes like glutamate neurotransmission and long-term plasticity 43.  99 
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Frequency of cannabis use GWAS identified one significant association with rs4856591 100 

(p=8.10E-09, chr3p12.1; Fig1B, Supplementary Fig. 2, 5), which is near to CADM2 and is in 101 

linkage disequilibrium (LD) with rs11922956 (r2=0.76, p<1.00E-04).   102 
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 103 

Figure 1. Manhattan plots of A) lifetime cannabis use (N=131,895) and B) frequency of cannabis 104 

use (N=73,374). The horizontal line represents the significance threshold (p=5.00E-08). Nearest 105 

protein-coding genes (<1Mb) to significant loci (red dots) are labelled. For quantile-quantile plots 106 

and locus zoom plots, see Supplementary Fig. 2-4.  107 
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Secondary Analysis Identifies 40 Lifetime and 4 Frequency of Cannabis Use Genes 108 

Mapping SNPs to genes via gene-based (i.e., MAGMA, H-MAGMA) and transcriptome-109 

wide association study (TWAS; i.e., S-PrediXcan) analyses identified 40 unique genes associated 110 

with lifetime cannabis use (Supplementary Tables 6-8), and 4 unique genes associated with 111 

frequency of cannabis use (Supplementary Tables 9). None of the 4 genes associated with 112 

frequency of cannabis use (i.e., MMS22L, DSCC1, CPSF7, RP11-51J9.6) were implicated in 113 

lifetime cannabis use. The only gene to overlap across gene-based and TWAS analyses was 114 

CADM2 (Supplementary Table 10). Of the 44 unique genes associated with lifetime and 115 

frequency of cannabis use, 29 gene associations have not been previously associated with any 116 

cannabis-related trait (Supplementary Table 10).  117 

Gene-set and tissue-based enrichment analyses yielded no significant results 118 

(Supplementary Tables 11-12).  119 

Lifetime and Frequency of Cannabis Use Are Genetically Correlated with Psychiatric, Cognitive, 120 

and Physical Health Traits 121 

There were 115 traits genetically correlated (rg) with lifetime cannabis use and 38 with 122 

frequency of cannabis use after applying a 5% false discovery rate (FDR) correction (Fig. 2-3, 123 

Supplementary Table 13). We identified 29 traits that were significantly genetically correlated 124 

with both lifetime and frequency of cannabis use (10 anthropomorphic traits; 19 psychiatric traits), 125 

which were usually consistent in their direction of effect, with exceptions for intelligence and 126 

executive function (positively genetically correlated with frequency of use, negatively genetically 127 

correlated with lifetime use), and tense/‘highly strung’ and delay discounting (negatively 128 

genetically correlated with frequency of use, positively genetically correlated with lifetime use), as 129 

we review below (Supplementary Fig. 5). 130 

Cannabis and Other Substance Use Traits. The genetic correlation between lifetime and 131 

frequency of cannabis use was moderate (rg=0.54±0.08, p=1.89E-10), suggesting imperfect 132 
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genetic overlap between the two traits. We identified positive genetic correlations between CUD 133 

and lifetime (rg=0.62±0.04, p=2.44E-59), as well as frequency of cannabis use (rg=0.45±0.07, 134 

p=2.45E-10; Fig. 2). Compared to lifetime cannabis use from the ICC, our lifetime cannabis use 135 

trait was more strongly genetically correlated with CUD (23andMe-CUD rg=0.62±0.04, p=2.44E-136 

59 vs. ICC-CUD rg=0.48±0.04, p=4.30E-33). Positive genetic correlations with other aspects of 137 

substance use (e.g., drug experimentation and lifetime cannabis use: rg=0.97±0.01, p<1.35E-161; 138 

frequency: rg=0.54±0.07, p=5.45E-14) and misuse (e.g., Alcohol Use Disorder Identification Test 139 

(AUDIT) problems and lifetime cannabis use: rg=0.46±0.06, p=1.54E-15; frequency of cannabis 140 

use: rg=0.30±0.10, p=2.46E-03) were among the top genetic correlations for lifetime and 141 

frequency of cannabis use (Fig. 3, Supplementary Table 13). 142 
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 143 

Figure 2. SNP-based heritability and genetic correlation analysis comparisons across cannabis-related traits. A) Genetic correlations 144 

and h2SNP across 23andMe lifetime cannabis use and frequency of cannabis use with ICC lifetime cannabis use 34 and CUD from Levey 145 

et al. 22. h2SNP±standard error shown in matrix diagonal (gray boxes), rg±standard error in off-diagonal (white boxes). Correlation 146 

coefficients shown in heatmap color, with p value underneath in black. B) CUD requires progression through multiple pre-addiction 147 

stages, including experimental use, regular use, compulsive/harmful use, dependence, cessation attempts, and relapse. Aside from 148 
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lifetime cannabis use as a proxy for experimental use and frequency of cannabis use as a proxy for regular use, which positively 149 

genetically correlate with CUD, most of these stages have not been genetically explored with GWAS.150 
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Psychiatric Disorders. Lifetime cannabis use was genetically correlated with 151 

schizophrenia (rg=0.15±0.03, p=7.33E-07); however, frequency of cannabis use was not 152 

(rg=0.02±0.05, p=0.73). We also identified associations with other psychiatric traits and lifetime 153 

cannabis use like ADHD (rg=0.31±0.05, p=5.20E-12), depression (rg=0.22±0.04, p=3.52E-10), 154 

and cross-disorder (rg=0.30±0.05, p=3.91E-10). We identified significant genetic correlations 155 

between frequency of cannabis use and the psychiatric-related traits “depression possibly related 156 

to stressful or traumatic events” (rg=-0.54±0.16, p=9.22E-04), stress-related disorder 157 

(rg=0.33±0.10, p=1.44E-03), and anxiety/panic attacks (rg=-0.38±0.14, p=6.06E-03), though only 158 

stress-related disorder was also genetically correlated with lifetime cannabis use (rg=0.25±0.06, 159 

p=1.42E-04). 160 

Externalizing and Risk-Taking Traits. Among the strongest associations for lifetime 161 

cannabis use were positive genetic correlations with externalizing behavior (rg=0.84±0.03, 162 

p=5.65E-208), and two traits that were used to construct externalizing behavior44: number of 163 

sexual partners (rg=0.69±0.03, p=6.16E-115) and age at first sex (reverse-coded; rg=0.60±0.03, 164 

p=1.08E-83). We found similar positive genetic correlations with frequency of cannabis use and 165 

externalizing and risk-taking (externalizing: rg=0.45±0.06, p=1.68E-15); number of sexual 166 

partners: rg=0.42±0.06, p=3.17E-12). 167 

Cognitive Traits. We identified significant genetic correlations between lifetime cannabis 168 

use and 11 cognitive and executive function-related traits; these included positive genetic 169 

correlations with delay discounting (rg=0.16±0.04, p=3.51E-04) and other impulsivity-related 170 

measures (rg=0.27±0.05 to 0.46±0.05, p=1.02E-22 to 3.20E-04), and negative genetic 171 

correlations with childhood intelligence (rg=-0.29±0.08, p=3.20E-04), educational years (rg=-172 

0.17±0.03, p=1.84E-07), common executive function (rg=-0.13±0.03, p=3.63E-05), and 173 

intelligence (rg=-0.12±0.03, p=3.04E-05).  174 
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For frequency of cannabis use, we identified positive genetic correlations with intelligence 175 

(rg=0.40±0.05, p=4.18E-14) and common executive function (rg=0.34±0.06, p=7.86E-09). There 176 

was also a negative genetic correlation with delay discounting (rg=-0.23±0.07, p=1.62E-03), 177 

indicating those who use cannabis more frequently may devalue delayed rewards. Consistent 178 

with lifetime cannabis use, we found positive genetic correlation with the impulsivity-related 179 

measure perseverance (rg=0.28±0.09, p=1.48E-03). 180 

Physical Health Traits. We identified genetic correlations between lifetime cannabis use 181 

and 17 physical health traits, including chronic pain (rg=0.21±0.04, p=5.59E-09), back pain 182 

(rg=0.22±0.05, p=2.19E-06), and coronary artery disease with angina (rg=0.17±0.04, p=2.59E-05). 183 

For frequency of cannabis use, there was a positive genetic correlation with diabetes 184 

(rg=0.20±0.07, p=5.96E-03) and a negative genetic correlation with irritable bowel syndrome (rg=-185 

0.27±0.10, p=6.55E-03).  186 
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 187 

Figure 3. Comparison of genetic correlations across anthropometric (light gray), health (medium 188 

gray), and psychiatric (dark gray) traits between lifetime cannabis use (lanes 1 and 2) and 189 

frequency of cannabis use (lanes 3 and 4). Lanes 1 and 3 show rg values calculated by LDSC, 190 

and lanes 2 and 4 show FDR-corrected p values. Only traits for which at least one cohort was 191 

FDR-significant are displayed. For a full list of correlations and trait names, see Supplementary 192 

Table 13. *reverse coded traits.  193 
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Lifetime and Frequency of Cannabis Use Polygenic Scores Associate with Cannabis Use 194 

Phenotypes  195 

Lifetime and frequency PGS associations with cannabis use traits in All of Us (AoU) were 196 

considered in single (i.e., models only incorporating lifetime or frequency of cannabis use PGS 197 

as variables) and joint (i.e., models incorporating lifetime and frequency of cannabis use PGS as 198 

variables) PGS models (Supplementary Tables 14-16). In the joint-PGS model simultaneously 199 

accounting for lifetime and frequency PGS in the European cohort, based on genetic similarity 200 

(see Methods), lifetime cannabis use PGS associated with lifetime cannabis use (β=0.19±0.01, 201 

p<2.00E-16), daily cannabis use (β=0.09±0.03, p=5.09E-04), and problematic cannabis use 202 

(β=0.22±0.02, p<2.00E-16; Table 1, Supplementary Table 16). Frequency of cannabis use PGS 203 

was associated with lifetime cannabis use (β=0.06±0.01, p<2.00E-16), and nominally associated 204 

with problematic cannabis use (β=0.06±0.03, p=0.01), which did not survive multiple testing 205 

correction. Lifetime and frequency PGSs were estimated to explain 0.31-1.52% of the phenotypic 206 

variance in cannabis use traits (Fig. 4). In the African cohort, based on genetic similarity (see 207 

Methods), lifetime cannabis use was predicted by the lifetime PGS (β=0.08±0.01, p=2.76E-12) 208 

and the frequency PGS (β=0.04±0.01, p=1.88E-04), which contributed an estimated 0.20% to 209 

phenotypic variance. In both populations, phenotypic variance was primarily attributable to the 210 

lifetime cannabis use PGS versus the frequency of cannabis use PGS. 211 

In all models, age was a significant negative predictor and being a male was a significant 212 

positive predictor of problematic, daily, and lifetime cannabis use (Supplementary Tables 14-213 

17).214 
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Table 1. Joint-PGS regression analysis associating lifetime cannabis use PGS, frequency of cannabis use PGS, and select covariates 215 

with lifetime, daily, and problematic cannabis use in AoU cohorts. Bold PGS results are significant following Bonferroni correction 216 

(p<8.33E-03). For full analysis variables, see Supplementary Table 16. 217 

 European Cohort African Cohort 

 

Lifetime Use 

(Ncase=64,711, 

Ncontrol=49,595) 

Daily Use 

(Ncase=1,411, 

Ncontrol=28,112) 

Problematic Use 

(Ncase=1,825, 

Ncontrol=118,704) 

Lifetime Use 

(Ncase=26,064, 

Ncontrol=21,610) 

Daily Use 

(Ncase=2,483, 

Ncontrol=11,718) 

Problematic Use 

(Ncase=2,315,  

Ncontrol=50,262) 

Variable β StdErr p β StdErr p β StdErr p β StdErr p β StdErr p β StdErr p 

Lifetime 

PGS 
0.19 0.01 <2.00E-16 0.09 0.03 5.09E-04 0.22 0.02 <2.00E-16 0.08 0.01 2.76E-12 -0.02 0.03 0.52 3.62E-03 0.02 0.88 

Frequency 

PGS 
0.06 0.01 <2.00E-16 -0.03 0.03 0.38 0.06 0.03 0.01 0.04 0.01 1.88E-04 0.03 0.03 0.23 0.01 0.03 0.61 
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 218 

Figure 4. Percent proportion of lifetime, daily, and problematic cannabis use variance attributable to lifetime cannabis use PGS, 219 

frequency of cannabis use PGS, or both (joint-PGS) in European and African AoU cohorts. Bonferroni-corrected significance of PGS 220 

contribution for single- and joint-PGS models (see Table 1, Supplementary Tables 15-16) shown above data label in its corresponding 221 

legend color (n.s. p>0.05, *p<0.05, **p<0.01, **p<0.001).222 
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Lifetime Cannabis Use Polygenic Score Associates with Psychiatric and Infectious Disease 223 

Diagnoses 224 

 Our phenome- and laboratory-wide association studies (PheWAS/LabWAS) uncovered 225 

15 FDR-significant PheWAS associations and 9 FDR-significant LabWAS associations with 226 

lifetime cannabis use in the BioVU European cohort, as described below (Fig. 5; Supplementary 227 

Tables 19-20). When CUD was included as a covariate, 8 PheWAS and 6 LabWAS associations 228 

remained, as we discuss below. Tobacco smoking is prevalent among cannabis users45; 4 229 

PheWAS and 4 LabWAS associations persisted when adjusting for tobacco use disorder (TUD), 230 

and 1 PheWAS and 5 LabWAS associations persisted when CUD and TUD were jointly included 231 

as covariates, described further below. We found no significant associations with cannabis use 232 

frequency in the European cohort, nor any significant associations for lifetime or frequency of 233 

cannabis use in the African cohort. 234 

Psychiatric Disorders. Our PheWAS identified positive associations between lifetime 235 

cannabis use PGS and seven psychiatric disorders: TUD (β=0.09±0.01, p=2.44E-15), substance 236 

addiction and disorders (β=0.14±0.02, p=8.56E-13), CUD (β=0.21±0.03, p=1.24E-10), alcohol-237 

related disorders (β=0.10±0.02, p=2.43E-05), mood disorder (β=0.05±0.01, p=3.38E-07), two 238 

anxiety traits (anxiety disorders: β=0.05±0.01, p=8.85E-06; anxiety disorder: β=0.04±0.01, 239 

p=2.55E-04), depression (β=0.05±0.01, p=1.73E-05), bipolar (β=0.09±0.02, p=1.59E-04), and 240 

suicide ideation or attempt (β=0.12±0.03, p=2.64E-04). TUD, substance addiction and disorders, 241 

and mood disorders persisted following adjustment for CUD, only substance addiction and 242 

disorders persisted following control for TUD, and no psychiatric disorders were significant 243 

following control for both CUD and TUD. We did not find evidence of an association with 244 

schizophrenia (β=0.02±0.06, p=0.68), schizophrenia and other psychotic disorders (β=0.03±0.03, 245 

p=0.29), or psychosis (β=0.08±0.04, p=0.07). 246 
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Infectious Diseases. We found significant positive associations between lifetime cannabis 247 

use and infectious diseases, including human immunodeficiency virus (HIV) disease 248 

(β=0.21±0.04, p=1.14E-07), symptomatic HIV infection (β=0.21±0.04, p=1.26E-07), viral hepatitis 249 

C (β=0.13±0.03, p=3.99E-06), and viral hepatitis (β=0.11±0.03, p=6.17E-06). All associations 250 

persisted following control for CUD, both HIV associations persisted following control for TUD, but 251 

no infectious disease associations persisted following control for both CUD and TUD. 252 

Other Diagnoses. Lifetime cannabis use PGS was negatively associated with one 253 

digestive trait, celiac disease (β=-0.34±0.05, p=1.55E-11). This association persisted with 254 

following control for CUD, TUD, and combined CUD and TUD. 255 

Blood Laboratory Biomarkers. LabWAS revealed associations with lifetime cannabis use 256 

across four blood biomarkers: mean corpuscular hemoglobin (MCH; β=0.02±3.53E-03, p=1.60E-257 

07), carbon dioxide serum/plasma (β=-0.02±3.47E-03, p=1.92E-06), MCH concentration 258 

(β=0.02±3.85E-03, p=9.41E-05), and mean corpuscular volume (β=0.01±3.53E-03, p=7.77E-04). 259 

Following CUD adjustment, all but mean corpuscular volume remained significant; following 260 

adjustment for TUD alone or alongside CUD, carbon dioxide serum/plasma and MCH remained 261 

significant.   262 

Immune Laboratory Biomarkers. Two immune biomarkers, leukocytes in blood 263 

(β=0.02±3.51E-03SE, p=2.778E-09) and complement C4 in serum or plasma (β=0.06±0.02, 264 

p=6.84E-05), were positively associated with lifetime cannabis use. Both remained significant 265 

following control with TUD and CUD independently or together. 266 

Other Laboratory Biomarkers. The kidney biomarker creatinine in blood (β=-0.02±3.90E-267 

03, p=1.02E-04), endocrine biomarker parathyrin intact in serum or plasma (β=-0.04±0.01, 268 

p=1.25E-03), and the metabolic biomarker calcitriol in serum and plasma (β=-0.02±0.01, 269 

p=1.37E-03) were negatively associated with lifetime cannabis use; none were significant 270 
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following control for TUD, but creatinine in blood remained significant when CUD, and when CUD 271 

and TUD were used as covariates.272 
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 273 

Figure 5. Forest plot of FDR-significant phenome associations with lifetime cannabis use PGS unconditioned (UC), or with adjustment 274 

for cannabis use disorder (CUD), tobacco use disorder (TUD), or both (CUD-TUD). A) PheWAS results. B) LabWAS results. For full 275 

trait information, see Supplementary Tables 19-20.276 
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Discussion 277 

This study contributes to the growing body of cannabis use genetics literature by providing 278 

new GWASs of 131,895 individuals of European genetic similarity assessed for lifetime cannabis 279 

use and, for the first time, 73,374 individuals assessed for frequency of cannabis use. Both 280 

GWASs replicated the robust associations with variants nearby CADM2 and lifetime cannabis use 281 

GWAS identified one novel locus near GRM3. We found that lifetime and frequency of cannabis 282 

use reliably genetically correlated with substance use-related traits, including CUD, and PGSs for 283 

both traits associated with cannabis use phenotypes in AoU. Polygenic analysis of lifetime 284 

cannabis use also revealed positive associations with substance use and mood disorders 285 

consistent with the literature, and novel phenotypic associations with anxiety disorders, infectious 286 

diseases, and red blood cell biomarkers. Overall, these results support the value of cannabis use 287 

phenotypes spanning the addiction spectrum in the exploration of genetic factors influencing 288 

cannabis use vulnerability and health risk.  289 

Pre-addiction phenotypes are intended to capture prodromal symptoms of SUD; lifetime 290 

and frequency of cannabis use are heritable risk factors for CUD development15,27,29,30,32,34. They 291 

can be easily self-reported in large cohorts, making them attractive targets for GWAS. Lifetime 292 

cannabis use captures both experimental/occasional and heavy use; despite the simplicity of this 293 

phenotype, we uncovered multiple novel genetic associations with lifetime cannabis use (i.e., 294 

GRM3 locus, genetic correlations, polygenic associations), and found it reliably associated with 295 

CUD and multiple other important traits. Although frequency of use may better account for regular 296 

cannabis use, this trait did not associate with CUD to a greater degree compared to lifetime 297 

cannabis use (rg=0.45±0.07 vs. 0.62±0.04), potentially due to lower power (N=73,374 vs. 298 

131,895). However, lifetime and frequency of cannabis use was genetically correlated with each 299 

other and their associations with other complex traits were almost always directionally consistent. 300 

This included positive genetic correlations between lifetime and frequency of use with other 301 
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substance use, misuse, and behavioral traits thought to be substance use risk factors like 302 

externalizing, impulsivity, and risk-taking21,44,46-50, consistent with ICC lifetime cannabis use 303 

genetic correlations34 and reports of a general “addiction risk factor” or externalizing factor 304 

accounting for genetic overlap across substances23,44,51-53. We previously demonstrated that 305 

consumption and problematic use phenotypes (i.e., alcohol24,54,55, tobacco56) are correlated but 306 

non-identical traits; this is likely true for cannabis. Future multivariate analyses incorporating 307 

lifetime, frequency, and other cannabis use GWASs (e.g., CUD, dependence, craving, etc.) could 308 

effectively boost locus discovery, identify novel relationships between CUD behaviors and health, 309 

and parse genomic factors pertaining to the stages of CUD36, as we and others have previously 310 

demonstrated for other substance use traits23,54,55,57-59. 311 

One of our most notable findings was a novel association between lifetime cannabis use 312 

and rs12673181, which is located upstream of the GRM3 gene that encodes the group II inhibitory 313 

glutamate receptor mGlu3. There are no known associations with this or other GRM3 SNPs with 314 

cannabis-related traits, and while GWASs implicate GRM3 variants in other substance use (i.e., 315 

alcohol, smoking)60, schizophrenia61-65, neuroticism66,67, educational attainment68, and other 316 

phenotypes69-71, these variants are not in LD with rs12673181. Recent studies also suggest that 317 

mGlu3 potentiates activity of mGlu5
72, which has also garnered attention for its potential role in 318 

addictive-like behaviors and endocannabinoid synthesis73,74. While rs12673181 lies upstream of 319 

GRM3, it is not a known expression quantitative trait locus (eQTL) of GRM3 (Supplementary 320 

Table 5)75. Further functional work, especially pertaining to the regulation of GRM3, is required to 321 

characterize its association with cannabis use vulnerability. 322 

Through multiple lines of evidence, we found lifetime and frequency of cannabis use 323 

associated with the CADM2 gene, replicating prior GWASs of lifetime cannabis use and CUD23,34. 324 

Other GWASs have found an association between SNPs in CADM2 and other substance use 325 

traits23,48,51,60,76-91, risk-taking76,85,89,92-94, impulsivity48, and externalizing behaviors44. 326 
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Supporting the genetic correlation observed across cannabis GWAS data, PGSs for 327 

lifetime and, to a lesser degree, frequency of cannabis use, associated with phenotypes across 328 

the CUD progression spectrum (i.e., lifetime, daily, and problematic use).  More variance was 329 

explained by lifetime (0.29-1.40%) rather than frequency of use PGS (0.12-0.19%), and together 330 

they explained up to 1.6% of phenotypic variance. This is on par with recent substance use PGS 331 

analyses95-99, including by Hodgson et al. 100, who estimated that ICC lifetime cannabis use PGS 332 

predicted 0.82% of variance in lifetime cannabis use and 1.2% of variance in continued cannabis 333 

use in UK Biobank participants. Although it is improbable that cannabis use PGS alone will be 334 

sufficient for clinical utility101, lifetime and frequency of cannabis use PGS could be useful for 335 

models predicting problematic cannabis use risk. 336 

Largely consistent with the genetic correlations we observed, PheWAS uncovered positive 337 

associations between lifetime cannabis use PGS with substance use, depression, anxiety, 338 

bipolar, and suicidality in the BioVU cohort (N<66,917). To our knowledge, the positive 339 

associations with HIV and hepatitis diagnoses, negative association with celiac disease, and 340 

mixed associations with multiple blood and immune laboratory biomarkers are novel. Our findings 341 

complement a recent PheWAS conducted in the Yale-Penn sample (N<10,610), which is a cohort 342 

deeply phenotyped for psychiatric disorder diagnoses and related diagnostic criteria. That study 343 

found ICC lifetime cannabis use PGS positively associated with CUD, as well as traits related to 344 

other substance use (e.g., alcohol, tobacco, sedatives, stimulants) and depression102. That many 345 

of these relationships disappear when controlling for CUD in our PheWAS and in the Kember et 346 

al. 102 study, as well as when controlling for TUD in our study, supports the hypothesis that these 347 

associations are mediated by regular cannabis and tobacco use rather than genetic liability for 348 

lifetime cannabis use. Furthermore, like others102, we found minimal evidence of a relationship 349 

between lifetime cannabis use genetics, schizophrenia, and psychosis (aside from bipolar), 350 

despite the genetic relationship between cannabis use and psychosis being the subject of intense 351 
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interest103-106following observations of their apparent bidirectional phenotypic relationship107. 352 

Epidemiological evidence supports a link between cannabis and heavy or high potency cannabis 353 

use108-110. Identifying more robust variant associations, especially for frequency of cannabis use, 354 

will aid future causal inference analyses that can resolve the role of cannabis genetics in health. 355 

Our results were consistent with the prior cannabis use GWAS by ICC34. Lifetime cannabis 356 

use measured in US-based 23andMe research participants was genetically correlated with the 357 

same trait examined in the ICC cohort, which is composed of participants across North America, 358 

Europe, and Australia34. Both lifetime cannabis use datasets were genetically correlated with 359 

CUD, but the magnitude of this association was stronger in the 23andMe dataset compared to 360 

ICC (rg=0.62 vs. 0.48) despite our smaller sample size. Heritability estimates for our lifetime 361 

cannabis use trait was also higher (12.88% vs. 6.63%). Heritability may decrease when meta-362 

analyzing cohorts, possibly due to cohort-specific environmental/geocultural differences that 363 

could exist surrounding cannabis use111-113. Furthermore, while we found consistent positive 364 

correlations with psychiatric disorders, including schizophrenia21,34,49, ADHD21,34,47,49, bipolar 365 

disorder34,49, and depression21,49 between 23andMe and ICC lifetime cannabis use, we also 366 

observed that the genetic correlation with educational attainment was negative with 23andMe and 367 

positive with ICC lifetime cannabis use34. Interestingly, while most genetic correlations between 368 

lifetime and frequency of cannabis use were also mostly in agreement, lifetime cannabis use 369 

negatively genetically correlated with intelligence and common executive function and positively 370 

genetically correlated with delay discounting, while we saw the inverse with frequency of use. This 371 

is not entirely unprecedented, as relationships between cannabis use and cognitive traits can be 372 

paradoxical, especially among those with psychiatric disorders, such as those with psychosis who 373 

use cannabis exhibiting greater cognitive abilities than those who do not114. In sum, although most 374 

associations were consistent, the differences we observed in trait heritability and patterns of 375 

genetic correlations suggest some disunity between 23andMe and ICC lifetime cannabis use 376 
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cohorts, as well as lifetime and frequency of cannabis use data, which will warrant careful 377 

consideration before attempting to meta-analyzing GWAS data. 378 

There are several limitations to our study. The legal status of cannabis use differs across 379 

countries and even US states and has been changing over the last several decades. Thus, for 380 

some of our older subjects, both lifetime and frequency of use could be reflecting use decades 381 

ago, whereas others are referencing more recent use. Most studies suggest that legalizing 382 

recreational cannabis use increases lifetime and frequency of use rates115, which may have 383 

impacted our findings in complex ways that depend on which location a given participant was in 384 

at the time of their use. In addition, frequency of cannabis determined by the number of use days 385 

over a 30-day window does not accurately reflect lifetime use intensity because it does not 386 

account for the duration of regular use or use quantity. These characteristics are important to 387 

CUD trajectory and other health and wellbeing relationships116-119. Lifetime and frequency of 388 

cannabis use GWASs also relied on self-reported data. Cannabis use is most common during 389 

adolescence and young adulthood120, but participants in this study averaged in their 50s and could 390 

have been at greater risk for recall bias regarding cannabis use in early life121. Socioeconomic 391 

variables are also associated with cannabis use rates122,123, and the on-average higher 392 

socioeconomic status of 23andMe research participants may have influenced our findings36. 393 

Finally, GWASs were conducted using genomic information from individuals of genetically 394 

predicted European ancestry. While we extended our polygenic analyses to African cohorts, 395 

cross-population transferability of PGS is suboptimal compared to investigations where discovery 396 

and target populations are ancestrally aligned124,125. This, along with lower sample numbers, may 397 

explain why we observed fewer associations in African versus European cohorts. Due to sample 398 

size constraints, we also did not explore associations in other ancestral groups, further limiting 399 

the generalizability of our results. 400 
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This project showcases the utility of pre-addiction phenotypes in cannabis use genomic 401 

discovery. Lifetime and frequency of cannabis use genetically associated with CUD and other 402 

SUD, alongside concerning health and psychiatric problems. Increasing sample size and 403 

investigating other heritable, diverse phenotypes (e.g., drug responsivity, craving, withdrawal; 404 

Figure 2B) will be integral to further our understanding of CUD vulnerability and the health 405 

consequences of cannabis use. 406 

  407 
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Methods  474 

Participants and GWASs 475 

Lifetime and frequency of cannabis use GWASs were conducted in male and female 23andMe 476 

research participants of European genetic similarity, as previously described48. Ancestry falls 477 

along a spectrum126,127; individuals were only included in the analysis if they had >97% European 478 

genetic similarity (see Supplementary Methods), as determined through local ancestry 479 

analysis128. Participants provided informed consent and volunteered to participate in research 480 

online under a protocol approved by the external AAHRPP-accredited Institutional Review Board 481 

(IRB), Ethical & Independent (E&I) Review Services. As of 2022, E&I Review Services is part of 482 

Salus IRB (https://www.versiticlinicaltrials.org/salusirb). During 4 months in 2015 and 14 months 483 

between 2018 to 2020, participants completed a questionnaire surveying a range of personal and 484 

behavior characteristics. Included in this survey were questions on lifetime substance use and 485 

substance use frequency. Specifically, “Yes” or “No” responses to the question “Have you ever in 486 

your life used marijuana?” were collected as a measure of lifetime cannabis use. If participants 487 

answered “Yes”, they were prompted to answer the question “How many days did you use 488 

marijuana during your heaviest 30 days?” as a measure of frequency of cannabis use. 489 

Participants could respond between 0 and 30 days.  490 

For lifetime cannabis use and frequency of cannabis use, 23andMe conducted GWASs of 491 

up to 33,419,581 imputed genetic variants using linear regression and assuming an additive 492 

genetic model. Samples were genotyped on one of five genotyping platforms. The V1 and V2 493 

platforms were variants of the Illumina HumanHap550 + BeadChip, including about 25,000 494 

custom SNPs selected by 23andMe, with a total of ~560,000 SNPs. The V3 platform was based 495 

on the Illumina OmniExpress + BeadChip, with custom content to improve the overlap with our V2 496 

array, with a total of ~950,000 SNPs. The V4 platform is a fully custom array, including a lower 497 

redundancy subset of V2 and V3 SNPs with additional coverage of lower-frequency coding 498 
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variation, and ~570,000 SNPs. The v5 platform, in current use, is an Illumina Infinium Global 499 

Screening Array (~640,000 variants) supplemented with ~50,000 variants of custom content. 500 

Samples that failed to reach 98.5% call rate were excluded from the study. We excluded SNPs of 501 

low genotyping quality, including those that failed a Mendelian transmission test in trios or with 502 

large allele frequency discrepancies compared to European 1000 Genomes reference data, failed 503 

Hardy-Weinberg Equilibrium testing, failed batch effects testing, or had a call rate <90%, as well 504 

as SNPs with a minor allele frequency<0.1% and imputed variants with low imputation quality or 505 

with evidence of batch effects (Supplementary Table 3). Model covariates included age, sex, 506 

the first 5 genetic principal components (PCs), and indicator variables for genotype platforms (see 507 

Supplementary Methods for additional details). Unrelated participants categorized as of 508 

European ancestry were included in the GWASs (lifetime cannabis use N=131,895; frequency of 509 

cannabis use N=73,374; Durand et al., 2014). For full details on genotyping and GWASs, see 510 

Supplementary Methods.  511 

Functional annotation and gene-Based Analyses 512 

Functional annotation. Using the web-based platform Functional Mapping and Annotation 513 

of Genome-Wide Association Studies (FUMA v1.3.8), SNPs were annotated based on ANNOVAR 514 

categories, Combined Annotation Dependent Depletion scores, RegulomeDB scores, eQTLs, 515 

and chromatin state predicted by ChromHMM. Novel SNPs were identified as those not in LD 516 

(r2<0.10) or within ±1Mb of GWAS-significant SNPs uncovered by other GWASs of cannabis use 517 

traits (e.g., initiation, age of onset, CUD) sourced from the literature20-23,34,35,51,129-133 and from the 518 

EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/). Novel genes were identified as those not 519 

identified by gene-based analyses in other cannabis-related studies22,34,35,103,134-138 or with 520 

start/stop positions within ±1Mb of previously uncovered GWAS-significant SNPs.  521 

MAGMA gene-based and pathway analyses. We used Multi-marker Analysis of GenoMic 522 

Annotation (MAGMA, v1.08, Ensembl build v92), which is included in FUMA, to annotate SNPs 523 
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to protein-coding genes. LD was estimated using the 1000 Genomes European reference sample, 524 

and significance determined following Bonferroni correction (p<2.53E-06). Gene-set analysis was 525 

conducted on 10,678 gene-sets and Gene Ontology terms curated from the Molecular Signatures 526 

Database (MsigDB v7.0). Tissue-specific gene expression profiles were assessed in 54 tissue 527 

types and 30 general tissue types with average gene expression in each tissue used as a 528 

covariate. Using Genome-Tissue Expression (GTEx, v8) RNA-seq data, gene expression values 529 

were log2 transformed from the average Reads Per Kilobase Million (max value=50) per tissue. 530 

Significance was determined following Bonferroni correction (p<9.26E-04 for 54 tissue types; 531 

p<1.67E-03 for 30 general tissue types). 532 

H-MAGMA. We incorporated lifetime and frequency of cannabis use GWAS data with 533 

chromatin interaction profiles from human brain tissue using Hi-C coupled MAGMA (H-MAGMA; 534 

Sey et al., 2020). H-MAGMA assigns non-coding SNPs to genes based on chromatin interactions 535 

from fetal brain, adult brain, midbrain neurons, cortical neurons, iPSC-derived neurons, and iPSC-536 

derived astrocytes datasets (https://github.com/thewonlab/H-MAGMA). Exonic and promoter 537 

SNPs were assigned to genes based on physical position139. We applied a Bonferroni correction 538 

based on the total number of gene-tissue pairs tested (p<9.42E-07 to 9.45E-07). 539 

S-PrediXcan. We performed a transcriptome-wide association study using S-PrediXcan 540 

(v0.7.5) to identify eQTL-linked genes associated with lifetime and frequency of cannabis use140. 541 

S-PrediXcan uses genetic information to predict gene expression levels in various tissues and 542 

tests if eQTLs correlate with lifetime or frequency of cannabis use across 49 bodily tissues 543 

(Ngenes=1,619 to 9,949). S-PrediXcan uses precomputed tissue weights from the GTEx project 544 

database (https://www.gtexportal.org/) as the reference transcriptome dataset via Elastic net 545 

models. As input data, we included summary statistics, transcriptome tissue data, and covariance 546 

matrices of the SNPs within each gene model (HapMap SNP set available at the PredictDB Data 547 
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Repository)140 from all available tissues. We applied Bonferroni correction for each tissue type 548 

(p<3.09E-05 to 5.03E-06). 549 

LDSC heritability and genetic correlations across health, psychiatric, and anthropomorphic traits 550 

Linkage Disequilibrium Score regression (LDSC; https://github.com/bulik/ldsc) was used 551 

to calculate h2SNP and genetic correlations141. h2SNP was calculated from pre-computed LD scores 552 

(“eur_w_ld_chr/”). rg were calculated between lifetime or frequency of cannabis use with 292 other 553 

traits across 22 health, psychiatric, and lifestyle categories (Supplementary Methods). We 554 

applied a 5% FDR correction to account for multiple testing. 555 

Polygenic score analyses 556 

PGS of lifetime, daily, and problematic cannabis use in AoU. We tested the associations 557 

between lifetime or frequency of cannabis use PGSs with cannabis traits available for AoU 558 

participants clustering within a European or African genetic ancestry panel (for details, see All of 559 

Us Research Program Genomics Investigators 142). AoU is a diverse health database currently 560 

including survey responses, physical measurements, genotyping data, and electronic health 561 

records (EHR) for over 400,000 individuals living in the United States142,143. Using survey and 562 

EHR data, participants were assigned binary identifiers for lifetime cannabis use (concept id: 563 

1585636), daily cannabis use among those who reported cannabis use in their lifetime (concept 564 

id: 1585650), and problematic cannabis use (concept ids: 434327, 440387, 440996, 433452, 565 

437838, 4323639, 4103419, 435231, 434019, 434328; Supplementary Methods). 566 

We calculated PGSs in male or female participants who had available short-read whole 567 

genome sequencing data and applicable cannabis use data. We used the Allele Count/Allele 568 

Frequency (ACAF) threshold SNP callset curated by AoU, which includes SNPs of MAF > 1% or 569 

allele counts over 100 for each ancestral subpopulation. Using PRS-CS “auto” v1.1.0, the SNP 570 

set was filtered to biallelic SNPs present in the HapMap3 European ancestry set and SNPs were 571 

weighted. Lifetime and frequency of cannabis use PGSs were created from 782,975 weighted 572 
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SNPs using the allelic-scoring function, score, in PLINK (v1.9; Ge et al., 2019). The base R 573 

function glm was used to fit logistic regression models for each cannabis use trait using PGS(s), 574 

as well as the additional covariates of age, sex, and the first 10 global PCs provided by AoU. 575 

Models included single PGS models (lifetime or frequency PGS + additional covariates), a joint-576 

PGS model (lifetime PGS + frequency PGS + additional covariates), and a null model (additional 577 

covariates only). For the joint-PGS model, Bonferroni correction was applied for two tests (lifetime 578 

PGS and frequency PGS) and three outcomes (lifetime, daily, and problematic cannabis use) for 579 

a total of N=6 comparisons (p<8.33E-03); single PGS models were corrected for one test and 580 

three outcomes (N=3, p<1.67E-02). Joint-PGS liability scale R2 values were calculated as 581 

previously described by Lee et al. 145 using the NagelkerkeR2 function in the R package fmsb 582 

(v0.7.6) and the estimated prevalence of cannabis use traits in US adults (Supplementary 583 

Methods). PGS ΔR2 was calculated by subtracting R2 calculated from models including PGS from 584 

the R2 of the null model. 585 

Phenome- and Laboratory-wide association analyses in a hospital cohort (BioVU). We 586 

tested associations between lifetime or frequency of cannabis use PGSs and medical condition 587 

liability from hospital-based cohorts using data from the Vanderbilt University Medical Center 588 

(VUMC; IRB #160302, #172020, #190418)146. The BioVU cohort, a subset of VUMC biobank 589 

participants (N=72,821), provided genotyping data and EHR containing clinical data and 590 

laboratory-assessed biomarkers144,146,147. For each unrelated European (N=66,917) and African 591 

(N=12,383) BioVU participant based on genetic similarity, we computed lifetime and frequency of 592 

cannabis use PGSs using the PRS-CS v1.1.0144.  593 

For PheWAS, we fitted a logistic regression model to each case/control disease 594 

phenotypes (“phecodes”) to estimate the log odds of each diagnosis given lifetime cannabis 595 

use/frequency of cannabis use PGS, while adjusting for sex, median age of the longitudinal EHR, 596 

and the first 10 PCs with the PheWAS v0.12 R package144. At least two International Disease 597 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2024. ; https://doi.org/10.1101/2024.06.14.24308946doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.14.24308946
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

 

Classification (ICD) codes mapping to a PheWAS disease category (Phecode Map 1.2; 598 

https://phewascatalog.org/phecodes) and a minimum of 100 cases were required for phecode 599 

inclusion. We also conducted additional sensitivity analyses using TUD (phecode 318) and CUD 600 

(see Supplementary Table 12 for CUD ICD codes) as covariates to examine if SUD mediated 601 

associations with cannabis PGSs. We calculated the 5% FDR for all associations performed 602 

(N=1,405). 603 

For LabWAS, we implemented the pipeline established by Dennis et al. 147. LabWAS 604 

associates PGS with laboratory biomarkers (i.e., measurements) evaluated in BioVU participants. 605 

LabWAS uses the median, inverse normal quantile transformed age-adjusted values from the 606 

QualityLab pipeline in a linear regression to determine the association between lifetime or 607 

frequency of cannabis use PGSs with 314 phenotypes. We controlled for the same covariates as 608 

for the PheWAS analyses, excluding median age because the pipeline corrects for age using 609 

cubic splines with 4 knots. We applied 5% FDR correction across all LabWAS associations 610 

performed (N=314). 611 

All results are presented as the mean±standard error unless otherwise specified. 612 

  613 
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