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Abstract 

Objectives  To determine the diagnostic accuracy of ultra-high-resolution photon-counting detector CT angiography 
(UHR PCD-CTA) for evaluating coronary stent patency compared to invasive coronary angiography (ICA).

Methods  Consecutive, clinically referred patients with prior coronary stent implantation were prospectively enrolled 
between August 2022 and March 2023 and underwent UHR PCD-CTA (collimation, 120 × 0.2 mm). Two radiologists 
independently analyzed image quality of the in-stent lumen using a 5-point Likert scale, ranging from 1 (“excellent”) 
to 5 (“non-diagnostic”), and assessed all coronary stents for the presence of in-stent stenosis (≥ 50% lumen narrow‑
ing). The diagnostic accuracy of UHR PCD-CTA was determined, with ICA serving as the standard of reference.

Results  A total of 44 coronary stents in 18 participants (mean age, 83 years ± 6 [standard deviation]; 12 women) were 
included in the analysis. In 3/44 stents, both readers described image quality as non-diagnostic, whereas reader 2 
noted a fourth stent to have non-diagnostic image quality. In comparison to ICA, UHR PCD-CTA demonstrated a sen‑
sitivity, specificity, and accuracy of 100% (95% CI [confidence interval] 47.8, 100), 92.3% (95% CI 79.1, 98.4), and 93.2% 
(95% CI 81.3, 98.6) for reader 1 and 100% (95% CI 47.8, 100), 87.2% (95% CI 72.6, 95.7), and 88.6% (95% CI 75.4, 96.2) 
for reader 2, respectively. Both readers observed a 100% negative predictive value (36/36 stents and 34/34 stents). 
Stent patency inter-reader agreement was 90.1%, corresponding to a substantial Cohen’s kappa value of 0.72.

Conclusions  UHR PCD-CTA enables non-invasive assessment of coronary stent patency with high image quality 
and diagnostic accuracy.

Clinical relevance statement  Ultra-high-resolution photon-counting detector CT angiography represents a reliable 
and non-invasive method for assessing coronary stent patency. Its high negative predictive value makes it a promis‑
ing alternative over invasive coronary angiography for the rule-out of in-stent stenosis.

Key Points 

• CT-based evaluation of coronary stent patency is limited by stent-induced artifacts and spatial resolution.

†Muhammad Taha Hagar and Martin Soschynski contributed equally to the 
manuscript.

*Correspondence:
Muhammad Taha Hagar
taha.hagar@uniklinik-freiburg.de
Full list of author information is available at the end of the article

Hagar et al. European Radiology (2024) 34:4273-4283

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-023-10516-3&domain=pdf
http://orcid.org/0000-0001-9826-2372


Hagar et al. European Radiology (2024) 34:4273-4283

• Ultra-high-resolution photon-counting detector CT accurately evaluates coronary stent patency compared to invasive coronary  
  angiography.

• Photon-counting detector CT represents a promising method for the non-invasive rule-out of in-stent stenosis.

Keywords  Computed tomography angiography, Stents, Coronary artery disease, Vascular patency

Introduction
Recent guidelines recommend coronary CT angiogra-
phy (CTA) as the modality of choice for evaluating coro-
nary arteries in patients with stable chest pain and low 
to intermediate risk of coronary artery disease [1, 2]. 
However, coronary CTA is generally less recommended 
in patients with prior coronary stent implantation due to 
the higher risk profile of these patients [3]. Furthermore, 
stent-induced blooming and beam-hardening artifacts 
compromise the diagnostic value of cardiac CTA [4–7]. 
Stent-induced blooming has been mainly attributed to 
partial volume averaging, which is influenced by spatial 
resolution and detector cell size [8, 9], leading to overes-
timation of stenosis [10]. However, non-invasive assess-
ment of coronary stent patency is desirable to avoid 
unnecessary invasive coronary angiography (ICA).

Novel photon-counting detector CT (PCD-CT) tech-
nology might overcome these limitations, providing 
higher spatial resolution as the direct conversion process 
of absorbed X-ray photons requires no additional septa 
between detector pixels [11]. Moreover, electrocardio-
gram (ECG)–synchronized ultra-high-resolution pho-
ton-counting detector CT angiography (UHR PCD-CTA) 
at a maximum in-plane resolution of 0.11 mm is available 
[12].

Phantom studies provided promising results of PCD-
CT for stent assessment with reduced artifacts in UHR 
imaging, especially when a sharp vascular convolution 
kernel is applied [13, 14].

Initial in-human results point to an improved image 
quality of PCD-CT compared to energy-integrating 
detector CT in patients referred for coronary stent imag-
ing [15]. Especially, UHR PCD-CTA displayed excellent 
in vivo stent lumen visualization [16].

However, there is limited evidence on the diagnostic 
performance of PCD-CTA for coronary stent evaluation 
compared to a reference standard. Therefore, our study 
aimed to investigate the accuracy of UHR PCD-CTA in 
the assessment of coronary stent patency compared to 
ICA as the standard of reference.

Materials and methods
Ethics statement
The study was performed in accordance with the ethical 
principles of the Declaration of Helsinki. Approval of our 

study protocol was granted on 09/21/2021 (No. 21-2469) 
by the institutional review board of the University of 
Freiburg Medical Center, and all participants provided 
informed written consent prior to the inclusion.

Patients
We prospectively enrolled consecutive patients who 
underwent UHR PCD-CTA as part of their pre-tran-
scatheter aortic valve implantation (TAVI)-CT workup 
routine comprising diagnostic ICA and TAVI-CT at 
the University of Freiburg Medical Center between 
August 2022 and March 2023. Additional inclusion 
criteria included previous coronary stent implanta-
tion and diagnostic ICA within 8 weeks of PCD-CTA. 
Exclusion criteria were as follows: patients who pre-
sented a contraindication to contrast-enhanced CT. 
Some study subjects have been previously reported 
[17]; however, the current study has a different scope, 
focusing on stented patients, and includes more 
stented participants.

Invasive coronary angiography
ICA was performed by two expert board-certified inter-
ventional cardiologists: a radial approach was used to 
insert a 6-F sheath (Glidesheath Slender, Terumo) and 
a 6-F catheter (usually Judkins right 4, Judkins left 3.5). 
Diagnostic angiography was performed with a standard 
sequence of six projections (four views for the left and 
two views for the right coronary system) and an aver-
age contrast volume of 50 mL. ICA images were assessed 
by an independent board-certified interventional cardi-
ologist (10 years of experience) blinded to the results of 
CTA. Significant in-stent stenosis was defined as 50% or 
greater diameter stenosis within the stented lumen [18]. 
Disagreements between the board-certified ICA reader 
and a preceding ICA report were resolved by consul-
tation of a second expert board-certified cardiologist 
(C.V.Z.M., 15 years of experience) who independently 
read the ICA images and subsequently made a final adju-
dication on in-stent stenosis severity, which served as the 
standard of reference.

CT angiography
All participants were scanned on a clinical, dual-source 
PCD-CT scanner (NAEOTOM Alpha, software version 
syngo CT VA-50, Siemens Healthineers). In alignment 
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with established TAVI-CT imaging guidelines, neither 
nitroglycerin nor beta-blockers were administered on 
the day of the examination [19]. Detailed technical and 
scan parameters for UHR PCD-CTA are provided in 
Supplementary Table  1. CTA was initiated via bolus 
tracking 10 s after attenuation exceeded 130 Houns-
field Units in a region of interest (ROI) placed in the 
aortic root. A total of 70 mL of contrast media, Ultra-
vist 370 (Bayer Healthcare), followed by a solution of 
40 mL isotonic saline and 30 mL contrast medium, was 
administered using a dual-syringe power injector at a 
flow rate of 5.0 mL/s each. Automatically determined 
best-systolic and best-diastolic phases and multiphase 
data were reconstructed using a sharp vascular con-
volution kernel (Bv-60 with quantum iterative recon-
struction at level 3). The matrix size was set at 10242 
pixels. The field of view was restricted to the heart at 
180 × 180 mm and a slice thickness of 0.2 mm with an 
increment of 0.1 mm was employed.

Assessment of CT data
Two radiologists with 3 years (R.S.) and 4 years (M.T.H.) of 
experience in cardiovascular CT imaging assessed all images 
independently on a dedicated workstation (syngo.via, ver-
sion VB60, Siemens Healthineers) while blinded to clini-
cal data, including ICA results. All patients’ radiation dose 
parameters, specifically the dose length product and the dose 
volume CT index, were extracted from the CT reports.

Subjective image quality
The subjective image quality of the in-stent lumen was 
individually assessed for each stent using a 5-point Lik-
ert scale (Fig. 1). A score of 1 denoted “excellent” image 
quality, signifying clear and artifact-free images with 
perfect lumen visibility. A score of 2 signified “good” 
image quality, representing images with minimal arti-
facts and clear lumen visualization. A score of 3 sug-
gested “fair” image quality, marking adequate images 
with some detectable artifacts. A score of 4, termed 

Fig. 1  Multiplanar reformation of stented coronary vessels for subjective image quality assessment. The figure demonstrates examples 
across the 5-point Likert scale used for evaluating image quality. Two readers independently assessed each stent depicted and arrived at congruent 
subjective image quality scores

4275



Hagar et al. European Radiology (2024) 34:4273-4283

“impaired,” indicated compromised image quality due 
to noticeable artifacts but still sufficient for diagnosis, 
and lastly, a score of 5, labeled “non-diagnostic,” cor-
responded to low image quality with a high presence of 
artifacts, unsuitable for diagnosis of stent patency.

Objective image quality: stent‑induced blooming
Both readers independently measured coronary stent 
length as well as internal and external stent diameters 

on multiplanar reformatted CT images, focusing on 
the axial slice that best represents the stent geometry 
for each case. When two stents were connected, each 
stent was measured independently, and an averaged 
metric was computed for the purpose of assessing 
stent-induced blooming. There was no limitation on 
the maximum number of stents that could be assessed 
per vessel. The estimated stent-induced blooming 
was assessed according to the methodology described 
by Boccalini et al [20]:

Blooming estimate [%] =
stent diameterexternal [mm] − stent diameterinternal [mm]

stendiameterexternal[mm]
× 100

Objective image quality: effect on the in‑stent lumen 
attenuation
A total of three manually drawn ROIs were used: The 
first, designated as (ROIin_stent), was drawn to be as 
large as possible to cover the in-stent lumen while care-
fully avoiding vessel walls and stent struts and had a min-
imum area of 4 mm2. Two other ROIs of the same size 
were placed in the coronary artery lumen—one directly 
proximal to the stent (ROIprox) and the other distal to 

the stent (ROIdist), both within a maximum distance 
of 10 mm from the stent edges. When calcification was 
present at one end, an ROI was placed as close as pos-
sible to the calcified area while avoiding the calcification 
itself. From these ROIs, the average HU was read. Stent 
struts, vessel walls, and calcified or non-calcified plaques 
were carefully avoided. The following equation served as 
a metric to quantify the stent-induced effect on the in-
stent lumen attenuation (Figure S1) [20]:

Evaluation of stent patency
In-stent stenosis quantification was performed inde-
pendently by both readers. Significant in-stent steno-
sis was defined as diameter stenosis of 50% or greater. 
In the absence of in-stent stenosis, a stent was deemed 
to be patent. Following an intention-to-diagnose 
approach, all segments of the in-stent lumen with non-
diagnostic image quality were rated as potentially sig-
nificant in-stent stenosis.

Statistics
IBM SPSS Statistics for Macintosh (version 28.0) and R 
(version 4.3.0, https://​www.R-​proje​ct.​org/) were used 
for statistical analysis. A one-sample Shapiro-Wilk 
test was applied to check for the assumption of nor-
mal distribution. Quantitative variables were expressed 
as number (percentage), mean ± standard deviation, 
or median [interquartile range], as appropriate. The 
overall subjective image quality given by both readers 
was compared using the Wilcoxon signed-rank test, 
whereas the McNemar test was used to compare the 
individual Likert values between readers. Independent 

�HUin_stent = ROIin_stent[HU] −
ROIprox[HU]+ ROIdist[HU]

2

measurements of stent diameters and estimates of 
blooming were compared using paired t-test. The Wil-
coxon signed-rank test was used to test for the differ-
ences between both observers in terms of attenuation 
measurements in the stent lumen and adjacent coro-
nary vessel. Interobserver agreement regarding the 
evaluation of stent patency was expressed in Cohen’s 
kappa (κ) value and interpreted as follows: ≤ 0.20 none, 
0.21–0.40 fair, 0.41–0.60 as moderate, 0.61–0.81 as 
substantial, and ≥ 0.82 as very strong agreement [21]. 
To evaluate the diagnostic performance of UHR PCD-
CTA for the assessment of stent patency, we compared 
the results of the CTA reading to the ICA results, serv-
ing as the reference standard, and further calculated 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and diagnostic accu-
racy. To account for the potential clustering of diagnos-
tic performance values of multiple stents per patient, 
we calculated the intracluster correlation coefficients 
(ICC) [22]. A 95% confidence interval range (CI) was 
calculated and expressed for the results of all diagnostic 
accuracy tests. A two-tailed p-value of < 0.05 was con-
sidered statistically significant.
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Results
Patients’ characteristics
A total of 18 patients (mean age, 83 years ± 6 [stand-
ard deviation]; 12 women) with a total of 44 coronary 
stents were included. No patients were excluded. Infor-
mation on the flowchart is given in Fig.  2. Patients’ 
characteristics, including information on radiation 
dose, and information on the stents are provided in 
Table 1.

Evaluation of subjective and objective image quality
In 3/44 stents, both readers described image quality 
as non-diagnostic, whereas reader 2 noted a fourth 
stent to have non-diagnostic image quality. The overall 

subjective image quality of the stent lumen was rated 
as good to excellent by both readers (median score, 
1 [IQR, 1–2.3] vs. median score, 2 [IQR, 1–2.3]; p = 
0.38). An overall blooming estimate of 37.9 ± 9.6% 
(reader 1) and 40.1 ± 8.9% (reader 2) was observed (p = 
0.03). Stents noticeably affected CT attenuation within 
the vessel lumen, as a median ∆HUin-stent of + 77 HU 
[IQR, 36–106], according to reader 1, and a median 
∆HUin-stent of + 18 HU [IQR − 1 to 100], according to 
reader 2, were registered (p = 0.02). Detailed metrics 
of subjective and objective image quality are provided 
in Table  2. Imaging examples for patent stents are 
given in Figs. 3, 4 and 5 provides an example demon-
strating in-stent stenosis.

Fig. 2  Participants’ flowchart. The diagnostic performance of UHR PCD-CTA for evaluating stent patency in 18 patients with a total of 44 stents 
was determined in comparison to ICA, serving as the standard of reference. Diameter stenosis of 50% or greater was defined as relevant in-stent 
stenosis. Abbreviations: TAVI transcatheter aortic valve implantation, UHR PCD-CTA ultra-high-resolution photon-counting detector computed 
tomography angiography, ICA invasive coronary angiography
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Diagnostic performance of PCD‑CTA for the evaluation 
of coronary stent patency
ICA identified five in-stent stenosis, resulting in a preva-
lence of 11.4% (5/44). Correspondingly, 88.6% (39/44) of 
stents were found to be patent. Both readers correctly 
recognized all in-stent stenosis. Following an intention-
to-diagnose approach, we observed three false-positive 

findings for the first reader and four false-positive find-
ings for the second reader. Sensitivity, specificity, and 
accuracy for in-stent stenosis of 50% or greater were 
100% (95% CI 47.8, 100), 92.3% (95% CI 79.1, 98.4), and 
93.2% (95% CI 81.3, 98.6) according to reader 1, and 100% 
(95% CI 47.8, 100), 87.2% (95% CI 72.6, 95.7), and 88.6% 
(95% CI 75.4, 96.2) according to reader 2, as shown in 
Table 3. As the ICCs for sensitivity, specificity, accuracy, 
PPV, and NPV were small for each of the readers (ICC 
≤ 0.21), the cluster effect on mean estimates and stand-
ard errors of these diagnostic performance parameters 
was deemed negligible. PPV for both readers was 62.5% 
(95% CI 36, 83) and 50% (95% CI 30.6, 69.4), respectively. 
Both readers observed an NPV of 100% (36/36 stents for 
reader 1 and 34/34 stents for reader 2). The inter-reader 
agreement for the assessment of stent patency was 90.1%, 
corresponding to a substantial Cohen’s κ value of 0.72.

Discussion
In this study, we explored the clinical utility of UHR 
PCD-CTA in assessing coronary stent patency, focus-
ing on both image quality and diagnostic accuracy. The 
principal findings can be summarized as follows: (1) 
A majority of stents were rated with good to excellent 
image quality in subjective assessments, while objective 
assessments indicated limited artifact interference. (2) 

Table 1  Participants’ characteristics and stent information

Data are presented as mean ± standard deviation, number and frequencies in 
parentheses, and as median and interquartile range in square brackets

Abbreviations: BMI body mass index, eGFR estimated glomerular filtration rate, 
CTDIvol volume computed tomography dose index, DLP dose length product, 
LM left main artery, LAD left anterior descending artery, LCx left circumflex 
artery, RCA​ right coronary artery

Characteristics Values

Participant characteristics

Number of participants 18 (100%)

Age (years) 82.6 ± 5.9

Sex

      Females 12 (66.7%)

      Males 6 (33.3%)

   Weight (kg) 74.4 ± 11.4

   BMI (kg/m2) 25.7 ± 3.0

Cardiovascular risk factors

History of myocardial ischemia 3 (16.7%)

History of coronary stenting 18 (100%)

Arterial hypertension 13 (72.2%)

Diabetes mellitus 7 (38.9%)

Hyperlipidemia 15 (83.3%)

Chronic kidney disease (eGFR < 45 mL/min/1.73 m2) 7 (38.9%)

Smoking 6 (33.3%)

   Tube voltage

    120 kV 8 (44.4%)

    140 kV 10 (55.6%)

   Radiation dose

      CTDIvol (mGy) 70.2 [64.9–80.9]

      DLP (mGy*cm) 994 [878–1086]

Stent information

Number of stents 44 (100%)

Location

      LM 2 (4.5%)

      LAD 17 (36.4%)

      LCx 14 (29.5%)

      RCA​ 11 (22.7%)

   Diameter

    > 3 mm 31 (70.4%)

    ≤ 3 mm 13 (29.6%)

   Length

    > 20 mm 23 (52.3%)

    ≤ 20 mm 21 (47.7%)

Table 2  Subjective and objective image quality

Data are presented as number and frequencies in parenthesis, mean ± standard 
deviation, and median and interquartile range in square brackets

Abbreviations: mm millimeter, HU average Hounsfield Units

Reader 1 Reader 2 p-value

Subjective image quality

Excellent (Likert 1) 23 (52.3%) 16 (36.4%) 0.92

Good (Likert 2) 10 (22.7%) 17 (38.6%) 0.14

Fair (Likert 3) 4 (9.1%) 6 (13.6%) 0.75

Poor (Likert 4) 4 (9.1%) 1 (2.3%) 0.38

Non-diagnostic (Likert 5) 3 (6.8%) 4 (9.1%) > .99

Overall image quality 1 [1–2.3] 2 [1–2.3] 0.38

Objective image quality

  Stent blooming

Measured outer diameter (mm) 3.7 ± 0.7 3.8 ± 0.7 0.02

Measured inner diameter (mm) 2.3 ± 0.7 2.3 ± 0.6 0.52

Blooming estimate (%) 37.9 ± 9.6 40.1 ± 8.9 0.03

  Stent lumen

Attenuation proximal lumen (HU) 480 [409–499] 468 [396–523] 0.87

Attenuation distal lumen (HU) 455 [378–511] 453 [405–519] 0.13

Attenuation in-stent lumen (HU) 518 [466–601] 496 [425–577] 0.18

∆HU in-stent lumen (HU) 77 [36–106] 18 [− 1 to 100] 0.02
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UHR PCD-CTA demonstrated a diagnostic accuracy 
exceeding 88% compared to the established reference 
standard of ICA. (3) Both readers observed an NPV of 
100%, and (4) the inter-reader agreement was found 
to be substantial, with a Cohen κ value of 0.72. These 
findings indicate that novel UHR PCD-CTA is a reliably 
non-invasive tool for assessing coronary stent patency.

We observed that combining UHR PCD-CTA for 
TAVI planning and coronary in-stent lumen assess-
ment is feasible with an assessability above 90%. This 
superseded a study on a third-generation dual-source 
energy-integrating CT scanner for TAVI candidates 
that showed an assessability of coronary stents of 79.6% 
[23]. Our study’s non-diagnostic coronary stent rate of 
less than 10% is in line with a meta-analysis on multi-
detector CT, which reported an overall feasibility of 
90.4% [24]. However, none of their analyzed studies 
included TAVI candidates, a cohort presenting unique 
challenges for coronary CTA. Specifically, nitroglyc-
erine and beta-blockers are contraindicated in these 
patients due to the high risk of sudden blood pressure 
drop associated with severe aortic valve stenosis, as 

indicated in the 2019 Society of Cardiovascular Com-
puted Tomography guidelines on CT imaging in the 
context of TAVI [19].

In a recent study on a prototype PCD-CT scanner 
with high-resolution scan mode and a maximum in-
plane resolution of 0.21 mm, a blooming estimate of 
53.4% was observed [15]. In our study, less blooming 
was observed, which we attribute to the reduced spatial 
resolution of 0.11 mm of the dual-source PCD-CT and 
the employment of a sharp vascular convolution kernel. 
Besides spatial resolution, many other factors influence 
the amount of blooming, such as iterative reconstruc-
tion strength, kernel, and slice thickness [25]. A novel 
phantom study found that employing a sharp vascular 
convolution kernel on UHR PCD-CTA improves lumen 
visibility [13]. In a study on 20 patients, the investiga-
tors observed that the use of a slice thickness of 0.2 mm 
and quantum iterative reconstruction, combined with 
a sharp vascular kernel, improved the visualization of 
lipid-rich components and reduced blooming of cal-
cified plaques in coronary UHR PCD-CTA [26]. Our 
results are consistent to these studies, as we observe 

Fig. 3  Ultra-high-resolution photon-counting detector CT angiography (PCD-CTA) of the heart of an 89-year-old male patient with severe aortic 
valve stenosis and a history of coronary stent implantation. A Three-dimensional cinematic rendering of the heart. There is a kissing stent in the left 
main artery, proximal left circumflex artery, and proximal left anterior descending artery (LAD) (white arrow). Note two additional stents in the distal 
LAD (arrowhead) and in the proximal right coronary artery. B Curved multiplanar reformation of the LAD. In-stent stenosis could be confidently 
excluded in UHR PCD-CTA by both readers. The proximal kissing stent was valued as excellent (Likert 1) by both readers, and the distal LAD stent 
was valued as “impaired”—Likert 4 by one reader—and as “moderate”—Likert 3 by another. C Invasive coronary angiography of the same patient 
with a 30° right anterior oblique view, verifying stent patency
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Fig. 4  Ultra-high-resolution photon-counting detector CT angiography (PCD-CTA) of the heart of a 69-year-old male patient with severe aortic 
valve stenosis and a history of coronary stent implantation in the distal left main and proximal left anterior descending artery (LAD) (arrowhead 
in A, B, and C). A Three-dimensional cinematic rendering of the heart, showing the stent in the LAD. B Curved multiplanar reformation showing 
the absence of in-stent stenosis. The stent was rated as “excellent”—Likert 1 by one reader—and as “good”—Likert 2 by the other reader. C Invasive 
coronary angiography at caudal 30° view, verifying stent patency

Fig. 5  Ultra-high-resolution photon-counting detector CT angiography in a 72-year-old female with severe aortic valve stenosis and a history 
of coronary stenting. A Three-dimensional cinematic reformation illustrating the stent in the left circumflex coronary artery (arrowheads). B Curved 
multiplanar reformation of the proximal left circumflex coronary artery reveals an intraluminal hypoattenuation (arrowhead), suggesting severe 
stenosis or complete obstruction of the in-stent lumen. C Invasive angiography (RAO 20°, CAU 10°) corroborates the obstruction of the in-stent 
lumen (arrowheads). Notably, the vessel’s distal part is perfused retrogradely through collateral channels (star)
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excellent image quality and low blooming on UHR 
PCD-CTA applying comparable image reconstruction 
parameters (0.2 mm slice thickness, sharp vascular 
convolution kernel Bv60, and quantum iterative recon-
struction 3). Potentially, blooming could have been fur-
ther reduced in our study if we had applied quantum 
iterative reconstruction at the highest possible strength. 
Using an established method to quantify the influence 
of the stent on the in-stent lumen attenuation [15], 
we observed a statistically significant increase in the 
Hounsfield Units (HU) within the stent lumen. Specifi-
cally, reader 1 observed an increase of + 77 HU, while 
reader 2 noted an increase of + 18 HU, with a p-value 
of 0.02, indicating a significant difference between the 
two sets of readings. This trend was also found in the 
study by Boccalini et al, although they reported slightly 
higher values of in-stent lumen attenuation [15]. The 
differences in our findings compared to Boccalini et al 
and between our own readers suggest that the method, 
while consistent in demonstrating increased attenua-
tion, may lack reliability.

The overall diagnostic accuracy in our study was 
excellent, with excellent sensitivity and negative predic-
tive value (100% each). Yet, non-assessable stents con-
stitute a limitation and explain low PPV. Our results 
regarding limited PPV are consistent to a study inves-
tigating the diagnostic performance of coronary stent 
evaluation of a whole-organ energy-integrating CT 
scanner in a less challenging patient collective, leading 

to a PPV of 60% in 100 consecutive patients [27]. Due to 
CTA’s limited PPV for in-stent imaging, careful patient 
selection is mandatory, such as a positive stress test or 
with clinical suspicion of in-stent stenosis, to prevent 
unnecessary invasive follow-up procedures caused by 
non-assessable stents [28].

To date, the full potential of clinical dual-source 
PCD-CTA in assessing coronary stents is not yet 
exploited, as the current software version only allows 
for the acquisition of spectral images (Quantum 
Plus mode) or UHR mode. Image quality and, con-
sequently, diagnostic performance might be further 
improved on PCD-CTA by combining spectral infor-
mation and the UHR scan mode—enabling recon-
structions with iodine maps or a calcium and metal 
removal algorithm (PURE Lumen), which could fur-
ther enhance in-stent imaging [29].

Our study has some limitations: first, the limited 
number of participants requires additional confirma-
tory research to make a statement about generalizability. 
Moreover, due to the limited sample size, no meaningful 
subgroup analysis could be performed (i.e., assessing the 
diagnostic accuracy of UHR PCD-CTA in small stents). 
Second, we did not compare the diagnostic performance 
of UHR PCD-CTA to energy-integrating detector CTA 
or spectral PCD-CTA. Third, we lacked clinical data on 
many patients regarding stent type, stent material com-
position, and date of implantation due to external refer-
ral. Our study specifically enrolled high-risk patients 
who were candidates for TAVI. Consequently, the diag-
nostic performance findings could be subject to selection 
bias, limiting their applicability to a broader population. 
Further, when interpreting the results of our diagnostic 
tests, it should be taken into account that the established 
gold standard for in-stent plaque quantification is opti-
cal coherence tomography and intravascular ultrasound 
[30]—we compared our CT reading results to ICA, which 
represents the standard of reference in clinical routine. 
Lastly, as this was the subject of previous studies, we did 
not perform additional analysis on the effect of different 
kernels on image quality.

Future studies with the inclusion of patients with sus-
pected in-stent stenosis and a focus on patient-related 
endpoints should be performed to further evaluate the 
contributory value of PCD-CTA to clinical decision-
making and patient care.

Conclusions
UHR PCD-CTA enables non-invasive assessment of 
coronary stent patency with high image quality and 
diagnostic accuracy. Its high negative predictive value 
shows great promise in non-invasively ruling out 

Table 3  Diagnostic accuracy of UHR PCD-CTA for the presence 
of in-stent stenosis ≥ 50%

Data in parenthesis are 95% confidence interval range. Data in square brackets 
are raw data

Abbreviations: UHR PCD-CTA​ ultra-high-resolution photon-counting detector CT 
angiography, ICA invasive coronary angiography, PPV positive predictive value, 
NPV negative predictive value, NA not applicable

Reader 1 Reader 2

Per stent (n = 44)

Sensitivity (%) 100 (47.8, 100) [5/5] 100 (47.8, 100) [5/5]

Specificity (%) 92.3 (79.1, 98.4) [36/39] 87.2 (72.6, 95.7) [34/39]

PPV (%) 62.5 (36, 83) [5/8] 50 (30.6, 69.4) [5/10]

NPV (%) 100 (NA) [36/36] 100 (NA) [34/34]

Accuracy (%) 93.2 (81.3, 98.6) [41/44] 88.6 (75.4, 96.2) [39/44]

Per participant (n = 18)

   Sensitivity (%) 100 (29.2, 100) [3/3] 100 (29.4, 100) [3/3]

   Specificity (%) 80 (51.9, 95.7) [12/15] 66.7 (38.4, 88.2) [10/15]

   PPV (%) 50 (26.7, 73.3) [3/6] 37.5 (22.7, 55.1) [3/8]

   NPV (%) 100 (NA) [12/12] 100 (NA) [10/10]

   Accuracy (%) 83.3 (58.6, 96.4) [15/18] 72.2 (46.5, 90.3) [13/18]
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in-stent stenosis as an alternative to invasive coronary 
angiography.

Abbreviations
CI	� Confidence interval
CTA​	� Computed tomography angiography
ECG	� Electrocardiogram
ICA	� Invasive coronary angiography
NPV	� Negative predictive value
PCD-CT	� Photon-counting detector computed tomography
PPV	� Positive predictive value
ROI	� Region of interest
UHR PCD-CTA​	� Ultra-high-resolution photon-counting detector CT 
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