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Abstract
Background: Coronary artery calcium (CAC) scans contain valuable information beyond the Agatston
Score which is currently reported for predicting coronary heart disease (CHD) only. We examined
whether new arti�cial intelligence (AI) algorithms applied to CAC scans may provide signi�cant
improvement in prediction of all cardiovascular disease (CVD) events in addition to CHD, including heart
failure, atrial �brillation, stroke, resuscitated cardiac arrest, and all CVD-related deaths.

Methods: We applied AI-enabled automated cardiac chambers volumetry and automated calci�ed
plaque characterization to CAC scans (AI-CAC) of 5830 individuals (52.2% women, age 61.7±10.2 years)
without known CVD that were previously obtained for CAC scoring at the baseline examination of the
Multi-Ethnic Study of Atherosclerosis (MESA). We used 15-year outcomes data and assessed
discrimination using the time-dependent area under the curve (AUC) for AI-CAC versus the Agatston
Score.

Results: During 15 years of follow-up, 1773 CVD events accrued. The AUC at 1-, 5-, 10-, and 15-year
follow up for AI-CAC vs Agatston Score was (0.784 vs 0.701), (0.771 vs. 0.709), (0.789 vs.0.712) and
(0.816 vs. 0.729) (p<0.0001 for all), respectively. The category-free Net Reclassi�cation Index of AI-CAC
vs. Agatston Score at 1-, 5-, 10-, and 15-year follow up was 0.31, 0.24, 0.29 and 0.29 (p<.0001 for all),
respectively. AI-CAC plaque characteristics including number, location, and density of plaque plus
number of vessels signi�cantly improved NRI for CAC 1-100 cohort vs. Agatston Score (0.342).

Conclusion: In this multi-ethnic longitudinal population study, AI-CAC signi�cantly and consistently
improved the prediction of all CVD events over 15 years compared with the Agatston score.

Introduction
Coronary artery calcium (CAC) scoring is the strongest predictor of risk for atherosclerotic
cardiovascular disease (ASCVD) in asymptomatic individuals1. Although CAC scoring is used for
prediction of overall ASCVD events, it is not used for prediction of other cardiovascular disease (CVD)
events such as heart failure (HF) and atrial �brillation (AF). Beyond risk factor assessment, screening
tools for overall CVD event prediction are limited due to cost-effectiveness and feasibility barriers.

The usage of CAC scans has increased signi�cantly since the ACC/AHA Guideline on the Management
of Blood Cholesterol in 20182 included CAC score in the algorithm for consideration of statin therapy,
among those at borderline and intermediate risk for ASCVD. It is estimated that 45–50% of the US
population aged 40–80 would fall in these groups de�ned as 5–20% risk of ASCVD events over 10
years3,4. The possibility of applying arti�cial intelligence (AI) to predict CVD has been previously
published by some of our team members using the support vector machine algorithms in MESA5. We
have sought to further enrich the value of CAC scans by applying AI that automatically measures all
cardiac chamber volumes and left ventricular (LV) mass without using any contrast agent. For this
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manuscript, we refer to AI-enabled automated cardiac chambers volumetry from CAC scans as AI-CAC
and the AI-CAC model incorporates Agatston CAC Score, LA, RV, LV volume and mass.

We have recently shown that AI-CAC volumetry alone enabled the prediction of HF in the Multi-Ethnic
Study of Atherosclerosis (MESA)6. Additionally, we have demonstrated that AI-CAC LA volume alone
improved on the predictive value of CHARGE-AF Risk Score and NT-proBNP for detection of individuals at
high risk of AF7,8. Such an add-on measurement can offer valuable insights into a patient’s overall CVD
risk beyond the CAC score. In this study of MESA participants, we compared the performance of AI-CAC
over the traditional Agatston CAC Score for prediction of all CVD events.

Methods
Study population

MESA is a prospective, population-based, observational cohort study of 6,814 men and women without
clinical CVD at the time of recruitment. Six �eld centers in the United States participated in the study:
Baltimore, Maryland; Los Angeles, California; Chicago, Illinois; Forsyth County, North Carolina; New York
City, New York; and St. Paul, Minnesota. As part of the initial evaluation (2000-2002), participants
received a comprehensive medical history, clinic examination, and laboratory tests. Demographic
information, medical history, and medication use at baseline were obtained by self-report. An ECG-gated
non-contrast CT was performed at the baseline examination to measure CAC (see below).

Outcomes

The primary outcome was a composite of all CVD events comprised of stroke, myocardial infarction,
angina, HF, AF, resuscitated cardiac arrest, and all CVD-related deaths. Participants were contacted by
telephone every 9-12 months during follow-up and asked to report all new CVD diagnoses. International
Classi�cation of Disease (ICD) codes were obtained. For participant reports of HF, coronary heart
disease, stroke, and CVD mortality, detailed medical records were obtained, and diagnoses were
adjudicated by the MESA Morbidity and Mortality Committee. Incident AF was identi�ed by ICD codes
427.3x (version 9) or I48.x (version 10) from inpatient stays and, for participants enrolled in fee-for-
service Medicare, from Medicare claims for outpatient and provider services. Hard CVD was de�ned as
myocardial infarction, resuscitated cardiac arrest, stroke, CHD death, and stroke death. A detailed study
design for MESA has been published elsewhere9. MESA participants have been followed since the year
2000. Incident AF has been identi�ed through December 2018. 70 cases with AF diagnosed prior to
MESA enrollment were removed from the analysis. 

From the 6,814 MESA participants, we excluded 771 who did not consent to use of their data by
commercial entities, leaving 6043 participants at baseline. Among the remaining participants, 125
participants with missing slices in CAC scans and 88 participants with missing event or time follow-up
data were excluded, resulting in data from 5830 participants for �nal analysis. The 125 cases with
missing slices in CAC scans were 49.8% male and 50.2% females with age 60.8±10.1. These errors were
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random, and our investigations did not reveal any association between cases with missing slices and
any of the dependent or independent variables in our study.

The AI tool for Automated Cardiac Chambers Volumetry 

The automated cardiac chambers volumetry tool in AI-CAC is referred to in this study is called
 AutoChamberTM (HeartLung.AI, Houston, TX), a deep learning model that used TotalSegmentator10 as
the base input and was further developed to segment not only each of the four cardiac chambers; left
atrium (LA), LV, right atrium (RA), and right ventricle (RV) but also several other components which are
not presented here. Segmentations of cardiac chambers are shown in Figure 1. The base architecture of
the TotalSegmentator model was trained on 1139 whole-body CT cases with 447 cases of coronary CT
angiography (CCTA) independent from MESA using nnU-Net, a self-con�guring method for deep learning-
based biomedical image segmentation11. The initial input training data were matched non-contrast and
contrast-enhanced ECG-gated cardiac CT scans with 1.5 mm slice thickness. Because the images were
taken from the same patients in the same session, registration was done with good alignment. Following
this transfer of segmentations, a nnU-Net deep learning tool was used for training the model.
Additionally, iterative training was implemented whereby human supervisors corrected errors made by
the model, and the corrected data were used to further train the model, leading to improved accuracy. To
standardize the comparison in MESA, cardiac chambers were indexed by body surface area (BSA).
AutoChamber was run on 6043 non-contrast CAC scans from participants that consented to commercial
data usage out of the 6814 scans available in MESA exam 1. Expert rules built into the AI model
excluded 125 cases due to missing slices in image reconstruction, which occurred with some of the
electron-beam CT scanners used in MESA at baseline. 

Agatston CAC Score Measurement

Three study sites used cardiac-gated electron-beam CT scanners, whereas the other three sites used
multidetector CT scanners. Each participant was scanned twice at baseline examination, with mean
Agatston score used for analysis12. All scans were phantom-adjusted and read by two trained CT image
analysts at a central MESA CT reading center, with high reproducibility and comparability between
electron-beam CT and multidetector CT scanning13,14. Detailed information on CT scan methods and
interpretation has been provided previously13.

CAC area and density were derived from total Agatston and volume scores, which were provided in the
original MESA data set. The methods for this derivation are elsewhere15.

AI-CAC Plaque Characterization beyond Agatston CAC Score

In addition to AI-CAC cardiac chambers volumetry, AI-CAC enables calci�ed plaque characterization that
currently is not reported by the Agatston CAC Score. These characteristics include the number of
plaques, number of vessels with plaques, plaque density and location. In this study, we have only used
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these characteristics for calci�ed plaques, however, efforts are underway to characterize non-calci�ed
(soft plaques) in non-contrast CAC scans using AI-CAC. 

Statistical Analysis

We used SAS (SAS Institute Inc., Cary, NC) and R-4.3.3 software for statistical analyses.  All values are
reported as means ± SD except for CAC which did not show normal distribution and is presented as
median with interquartile range (IQR). All tests of signi�cance were two tailed, and signi�cance was
de�ned at Type I error (α) = 0.05 and Type II error (β) = 0.20. All analyses met the appropriate sample
size and power considerations. Instances where these requirements were not met have been excluded
and noted. 

Survival analysis was performed using Cox proportional hazards regression. Discrimination was
assessed using the time-dependent receiver operator characteristic (ROC) area under the curve (AUC)16

and Uno’s C-statistic17. The time-dependent AUC was calculated using the inverse probability of
censoring weighting (IPCW) estimator without competing risks to determine discrimination at speci�c
follow-up times. Signi�cance in AUC difference was calculated based on the variance of the difference
using the independent and identically distributed (iid)-representation of the estimator. Uno’s concordance
was calculated to account for signi�cant right censoring over 15 years of follow-up. Signi�cance in
concordance discrimination was determined using 2000 bootstrapped samples. 

Category-free (continuous) net reclassi�cation index (NRI) was calculated using the sum of the
differences between the proportions of upward reclassi�cations and downward reclassi�cations events
and non-events, respectively. P(up|event) and P(down|nonevent) form the positive components of the
NRI in expression, while events that move down and nonevents that move up are mistakes introduced by
the new marker. NRI was developed as a statistical measure to evaluate the improvement in risk
prediction models when additional variables are incorporated into a base model18. 

The AI-CAC model as presented is comprised of LA volume index, RV volume index, LV volume index, LV
mass index, plaque characterization, and MESA-reported phantom-adjusted Agatston CAC score.
Cardiac chamber volumetry was indexed by body surface area to standardize measurements. Agatston
CAC score was natural logarithm-transformed (ln-transformed + 1) to improve the interpretability of
hazards ratios and avoid undue in�uence of large values. All predictors were modeled continuously and
exhibited a linear relationship with outcomes. The focus of this manuscript is comparing AI-CAC over
Agatston CAC Score alone; therefore, no risk factors or other covariates were included in either model.

Ethical Approval

As a longitudinal population-based study sponsored by the National Institute of Health (NIH), MESA has
received proper ethical oversight. The MESA protocol was approved by the Institutional Review Board
(IRB) of the 6 �eld centers (Columbia University IRB, Johns Hopkins Medicine IRB, Northwestern
University IRB, UCLA O�ce of the Human Research Protection Program (OHRPP), University of
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Minnesota Human Research Protection Program, Wake Forest Baptist Health IRB) and the National
Heart, Lung, and Blood Institute. Data from participants who did not consent to commercial use were
removed from our study. 

Results
The mean (SD) age of our subjects was 62±10 years, 52% were female, 40% were non-Hispanic White,
26% non-Hispanic Black, 22% Hispanic, and 12.1% Chinese.  Table 1 shows the baseline characteristics
of MESA participants who experienced a CVD event versus those who did not over the 15 years of follow
up, during which 1773 CVD events accrued.In univariate comparisons, participants experiencing CVD
events were older, more likely male, and more likely non-Hispanic White. The cases that experienced a
CVD event had higher cardiac chamber volumes for LA, LV, RA, and LV mass.

Figure 1 shows examples of three participants with enlarged LA and LV volumes with CAC score 0 and
low risk (<5%) ASCVD risk score who experienced CVD events. A signi�cant number of low-risk
participants with CAC 0 have enlarged cardiac chambers. With higher CAC score category, there was a
higher proportion of patients with LA and LV volumes in the highest quartile (p-trend=0.0001). 17.7% of
cases with CAC 0 who are considered low risk have enlarged LA volume that puts them at high risk for
AF and stroke (Figure 2a). Similarly, 22.7% of cases with CAC 0 have enlarged LV volume that puts them
at risk of HF (Figure 2b). 

The median C-statistic (95% CI) for all CVD events over 15 years for pooled sexes between AI-CAC vs.
Agatston CAC score was 0.742 (CI: 0.723-0.761) vs. 0.709 (CI: 0.688-0.728) (p<0.0001). For females, the
C-statistic between AI-CAC volumetry vs Agatston CAC Score was 0.751 (0.738-0.778) vs. 0.705 (0.683-
0.720) (p<0.0001), respectively, and 0.701 (0.674-0.723) vs. 0.672 (0.651-0.693) (P=0.0012), respectively,
for males. AI-CAC had signi�cantly higher discrimination than Agatston CAC Score for CVD events
prediction across 1-, 5-, 10-, and 15-year follow-up (Figure 3), including AF, HF, stroke, hard CVD, and All-
Cause Mortality prediction (Table 2). Category-free NRI showed improvement across all follow-up
periods for AF, HF, stroke, hard CVD, and All-Cause Mortality. 

AI-CAC plaque characterization signi�cantly improved CHD prediction in the CAC 1-100 cohort (Appendix
A.2). The addition of AI-CAC RV volume, LV volume, and LV mass further improvement discrimination for
CHD in this cohort. The AI-CAC composite model included RV volume, LV volume, LV mass, AI-CAC
derived plaque characterization, and Agatston CAC Score. Over 5- and 10- year follow-up, the time-
dependent AUC for the AI-CAC composite model vs. Agatston CAC Score was 0.654 vs. 0.557
(p<0.0001) and 0.688 vs. 0.556 (p<0.0001), respectively (Appendix A.1). 

Discussion
Our study primarily demonstrates the utility of applying AI to CAC scans to extract more actionable
information than currently available which is the Agatston CAC score. We found that AI volumetry
signi�cantly improves upon traditional CAC scoring for the prediction of risk for total CVD events as well
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as the prediction of individual CVD events of HF, stroke, AF, and all-cause mortality in a large multiethnic
cohort. The plaque characterization component of AI-CAC speci�cally improved on the predictive value
of the Agatston score for CAC scores 1-100. Moreover, we show the value of this technique not only for
longer-term event prediction (10-15 years), but also for nearer-term events (1 to 5-year follow-up). This is
the �rst multi-ethnic outcome study of an easily implemented AI technology that can be applied to non-
contrast CAC scans without additional radiation exposure to identify patients at risk of such events who
would otherwise not be identi�ed by traditional CAC scoring techniques.   The potential utility of non-
coronary �ndings in CAC scans has been reported previously using manual 2D measurements of
LV19,20,21,22 and LA sizes23,24,25,26. Our study corroborates �ndings from the Heinz Nixdorf Recall Study
and others, and further brings to light the value of non-coronary �ndings in CAC scans for a
comprehensive CVD risk assessment beyond CHD23,24,25,26,27. Kizer et showed that LA size was an

independent predictor of CVD events28. Mahabadi et al24 showed in the longitudinal Heinz Nixdorf Recall
Study that two-dimensional LA size and epicardial adipose tissue from non-contrast CT were strongly
associated with prevalent and incident AF and that LA size diminished the link of epicardial adipose
tissue with AF, and was also associated with incident major CVD events independent of risk factors and
CAC-score25.

Although there are multiple automated CAC scoring tools available, currently, there is no clinically
available tool to clinicians for automated cardiac chambers volumetry in CAC scans that is validated
against outcomes. Here, we provide evidence of the feasibility of using AI for automated 3D volumetry of
cardiac chambers that takes on average 20 seconds. Currently such measurements are only possible on
contrast-enhanced CT scans which require more radiation plus injection of an X-ray contrast agent that is
burdensome29. In contrast, AI-CAC volumetry can be applied to any new or existing non-contrast CAC
scan for automated cardiac chambers measurement. Standalone cardiac MRI and echocardiography are
not comparable to our solution which is an opportunistic add-on to chest CT scans.

AI-CAC volumetry not only works on ECG-gated CAC scans but also non-gated lung CT scans30. Non-
contrast chest CT scans are prime candidates for opportunistic AI-enabled cardiac chambers volumetry
for identi�cation of patients at increased risk for AF7 and HF. The AI approach can enable automatic
screening of the over 10 million chest CT scans done each year in the US alone31. Such an AI tool can
run in the background of radiology picture archiving and communication systems (PACS) and alert
providers to cases with enlarged cardiac chambers. Unfortunately, many high-risk patients with enlarged
cardiac chambers are currently undetected, and therefore untreated. Early detection of these cases can
allow for close monitoring of progression to AF for stroke prevention and guideline-directed medical
therapy for HF prevention. In our study, we have found the unadjusted correlations between Agatston
CAC score and LA and LV volumes to be low (R=0.20 and R=0.10 respectively), hence a substantial
portion of the population with enlarged LA and LV chambers are found in low-risk CAC categories. The
combination of the automated cardiac chambers volumetry component of AI-CAC plus automated AI-
CAC plaque characterization showed a greater incremental AUC value over the Agatston score versus
each alone (Appendix A.1).
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Finally, the lack of coverage for CAC scans by Medicare and healthcare insurance carriers has
contributed to healthcare inequity in the US. Ikram and Williams32 have shown low-income people in
Chicago area are less likely to get CAC scans comparted to people in higher income zip codes. We hope
that by applying AI to CAC scans and providing incremental value, the payers will be more likely to cover
CAC scans.

Strengths and Limitations

Our study has several strengths and limitations.  The multi-ethnic nature of MESA recruited from six �eld
centers around the US provides for greater generalization of our �ndings than single-center studies.
MESA included standardized methods of data collection, laboratory measurement, follow-up, as well as
adjudication of CVD events.

One limitation is that the MESA Exam 1 baseline CT scans were performed between 2000 and 2002
using electron-beam computed tomography (EBCT) or earlier generation multidetector CT scanners, and
current CAC scanning utilizes more advanced multidetector CT scanning. But since our AI training was
done completely outside of MESA and used a modern multi-detector (256 slice) scanner, we do not
anticipate this to affect the generalizability of our �ndings.

Since MESA does not distinguish between HF subtypes, (heart failure with reduced ejection fraction
(HFrEF) vs. heart failure with preserved ejection fraction (HFpEF)) we were unable to compare the
prediction of HF subtypes. However, in a preliminary study (abstract SCCT 2024) we obtained data from
75 patients who underwent both a cardiac CT scan and echocardiography at Harbor UCLA medical
center. AI-CAC LV volume index (LVVI) de�ned as LV volume divided by BSA was able to distinguish
HFrEF vs. HFpEF comparably to echocardiography LVVI (Appendix B).

Conclusion
In this study, we presented AI-CAC data on cardiac chambers volumetry and calci�ed plaque
characterization obtained from existing CAC scans in a large multi-ethnic prospective study and
compared it to Agatston CAC Score alone for prediction of all cardiovascular events over 15 years. AI-
CAC signi�cantly improved upon the Agatston CAC score for all cardiovascular event
prediction (including all CHD in CAC 1-100 cohort), as well as total mortality.  Moreover, signi�cant
improvement in risk prediction and reclassi�cation of events was not only seen for longer-term (e.g., 10-
and 15-year) events, but also for nearer-term (e.g., 1- and 5-year) events, providing a useful means to help
identify individuals at risk of near-term CVD events and death.

Declarations
Disclosures:
 Several members of the writing group are inventors of the AI tool mentioned in this paper. Dr. Naghavi is
the founder of HeartLung.AI. Dr. Reeves, Dr. Atlas, Dr. Yankelevitz, Dr. Wong, and Dr. Li are advisors to



Page 10/15

HeartLung.AI. Chenyu Zhang is a software engineer for HeartLung.AI. Kyle Atlas is a graduate research
associate of HeartLung.AI. The remaining authors have nothing to disclose.

Acknowledgements 

This research was supported by 2R42AR070713 and R01HL146666 and MESA was supported by
contracts 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160,
75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-
95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-
95167, N01-HC-95168 and N01-HC-95169 from the National Heart, Lung, and Blood Institute, and by
grants UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420 from the National Center for Advancing
Translational Sciences (NCATS).  The authors thank the other investigators, the staff, and the
participants of the MESA study for their valuable contributions. The views expressed in this manuscript
are those of the authors and do not necessarily represent the views of the National Heart, Lung, and
Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.
A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org

References
1. Greenland P, Lloyd-Jones DM. Role of Coronary Artery Calcium Testing for Risk Assessment in

Primary Prevention of Atherosclerotic Cardiovascular Disease: A Review. JAMA Cardiol.
2022;7(2):219-224. doi:10.1001/jamacardio.2021.3948

2. Grundy SM, Stone NJ, Bailey AL, et al. 2018
AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the
Management of Blood Cholesterol. Journal of the American College of Cardiology.
2019;73(24):e285-e350. doi:10.1016/j.jacc.2018.11.003

3. Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of
cardiovascular risk: a report of the American College of Cardiology/American Heart Association
Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S49-73.
doi:10.1161/01.cir.0000437741.48606.98

4. Vega GL, Wang J, Grundy SM. Prevalence and signi�cance of risk enhancing biomarkers in the
United States population at intermediate risk for atherosclerotic disease. J Clin Lipidol.
2022;16(1):66-74. doi:10.1016/j.jacl.2021.11.009

5. Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M. Machine Learning
Outperforms ACC / AHA CVD Risk Calculator in MESA. J Am Heart Assoc. 2018;7(22):e009476.
doi:10.1161/JAHA.118.009476

�. Naghavi et al. M. AI-Enabled Cardiac Chambers Volumetry in Coronary Calcium Scans (AI-CAC)
Predicts Heart Failure and Outperforms NT-proBNP: The Multi-Ethnic Study of Atherosclerosis
[Manuscript submitted for publication]. Published online February 7, 2024.



Page 11/15

7. Naghavi et al. M. AI-Enabled Left Atrial Volumetry in Coronary Calcium Scans (AI-CAC) Predicts
Atrial Fibrillation as Early as One Year, Improves CHARGE-AF, and Outperforms NT-proBNP: The
Multi-Ethnic Study of Atherosclerosis [Manuscript submitted for publication]. Published online
February 8, 2024.

�. Reeves A, Naghavi M, Yankelevitz D, et al. Arti�cial Intelligence-Enabled Automated Left Atrial
Volumetry in Coronary Calcium Scans Predicts Atrial Fibrillation as Early as One Year: Multi-Ethnic
Study of Atherosclerosis Society of Cardiovascular Computed Tomography 17 (2023) S1–S96.
Published online July 28, 2023.

9. Bild DE, Bluemke DA, Burke GL, et al. Multi-Ethnic Study of Atherosclerosis: objectives and design.
Am J Epidemiol. 2002;156(9):871-881. doi:10.1093/aje/kwf113

10. Wasserthal J, Meyer M, Breit HC, Cyriac J, Yang S, Segeroth M. TotalSegmentator: robust
segmentation of 104 anatomical structures in CT images. Published online August 11, 2022.
doi:10.48550/arXiv.2208.05868

11. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-con�guring method for
deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203-211.
doi:10.1038/s41592-020-01008-z

12. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quanti�cation of
coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827-
832. doi:10.1016/0735-1097(90)90282-t

13. Carr JJ, Nelson JC, Wong ND, et al. Calci�ed coronary artery plaque measurement with cardiac CT in
population-based studies: standardized protocol of Multi-Ethnic Study of Atherosclerosis (MESA)
and Coronary Artery Risk Development in Young Adults (CARDIA) study. Radiology. 2005;234(1):35-
43. doi:10.1148/radiol.2341040439

14. Detrano RC, Anderson M, Nelson J, et al. Coronary calcium measurements: effect of CT scanner
type and calcium measure on rescan reproducibility--MESA study. Radiology. 2005;236(2):477-484.
doi:10.1148/radiol.2362040513

15. Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident
cardiovascular events. JAMA. 2014;311(3):271-278. doi:10.1001/jama.2013.282535

1�. Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-dependent ROC curve analysis in medical
research: current methods and applications. BMC Medical Research Methodology. 2017;17(1):53.
doi:10.1186/s12874-017-0332-6

17. Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ. On the C-statistics for Evaluating Overall Adequacy
of Risk Prediction Procedures with Censored Survival Data. Stat Med. 2011;30(10):1105-1117.
doi:10.1002/sim.4154

1�. Pencina MJ, D’Agostino RB, D’Agostino RB, Vasan RS. Evaluating the added predictive ability of a
new marker: from area under the ROC curve to reclassi�cation and beyond. Stat Med.
2008;27(2):157-172; discussion 207-212. doi:10.1002/sim.2929



Page 12/15

19. Daniel KR, Bertoni AG, Ding J, et al. Comparison of methods to measure heart size using
noncontrast-enhanced computed tomography: correlation with left ventricular mass. J Comput
Assist Tomogr. 2008;32(6):934-941. doi:10.1097/RCT.0b013e318159a49e

20. Bittencourt MS, Blankstein R, Mao S, et al. Left ventricular area on non-contrast cardiac computed
tomography as a predictor of incident heart failure - The Multi-Ethnic Study of Atherosclerosis. J
Cardiovasc Comput Tomogr. 2016;10(6):500-506. doi:10.1016/j.jcct.2016.07.009

21. Qureshi WT, Nasir K, Hacioglu Y, et al. Determination and distribution of left ventricular size as
measured by noncontrast CT in the Multi-Ethnic Study of Atherosclerosis. J Cardiovasc Comput
Tomogr. 2015;9(2):113-119. doi:10.1016/j.jcct.2015.01.001

22. Dykun I, Mahabadi AA, Lehmann N, et al. Left ventricle size quanti�cation using non-contrast-
enhanced cardiac computed tomography--association with cardiovascular risk factors and coronary
artery calcium score in the general population: The Heinz Nixdorf Recall Study. Acta Radiol.
2015;56(8):933-942. doi:10.1177/0284185114542996

23. Mahabadi AA, Lehmann N, Sonneck NC, et al. Left atrial size quanti�cation using non-contrast-
enhanced cardiac computed tomography - association with cardiovascular risk factors and gender-
speci�c distribution in the general population: the Heinz Nixdorf Recall study. Acta Radiol.
2014;55(8):917-925. doi:10.1177/0284185113507446

24. Mahabadi AA, Lehmann N, Kälsch H, et al. Association of epicardial adipose tissue and left atrial
size on non-contrast CT with atrial �brillation: the Heinz Nixdorf Recall Study. Eur Heart J Cardiovasc
Imaging. 2014;15(8):863-869. doi:10.1093/ehjci/jeu006

25. Mahabadi AA, Geisel MH, Lehmann N, et al. Association of computed tomography-derived left atrial
size with major cardiovascular events in the general population: the Heinz Nixdorf Recall Study. Int J
Cardiol. 2014;174(2):318-323. doi:10.1016/j.ijcard.2014.04.068

2�. Mahabadi AA, Lehmann N, Möhlenkamp S, et al. Noncoronary Measures Enhance the Predictive
Value of Cardiac CT Above Traditional Risk Factors and CAC Score in the General Population. JACC
Cardiovasc Imaging. 2016;9(10):1177-1185. doi:10.1016/j.jcmg.2015.12.024

27. Miller RJH, Shanbhag A, Killekar A, et al. AI-De�ned Cardiac Anatomy Improves Risk Strati�cation of
Hybrid Perfusion Imaging. JACC Cardiovasc Imaging. Published online March 6, 2024:S1936-
878X(24)00038-X. doi:10.1016/j.jcmg.2024.01.006

2�. Wang TJ, Larson MG, Levy D, et al. Impact of age and sex on plasma natriuretic peptide levels in
healthy adults. Am J Cardiol. 2002;90(3):254-258. doi:10.1016/s0002-9149(02)02464-5

29. Power SP, Moloney F, Twomey M, James K, O’Connor OJ, Maher MM. Computed tomography and
patient risk: Facts, perceptions and uncertainties. World J Radiol. 2016;8(12):902-915.
doi:10.4329/wjr.v8.i12.902

30. Reeves A, Naghavi M, Atlas K, et al. AI-enabled Automated Cardiac Chambers Volumetry in Non-
contrast ECG-gated Cardiac Scans Vs. Non-contrast Non-gated Lung Scans Society of
Cardiovascular Computed Tomography 17 (2023) S1–S96. Published online July 28, 2023.



Page 13/15

31. Mahesh M, Ansari AJ, Mettler FA. Patient Exposure from Radiologic and Nuclear Medicine
Procedures in the United States and Worldwide: 2009-2018. Radiology. 2023;307(1):e221263.
doi:10.1148/radiol.221263

32. Ikram M, Williams KA. Socioeconomics of coronary artery calcium: Is it scored or ignored? J
Cardiovasc Comput Tomogr. 2022;16(2):182-185. doi:10.1016/j.jcct.2021.10.003

Tables
Tables 1 to 2 are available in the Supplementary Files section

Appendices
Appendices A and B are not available with this version

Figures

Figure 1

AI-CAC Component Diagram derived from a CAC Scan and Examples of AI-CAC Volumetry Detection of
High-Risk Individuals with Enlarged Cardiac Chambers in Coronary Artery Calcium (CAC) Scans with CAC
Score of zero.

*MESA reported manually measured Agatston CAC Score was used in analyses for the AI-CAC model to
show improvement over status quo.



Page 14/15

Figure 2

a-b.Quartiles of Arti�cial Intelligence-enabled Automated Cardiac Chambers Volumetry of CAC scans (AI-
CAC) Left Atrial (LA) and Left Ventricle (LV) Volume by CAC Score Category.
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Figure 3

Time-Dependent Receiver Operating Characteristic (ROC) Area Under Curve (AUC) for cardiovascular
events between Arti�cial Intelligence-enabled Automated Cardiac Chambers Volumetry to CAC scans
(AI-CAC) vs Agatston Coronary Artery Calcium (CAC) Score over 1 to 15 years of follow-up.

*AI-CAC: LA volume index, RV volume index, LV mass and volume index, Agatston CAC Score.

†All Cardiovascular Events: stroke, myocardial infarction, angina, resuscitated cardiac arrest, all
cardiovascular disease related deaths, heart failure, and atrial �brillation.
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