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Variegated overexpression of chromosome
21 genes reveals molecular and immune
subtypes of Down syndrome

Micah G. Donovan1,5, Neetha P. Eduthan1,5, Keith P. Smith1, Eleanor C. Britton1,
Hannah R. Lyford 1, Paula Araya1, Ross E. Granrath1, Katherine A. Waugh1,2,
Belinda Enriquez Estrada1, Angela L. Rachubinski 1,3, Kelly D. Sullivan 1,4,
Matthew D. Galbraith 1,2 & Joaquin M. Espinosa 1,2

Individuals with Down syndrome, the genetic condition caused by trisomy 21,
exhibit strong inter-individual variability in terms of developmental pheno-
types and diagnosis of co-occurring conditions. The mechanisms underlying
this variable developmental and clinical presentation await elucidation. We
report an investigation of human chromosome 21 gene overexpression in
hundreds of research participants with Down syndrome, which led to the
identification of two major subsets of co-expressed genes. Using clustering
analyses, we identified three main molecular subtypes of trisomy 21, based on
differential overexpression patterns of chromosome 21 genes. We subse-
quently performed multiomics comparative analyses among subtypes using
whole blood transcriptomes, plasma proteomes and metabolomes, and
immune cell profiles. These efforts revealed strong heterogeneity in dysre-
gulation of key pathophysiological processes across the three subtypes,
underscored by differential multiomics signatures related to inflammation,
immunity, cell growth and proliferation, and metabolism. We also observed
distinct patterns of immune cell changes across subtypes. These findings
provide insights into the molecular heterogeneity of trisomy 21 and lay the
foundation for the development of personalized medicine approaches for the
clinical management of Down syndrome.

Down syndrome (DS), the genetic condition caused by triplication of
human chromosome 21 (HSA21), also known as trisomy 21 (T21), is
characterized by highly variable developmental phenotypes, including
stunted growth, organ dysmorphogenesis, neurodevelopmental
delays, and cognitive differences1. Moreover, T21 confers an increased
risk for a range of co-occurringmedical conditions across the lifespan,
including congenital heart defects, autism spectrumdisorders, seizure
disorders, hearing and vision problems, gastrointestinal issues,

multiple autoimmune conditions, leukemias, and Alzheimer’s disease,
also with strong inter-individual variability2–6. Despite many advances
in the clinical management of DS that have drastically extended life
expectancy and improved quality of life in this population7, the lack of
mechanistic understanding about factors that influence the hetero-
geneous developmental and clinical impacts of T21 impede the
development of personalized medicine approaches to further benefit
people with DS.
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Establishing cause-effect relationships between overexpression
of HSA21 genes and the spectrum of traits associated with DS has
proven difficult. Key exceptions include the established connection
between triplication of the amyloid precursor protein (APP) gene
and the high prevalence of Alzheimer’s disease in DS8, and the well-
defined contributions of interferon receptor genes9 and the DYRK1A
gene10 to multiple phenotypes in mousemodels of DS. Nevertheless,
genes encoded on HSA21 are likely to have complex interactions,
with potential for both cooperative and antagonistic relationships,
which likely affect phenotypic outcomes for polygenic traits.
Therefore, investigations into the contributions of different HSA21
genes, alone or in combination, to the phenotypic variability of DS
are needed.

Within this context, we investigated the expression patterns of
genes encoded on HSA21 in hundreds of individuals with T21 through
whole blood transcriptome analysis. We observed significant varia-
bility regarding overexpression levels of HSA21 genes, leading to the
discovery of two distinct HSA21 gene clusters. Using a consensus
clustering algorithm, we identified three distinct molecular subtypes
(MS) of DS based on unique expression patterns of HSA21 genes. To
gain anunderstanding of the biological implications of these subtypes,
we conducted comprehensive multiomics profiling using whole blood
transcriptomics, plasma proteomics and metabolomics, and immune
cell profiling via mass-cytometry. These efforts revealed that the
molecular subtypes of DS display distinct multiomic landscapes, with
clear differential dysregulation of key pathophysiological processes,
metabolic pathways, and immunehomeostasis. Thesefindings provide
the foundation for future investigations into the functional con-
sequences of variegated HSA21 gene overexpression and the potential
clinical implications of these findings toward personalized medicine
approaches in DS.

Results
Individuals with Down syndrome show variegated over-
expression of genes encoded on chromosome 21
In order to investigate inter-individual variability of HSA21 gene
overexpression among individuals with DS, we analyzed an inte-
grated multiomics dataset from the Human Trisome Project (HTP)
cohort study derived from 356 research participants with DS and 146
age- and sex-matched euploid controls (D21) (Supplementary
Fig. 1a). In a recently published analysis of the HTPwhole blood RNA-
seq dataset, which comprises transcriptomes from a subset of 304
individuals with DS and 96 euploid controls (D21), we identified
~10,000 differentially expressed mRNAs in the bloodstream of
people with T21 encompassing nearly 2/3 of expressed genes11. Of
the 126 protein-coding mRNAs and 42 lncRNAs encoded on HSA2112

that were detected in this experiment, ~90% (151/168) displayed
significant upregulation in individuals with DS, with an average fold-
change of 1.51 (Supplementary Fig. 1b, c). These results are con-
sistent with the expected effect of increased HSA21 gene dosage in
T21. However, when plotting the expression distributions and rank-
ing the 126 protein-coding genes by their expression relative to
euploid controls, we observed pronounced inter-individual varia-
bility in HSA21 gene overexpression (Fig. 1a). Not only do individual
genes show a wide range of average overexpression relative to
euploid controls, but we also find that for every HSA21 gene, a subset
of individuals displays expression close to or even below the mean
levels observed in euploids (Fig. 1a). Furthermore, individuals with
T21 showing very high or no overexpression are different for distinct
genes. This is exemplified by participants HTP0484A andHTP0594A.
Whereas HTP0484A has among the highest expression levels of
TSPEAR, they display the lowest degree of expression for COL6A2,
well below the range of euploid controls (Fig. 1b). In contrast, par-
ticipant HTP0594A is the lowest expressor of TSPEAR but is among
the top expressors of GET1 (Fig. 1b).

These diverse profiles of HSA21 gene expression prompted us
to analyze the co-expression patterns of HSA21 genes among
individuals with DS inmore detail. Toward this end, we generated a
matrix of Spearman correlations using age- and sex-adjusted
mRNA expression data for all 126 protein-coding genes encoded
on HSA21 (Fig. 1c, Supplementary Data 1). Unsupervised hier-
archical clustering of these correlations shows two main HSA21
gene clusters, a major cluster 1 composed of 97 genes and a minor
cluster 2 of 29 genes (Fig. 1c). Within each cluster we observe
robust co-expression patterns, with clear negative correlations
between clusters (Fig. 1d). These relationships are demonstrated
by numerous examples including strong positive correlations for
PAXBP1 (HSA21 gene cluster 1) versus BRWD1 (HSA21 gene cluster
1) and N6AMT1 (HSA21 gene cluster 1) (Fig. 1e); strong positive
correlations for IFNGR2 (HSA21 gene cluster 2) versus IL10RB
(HSA21 gene cluster 2) and KCNJ15 (HSA21 gene cluster 2) (Fig. 1f);
and negative correlations for PAXBP1 versus IFNGR2 (Fig. 1g).
Importantly, genes in HSA21 clusters 1 and 2 are dispersed
throughout the chromosome, without any obvious spatial group-
ing (Supplementary Fig. 1d).

These results reveal that despite a common chromosomal resi-
dence and increased dosage in T21, there are distinct groups of HSA21
genes based on their expression pattern, indicative of diverse reg-
ulatory mechanisms governing these gene sets.

Variable chromosome 21 gene expression distinguishes mole-
cular subtypes in Down syndrome
Upon observing two main clusters of co-expressed HSA21 genes, we
investigated whether differences in HSA21 gene expression patterns
could identify distinct individuals in the T21 cohort. To that end, we
performed consensus clustering, on the age-, sex- and source-
adjusted mRNA expression values for the 126 protein-coding genes
encoded on HSA21 across the 304 individuals with T21 (Supple-
mentary Fig. 2a). This revealed that while a viable clustering solution
is apparent at k = 2, the increase in the relative change in area under
the curve is most pronounced at k = 3, suggesting that k > 3 does not
significantly enhance the clarity or robustness of the clustering
solution (Supplementary Fig. 2b, c). Henceforth these three groups
of individuals with T21 are referred to as molecular subtypes (MS)
1-3. Interestingly, these subtypes are clearly distinguished based on
their expression profiles of HSA21 genes (Fig. 2a, Supplementary
Data 2). This is further demonstrated by separation of the subtypes
in principal component analysis (PCA) of HSA21 gene expression
(Fig. 2b). Notably, the subtypes donot show significant differences in
age, sex or bodymass index (BMI) (Fig. 2c–e, Supplementary Data 2),
suggesting variability across MS may be driven by other mechan-
isms. We then calculated polygenic expression scores for HSA21
gene clusters 1 and 2 by summing the expression z-scores relative to
euploids for the genes in each cluster. These polygenic scores
demonstrated that MS1 exhibits the highest expression levels for
HSA21 cluster 1 genes, followed byMS2 and thenMS3 (Fig. 2f, g). This
is exemplified by expression of the genes ATP5PF, GABPA, and
PAXBP1 across the three subtypes (Fig. 2h, top row). Conversely,
whereas MS3 shows the highest expression for HSA21 cluster 2
genes, there is no significant difference between MS1 and MS2
(Fig. 2f), as demonstrated by expression of the interferon receptors
IFNAR1, IFNGR2, and IL10RB (Fig. 2h, bottom row). At the gene level,
individuals in MS2 show a hybrid pattern, with some HSA21 cluster 1
genes being expressed at levels similar to those observed for MS1
(e.g., EVA1C), someHSA21 cluster 2 genes similar toMS3 (e.g., ITGB2)
and some genes with distinct overexpression (e.g., PFKL) (Fig. 2h,
middle row). Importantly, while these genes are, on average, over-
expressed across the entire T21 cohort (Supplementary Fig. 2d),
their average expression across subtypes displays significant
variability.
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Collectively, these results demonstrate that although all indivi-
duals with DS carry an extra copy of HSA21, variegated overexpression
of distinct HSA21 gene clusters leads to unique subgroups within this
population.

Molecular subtypes of Down syndrome are distinguished by
distinct transcriptomic landscapes
Upon observing that distinct subtypes of individuals with T21 could
be distinguished based on unique expression profiles of HSA21
genes, we undertook a comparative multiomics analysis using the

HTP datasets. Toward this end, we analyzed by DEseq2, using
adjustments for age and sex, differential expression of whole blood
transcriptomes from each subtype relative to euploid controls and
to each other (Supplementary Fig. 3a, Supplementary Data 2). These
analyses revealed all three subtypes show widespread tran-
scriptomic differences when compared to euploid controls, with
thousands of both up- and down-regulated genes (Supplementary
Fig. 3a). Interestingly, when comparing among subtypes, we also
observed a similar magnitude of transcriptomic changes, whereby
most transcriptome changes from the euploid baseline are unique to
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each subtype (Fig. 3a, Supplementary Fig. 3a). In order to probe for
differences in signaling pathways among these transcriptomic pro-
files, we utilized Ingenuity Pathway Analysis (IPA) of canonical
pathways and upstream regulator networks on DEseq2 results
comparing the full T21 cohort and individual subtypes to euploid
controls (Fig. 3b, c, Supplementary Data 2). This exercise demon-
strated that the predicted activation/inhibition of key biological
pathways andmaster regulators of gene expression is variable in T21,
which is underscored by marked differences across subtypes. When
considering the full T21 cohort, we observe transcriptomic sig-
natures indicative of heightened immune and inflammatory pro-
cesses. This is demonstrated by predicted activation of phagosome
formation, cytokine response to infections, and interferon signaling
(Fig. 3b), concurrent with increased activity of key regulators of
interferon-stimulated gene expression, namely NONO (non-POU
domain-containing octamer-binding protein) and multiple IRFs
(interferon regulatory factors) (Fig. 3c). IPA on the full T21 cohort
also shows enrichment of signatures related to cellular metabolism
and proliferation, including activation of the canonical oxidative
phosphorylation pathway in addition toMYC and cyclin D1 upstream
regulator networks (Fig. 3b, c). Interestingly, when considering each
subtype, we observed that the signatures associated with T21 status
are predominately driven by distinct subtypes. For example,
whereas MS1 displays prominent enrichment of oxidative phos-
phorylation genes, as well as genes regulated downstream of MYC
and cyclin D1, these signatures are not observed or are dampened in
MS3 (Fig. 3b, c). MS1 also displays signatures indicative of enhanced
EIF2 signaling and increased activity for MLXIPL (MLX-interacting
protein 1), a member of the Myc/Mad/Max family of transcription
factors, and ESRRA (Estrogen Related Receptor Alpha), which is not
apparent when considering the entire T21 cohort (Fig. 3b, c). These
pathway-level changes are demonstrated by stark differences across
subtypes in the expression of genes involved in cellular proliferation
(e.g.,NRAS), translation (e.g., EIF4E), oxidative phosphorylation (e.g.,
CYCS), and ribosome assembly (e.g.,RPS27L) (Fig. 3d, Supplementary
Fig. 3b). In contrast, MS3 is marked by pronounced elevation of
multiple immune- and inflammatory-related signatures, which are
absent or dampened in MS1 (Fig. 3b, c). This is evident by the
expression of genes associated with cytokine signaling (e.g., CXCR1),
interferon responses (e.g., IRF1), the inflammasome complex (e.g.,
NLRC4), toll-like receptor signaling (e.g., MYD88), and the NF-κB
pathway (e.g., IKBKG) (Fig. 3e, Supplementary Fig. 3c).

Considering the unique HSA21 gene expression profiles and
global transcriptome signatures of each subtype, we analyzed cor-
relations of HSA21 gene expression against the entirety of the tran-
scriptome and subsequently analyzed the derived correlations via
GSEA (Fig. 3f, Supplementary Fig. 3d). This analysis revealed that
transcriptome signatures dysregulated in DS align with expression
of genes in either HSA21 gene cluster 1 or HSA21 gene cluster 2.
Moreover, gene signatures enriched in MS1, such as oxidative
phosphorylation and MYC targets, are positively associated with

expression of HSA21 cluster 1 genes, and negatively associated with
expression of HSA21 cluster 2 genes (Fig. 3f). This pattern is evident
for several non-HSA21 genes overexpressed in MS1, as illustrated by
the relationship between expression of NRAS (encoded on chromo-
some 1) versus PAXBP1 (HSA21 cluster 1), and SLC19A1 (HSA21 cluster
2) (Fig. 3g, h, Supplementary Fig. 3e). In contrast, MS3-enriched
signatures, including interferon responses and other inflammatory
processes, correlate negatively with HSA21 cluster 1 genes and
positively with HSA21 cluster 2 genes, as demonstrated by the rela-
tionship between CXCR1 (encoded on chromosome 2) versus PSMG1
(HSA21 cluster 1), and KCNJ15 (HSA21 cluster 2) (Fig. 3f, g, i, Sup-
plementary Fig. 3e).

Altogether, these findings indicate that the dysregulation of sev-
eral key biological pathways in DS is variable and associated with dif-
ferential expression patterns of HSA21 genes.

Plasma proteomics reveals varied immune and inflammatory
dysregulation across subtypes
To identify differences between subtypes in their plasma proteomes
we utilized linear modeling of SomaScan plasma proteomics data
obtained from 304 individuals with DS with matching transcriptome
data and 103 euploid controls. These analyses revealed vast pro-
teomic differences between each of the subtypes and euploid con-
trols (Supplementary Fig. 4a, Supplementary Data 3), with hundreds
of changes being unique to specific subtypes (Fig. 4a). Using results
from linear regressions, we then utilized IPA of canonical pathways
to assess differences in signaling pathways (Fig. 4b, Supplementary
Data 3). In addition, given the potential for changes in the plasma
proteome to reflect diseases and disruption of tissue function, we
assessed IPA signatures of diseases and biological functions (Fig. 4c,
Supplementary Data 3). When considering the full T21 cohort, IPA of
canonical pathways suggested proteomic changes indicative of
activation of the coagulation system and acute phase response sig-
naling, as well as inhibition of intrinsic prothrombin activation,
DHCR24 signaling, and LXR/RXR activation (Fig. 4b). Moreover,
analysis of diseases and biological functions indicated activation of
several immune/inflammatory related processes including immune
mediated inflammatory disease, chronic inflammatory disorder, and
infiltration by neutrophils (Fig. 4c). Interestingly, MS3 appears to be
driving most of these proteomic changes, particularly activation of
acute phase response signaling and enrichment of immune/inflam-
matory signatures (Fig. 4b, c). This is prominently demonstrated at
the individual protein level by multiple factors related to inflam-
mation and immune dysregulation (Fig. 4d). For example, the acute
phase response proteins SAA1, SAA2, CRP, IL-6, and IL-1RN, all show a
heightened degree of elevation in MS3 compared to the other sub-
types (Fig. 4d, e, Supplementary Fig. 4b). This is also the case for
many other unique factors, including, among others, LCN2 (lipocalin
2), a neutrophil gelatinase-associated protein linked to inflammation
and acute kidney injury; PROK2 (prokineticin 2), a secreted protein
involved in inflammation and immune response modulation; BPI

Fig. 1 | Individuals with Down syndrome show variegated overexpression of
genes encoded on chromosome 21. a Sina plots showing expression of chromo-
some 21 (HSA21) protein-coding genes (n = 126) in individuals with trisomy 21 (T21,
n = 304) relative to euploid controls (D21, n = 96). Genes are ranked from left to
right by decreasing degree of overexpression relative to D21, based on DESeq2
analysis. X representsmean expression for each individual gene. Dashed horizontal
line indicates mean value in euploids. Two research subjects (HTP0484A, red; and
HTP594A, yellow) are colored as indicated to illustrate differential expression
patterns. b Sina plots showing expression of TSPEAR, COL6A2 and GET1 in D21
(n = 96, gray) and T21 (n = 304, teal). q-values are derived from DESeq2 compar-
isons to D21 and adjusted using the Benjamini–Hochbergmethod. Boxes represent
interquartile ranges and medians, with notches approximating 95% confidence
intervals. Red and yellow highlight distinct research participants. c Heatmap

displaying unsupervised clustering of HSA21 gene expression Spearman correla-
tions in individualswithDS (n = 304). Colors indicateHSA21gene cluster 1 (teal) and
cluster 2 (orange).dHeatmaphighlighting the top 5 strongest positive andnegative
correlations from each HSA21 gene cluster in (c). Colors indicate HSA21 gene
cluster 1 (teal) and cluster 2 (orange). Asterisks indicate significant Spearman cor-
relations (q < 0.1) after Benjamini–Hochberg adjustment for multiple hypothesis
testing. e–g Scatter plots showing in individuals with DS (n = 304) relationships
betweenHSA21 cluster 1 genes: PAXBP1 vs. BRWD1 andN6AMT1 (e), HSA21 cluster 2
genes: IFNGR2 vs. IL10RB andKCNJ15 (f), andPAXBP1 vs. IFNGR2 (g). rho andq-values
(Benjamini–Hochberg adjusted p-values) for Spearman correlation are denoted.
Points are colored by density; blue lines represent the fitted values from linear
regressions, with 95% confidence intervals in grey.
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(bactericidal permeability increasing protein), a lipopolysaccharide
binding protein found in neutrophils that plays a crucial role in the
innate immune response; MPO (myeloperoxidase), an enzyme found
in neutrophils andmonocytes that attacks pathogens via production
of reactive oxygen species; and PRTN3 (proteinase 3) a neutrophil-
related enzyme involved in inflammation and a target antigen in
autoimmune diseases like Wegener’s granulomatosis (Fig. 4e, Sup-
plementary Fig. 4b). As expected, when defining correlations of
HSA21 gene expression vs. all proteins (Supplementary Fig. 4c), we
found that factors uniquely elevated inMS3 positively correlate with

expression of HSA21 cluster 2 genes, but negatively correlate with
HSA21 cluster 1 genes (Fig. 4f, Supplementary Fig. 4d). This is
demonstrated most prominently by the relationship between levels
of SAA1, PROK2, and BPI against expression of the HSA21 cluster 2
genes KCNJ15 and IFNGR2 (Fig. 4g).

Collectively, these results illustrate the heterogeneity of plasma
proteomic changes in DS. Moreover, preferential overexpression of
HSA21 cluster 2 genes, as seen in MS3, is associated with proteomic
changes indicative of aberrant inflammatory- and immune-related
processes.
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Molecular subtypes associatewithdistinct inflammatorymilieus
Prompted by the clear differences observed in the transcriptomic
and proteomic immune signatures among subtypes, we employed
an orthogonal approach and analyzed a select panel of immune
markers using quantitative Meso Scale Discovery (MSD) targeted
proteomics across 249 individuals with DS and 131 euploid controls
(D21) with matched transcriptome data. When analyzing differences
in MSD analyte levels, comparing the subtypes to euploid controls
(D21) and to each other, both commonalities and differences among
subtypes are observed (Fig. 5a, Supplementary Fig. 5a, b, Supple-
mentary Data 4). For example, all three subtypes show significant
elevation of IL-10, TSLP and TNF-alpha (Supplementary Fig. 5b, c). In
contrast, relative to the other subtypes, MS3 displays significant
elevation of IL-6 and downstream IL-6-inducible acute phase pro-
teins CRP, SAA, and IL-1RN (Fig. 5b, Supplementary Fig. 5b, d), thus
confirming our observations from SomaScan plasma proteomics of
heightened acute phase response in MS3. Furthermore, MS3 also
displays differential elevation of IL-22, IL-17A, and IL-15, interleukins
involved in promoting inflammation, epithelial defense, and mod-
ulating T and NK cell activity (Supplementary Fig. 5d). Conversely,
MS1 is the only subtype that shows significant upregulation of IL-8,
eotaxin, and FGF basic, molecules involved in chemotaxis, allergic
responses, and cell growth and differentiation, respectively (Sup-
plementary Fig. 5e). These results demonstrate the subtypes of DS
are distinguished by differences in their inflammatory milieu.

We then defined associations between HSA21 gene expression
and levels of the immunemarkers, which demonstrated that whereas
HSA21 cluster 1 gene expression correlates with cytokines pre-
ferentially elevated in MS1 (e.g., IL-8), HSA21 cluster 2 gene expres-
sion correlates with cytokines preferentially elevated in MS3 (e.g.,
IL6) (Fig. 5c). This is exemplified by the relationship between the
HSA21 cluster 2 gene KCNJ15 vs. levels of IL-6, CRP, and SAA (Fig. 5d).

Given that several inflammatory markers in the MSD panel are
regularly assessed in the clinical setting (e.g., CRP, IL-6), we were
interested to derive a cytokine/chemokine-based inflammatory
metric that could differentiate subtypes. Toward this endwe derived
a multivariate score based on the immune marker profile of MS3.
Specifically, we calculated the sum of z-scores, relative to euploid
controls, for MSD analytes significantly elevated (fold change >1,
q < 0.1, 10% FDR) in MS3 relative to euploid controls andMS1 (i.e., IL-
6, CRP, SAA, IL-22, MIP-3alpha, IL-15, IL-1RN). We then analyzed dif-
ferences in these scores across subtypes by Wilcoxon rank-sum test.
This demonstrated that, on average, all subtypes show elevated
cytokine scores relative to euploid controls (Fig. 5e). However, MS3
shows clear elevation relative to MS1 and MS2, which are not sig-
nificantly different from each other (Fig. 5e). Expectedly, MS3 cyto-
kine scores negatively and positively correlate, respectively, with
expression of HSA21 cluster 1 genes and HSA21 cluster 2 genes
(Fig. 5f). This is exemplified by relationships between MS3 cytokine
scores against the HSA21 cluster 1 genes TTC3 and PRDM15, and the

HSA21 cluster 2 genes KCNJ15 and IFNGR2 (Fig. 5g). When performing
GSEA on the correlations between cytokine scores and all mRNAs in
the RNA-seq dataset, we find that cytokine scores are associatedwith
MS3-related transcriptomic signatures including interferon respon-
ses and other inflammatory pathways (Fig. 5h). Lastly, analyzing by
IPA correlations against SomaScan proteins reveals MS3 cytokine
scores track with factors involved in the acute phase response
canonical pathway signature (Fig. 5i).

Collectively, these findings suggest the T21 subtypes are char-
acterized by distinct profiles of cytokine and inflammatory markers,
which align with their differentiating multiomic characteristics.

Plasma metabolomics reveals depletion of amino acids associ-
ates with MS3
Wenext applied our analytical pipeline to plasmametabolomics data
from 304 individuals with T21 withmatching transcriptome data and
103 euploid controls (D21) using linear regression analyses, com-
paring each subtype to euploid controls and to each other (Sup-
plementary Fig. 6a, Supplementary Data 5). This exercise revealed
substantial differences in the plasma metabolomes of all subtypes
compared to euploid controls. However, most changes were com-
mon among all subtypes, with few distinctions (Supplementary
Fig. 6b). Comparison of MS3 to MS1 was the only analysis between
subtypes showing differential abundance of metabolites, with 9
analytes being depleted in MS3 relative to MS1 (Supplementary
Fig. 6a). These differential analytes encompassed the non-essential
amino acids asparagine, serine, proline, and alanine (Fig. 6a, Sup-
plementary Fig. 6c), essential amino acids threonine and histidine
(Fig. 6b), and the amino acid metabolites L-citrulline and gamma-L-
Glutamyl-D-alanine (Supplementary Fig. 6d). Notably, nearly all
amino acids are depleted across the T21 subtypes relative to euploid
controls, although most prominently for MS3 (Fig. 6c).

To explore potential drivers of amino acid depletion, we investi-
gated expression of enzymes involved in biosynthesis of non-essential
amino acids depleted in MS3. Indeed, expression of several key
enzymes are downregulated in MS3 compared to MS1 including ASNS
(Asparagine Synthetase), which catalyzes the conversion of aspartate to
asparagine; PSAT1 (Phosphoserine Aminotransferase 1), which depho-
sphorylates 3-phospho-L-serine to form serine; and PYCR1 and 3 (Pyr-
roline-5-Carboxylate Reductase 1-3), which catalyze the conversion of
pyrroline-5-carboxylate to proline (Fig. 6d, Supplementary Fig. 6e). This
suggests depletion of non-essential amino acids inMS3 could be due in
part todecreasedexpressionof key enzymes involved in their synthesis.

Conversely, depletion of plasma amino acids could also be
related to increased expression of transporters involved in cellular
and tissue uptake of amino acids. Toward this end, we investigated
expression of a panel of transporters (n = 31) involved in cellular and
tissue uptake of amino acids. Of these transporters, 18 are sig-
nificantly upregulated and 12 are significantly downregulated in MS3
relative to MS1. Notably, upregulated transporters include those

Fig. 2 | Variable chromosome 21 gene expression distinguishes molecular
subtypes in Down syndrome. a Heatmap showing unsupervised hierarchical
clustering of HSA21 gene expression in trisomy 21 (T21) molecular subtype 1 (MS1)
(n = 107), MS2 (n = 95) and MS3 (n = 102). Values are median z-scores across all T21
(n = 304). Colors indicate HSA21 gene cluster 1 (teal) and cluster 2 (orange).
b Principal component analysis showing separation of subtypes based on HSA21
gene expression. c, d Sina plots showing similar age (c) and BMI (d) distributions
betweeneuploid controls (D21,n = 96, gray),MS1 (n = 107, red),MS2 (n = 95, green),
andMS3 (n = 102, blue), with no significant differences as determined by two-sided
Wilcoxon rank-sum tests. Statistics represent adjusted p-values (q-values) after
Benjamini–Hochberg adjustment for multiple hypotheses. Boxes represent inter-
quartile ranges andmedians, with notches approximating95%confidence intervals.
e Bar charts showing similar sex ratios across subtypes. Colors indicate females
(pink) andmales (blue). f Sina plots showingHSA21 gene cluster polygenic scores in

MS1 (n = 107, red),MS2 (n = 95, green), andMS3 (n = 102, blue). Scoreswerederived
for each HSA21 gene cluster by calculating the sum of their z-scores relative to D21
(n = 96). Dashed line indicates D21 mean values. Boxes represent interquartile
ranges and medians, with notches approximating 95% confidence intervals.
Statistics indicate q-values from linear regressions, adjusted using the
Benjamini–Hochberg method. g Illustration showing distinct molecular subtypes
among individuals with T21, differentiated by unique overexpression profiles for
HSA21 cluster 1 and 2 genes. h Sina plots showing expression of example HSA21
genes inD21 (n = 96, gray),MS1 (n = 107, red),MS2 (n = 95, green), andMS3 (n = 102,
blue). Statistics above datapoint swarms are q-values, derived from DESeq2 com-
parisons to D21 and adjusted using the Benjamini–Hochberg method. Boxes
represent interquartile ranges and medians, with notches approximating 95%
confidence intervals. Panelg createdwith BioRender.com releasedunder aCreative
Commons Attribution-NonCommercial-NoDerivs 4.0 International license.
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involved in uptake of histidine (SLC15A3, SLC15A4, SLC66A1), threo-
nine (SLC1A5), alanine (SLC38A10, SLC1A4), serine (SLC1A4), and
asparagine (SLC1A5) (Fig. 6e, Supplementary Fig. 6f). When defining
correlations of HSA21 gene expression vs. metabolites (Supple-
mentary Fig. 6g), we find that levels of amino acids depleted in MS3
negatively correlate with expression of HSA21 cluster 2 genes
(Fig. 6f), as demonstrated by levels of asparagine vs. expression of
KCNJ15 and MX2 (Supplementary Fig. 6h). Furthermore, except for
proline, all amino acids depleted in MS3 are negatively correlated
with the MS3 cytokine score, as demonstrated by correlations
against asparagine levels (Fig. 6g, h).

Altogether, these results clearly demonstrate the inflammatory
profile of MS3 is concurrent with depletion of plasma amino acids,
which is potentially linked with decreased expression of biosynthetic
enzymes and increased expression of uptake transporters.

The molecular subtypes of Down syndrome present unique
immune cell landscapes
Based on the observations that T21 molecular subtypes have distinct
multiomics landscapes, we investigated differences with respect to
their immune cell profiles. Toward this end, we performed beta
regression analysis of mass-cytometry data from 278 individuals
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with T21 having matching transcriptome data and 90 euploid con-
trols (D21), with the goal of comparing the individual subtypes to
euploid controls, which revealed variable dysregulation of multiple
immune cell types (Fig. 7a, Supplementary Data 6). Among granu-
locytes, basophils are elevated in all three subtypes, concurrent with
depletion of eosinophils, however, neutrophils are solely elevated in
MS3 (Fig. 7a, b, Supplementary Fig. 7a). MS3 also displays the most
prominent elevation of pro-inflammatory monocytes (i.e., inter-
mediate, non-classical), along with increased frequencies of poly-
morphonucler myeloid-derived suppressor cells (PMN-MDSCs,
Fig. 7a, c, Supplementary Fig. 7b). Interestingly, among lymphoid
lineages, MS3 is the only subtype with a significantly decreased
proportion of total T cells (Fig. 7a, d). Although all three subtypes
show significant remodeling of the T cell lineage toward depletion of
naive subsets and enrichment of effector and memory subsets, they
also display some important differences, such as elevated fre-
quencies of non-CD4 +/CD8 + T cells and CD8 + TCM (T central
memory) in MS3 (Fig. 7a, Supplementary Fig. 7c). All three subtypes
display total B cell lymphopenia, although this effect is more pro-
nounced inMS3 (Fig. 7a, e). Among B cell lineages, all subtypes show
remodeling towards more terminally differentiated subsets such as
mature B cells, IgMmemory, and plasmablasts, along with increased
frequencies of age-associated B cells (Fig. 7a). Among less differ-
entiated or immature subsets, anergic B cells is the only subset
showing a variable pattern, with depletion in both MS2 and MS3
(Supplementary Fig. 7d). Lastly, MS3 is the only group with sig-
nificant increases in CD56+/CD16- NK cell subsets (Fig. 7a, Supple-
mentary Fig. 7e).

When investigating the relationship between HSA21 gene
expression and major immune cell subsets, we observed that cell
populations enriched in MS3 (e.g., neutrophils) tend to be positively
associated with expression of HSA21 cluster 2 genes, whereas cell
types more depleted in MS3 (e.g., T cells, B cells) are associated with
expression of HSA21 cluster 1 genes (Supplementary Fig. 7f). For
example, whereas neutrophil frequencies are negatively associated
with expression of the HSA21 cluster 1 gene NDUFV3, they are posi-
tively associated with expression of the HSA21 cluster 2 gene
PTTG1IP (Fig. 7f). In contrast, T cells are positively associated with
NDUFV3 and negatively associated with PTTG1IP (Supplemen-
tary Fig. 7g).

In order to further assess hematological differences between
the subtypes we analyzed complete blood count (CBC) parameters.
Toward this end we calculated by linear regression differences
between individual CBC measurements for each MS relative to
euploid controls and to each other (Supplementary Data 6). This
exercise revealed subtle differences between subtypes. Interest-
ingly, all subtypes display stark signs of macrocytosis when com-
pared to controls, as demonstrated by elevated mean corpuscular

volume (MCV) and mean corpuscular hemoglobin (MCH) (Fig. 7g).
Furthermore, MS1 and MS3 show depletion of red blood cell counts
(RBC), whereas MS1 and MS2 show total white blood cell (WBC)
depletion (Fig. 7g). MS3 displays prominent depletion of lympho-
cytes, in both percent and absolute counts, in agreement with the
observed T and B cell depletion observed by mass-cytometry
(Fig. 7g, h).

Altogether, these results reveal distinct variations in the
cellular composition of the peripheral blood cell populations among
subtypes, which could contribute to their heterogenous multiomics
landscapes.

Temporal stability and clinical detection of molecular subtypes
of Down syndrome
Next, we decided to evaluate to what degree the heterogenous
presentation of molecular and immune subtypes of DS was con-
served over time. Thus, we analyzed correlations of MSD immune
markers in samples taken at least a year apart from a cohort (n = 25)
of research participants with T21. This effort revealed that whereas
some immune markers are highly stable from one year to another
(e.g., CRP, IL12/23p40, IP-10, IL-31), others are not (e.g., bFGF, IL-17B,
IL-4) (Fig. 8a, Supplementary Fig. 8a, Supplementary Data 7). Within
this context, immunemarkers elevated inMS3 (i.e., CRP, SAA, IL-1RN,
MIP-1α, IL-6, IL-15, and IL-22) remained relatively consistent leading
to significantly stable MS3 cytokine scores over time (Fig. 8a–c). We
performed similar repeat measurements on CBC parameters in a
subset (n = 33) of individuals with T21 (Fig. 8d, Supplementary
Data 7). This revealed multiple analytes to be stable over time
including platelet counts, MCV, lymphocyte parameters (absolute
and percent), and total white blood cells (Fig. 8d, e, Supplementary
Fig. 8b). Collectively, these analyses show that clinically relevant
molecular characteristics of MS3, such as heightened acute phase
response factors and lymphopenia, are relatively stable over time.
Prompted by these results, we aimed to define clinical indexes to
classify the subtypes using temporally stable analytes distinguish-
able in MS3. Toward this end we calculated ratios of inflammatory
markers in the IL-6 signaling pathway (i.e., IL-6, CRP, SAA) and neu-
trophils and lymphocyte measurements. In order to ensure the
greatest sample overlap and statistical power, we utilized SomaScan
measurements for inflammatory markers and mass-cytometry data
for neutrophils. Expectedly, these ratios are consistently higher in
MS3 (Fig. 8f). Using the 90th percentile values of these ratios in
euploid controls, we were able to arrive to classifiers for MS3 with
>90% sensitivity and specificity ranging from 48.8–67.5% (Fig. 8g).
However, when combining multiple indexes into the classifier, spe-
cificity increased above 80%. Although the research measurements
used for these classifiers are not certified for clinical use,
these results nevertheless support the notion that molecular and

Fig. 3 | Molecular subtypes of Down syndrome are distinguished by distinct
transcriptomic landscapes. a Overlapping differentially expressed genes identi-
fied by DESeq2 in comparisons of each molecular subtype (MS1, n = 107; MS2,
n = 95; MS3, n = 102) against euploid controls (D21, n = 96). b, c Heatmaps
showing select canonical pathways (b) and upstream regulators (c) from Ingenuity
Pathway Analysis (IPA) of DESeq2 results comparing trisomy 21 (T21, n = 304),
MS1 (n = 107), MS2 (n = 95) and MS3 (n = 102) to D21 (n = 96). Asterisks denote
q < 0.1 from IPA overrepresentation analysis. d, e Heatmaps display median
z-scores for representative genes in MS1 (n = 107), MS2 (n = 95), and MS3 (n = 102)
calculated relative to D21 (n = 96), with asterisks denoting q < 0.1 from DESeq2
after Benjamini–Hochberg adjustment. Sina plots illustrate gene expression
across groups. q-values, derived from DESeq2 and adjusted using the
Benjamini–Hochberg method, are displayed above individual data swarms for
comparisons to D21 and above lines for MS3 vs. MS1. Boxes represent interquartile
ranges and medians, with notches approximating 95% confidence intervals.

f Heatmap depicts pathway enrichment (NES, normalized enrichment score) from
Gene Set Enrichment Analysis (GSEA) for HSA21 genes, based on their correlations
against the transcriptome in individuals with T21 (n = 304). Left tile annotation
shows results from GSEA of DESeq2 comparing T21 (n = 304) vs. D21 (n = 96).
Asterisks denote q < 0.1 after Benjamini–Hochberg adjustment. Colors indicate
HSA21 gene cluster 1 (teal) and cluster 2 (orange). g Volcano plots showing
Spearmancorrelations ofNRAS (left) andCXCR1 (right) vs.HSA21 cluster 1 (teal) and
cluster 2 (orange) genes in individuals with T21 (n = 304). Dashed line indicates
q = 0.1. h Scatter plots showing expression ofNRAS vs. PAXBP1 (HSA21 gene cluster
1) and SLC19A1 (HSA21 gene cluster 2) in individuals with T21 (n = 304). i Scatter
plots showing expression ofCXCR1 versus PSMG1 (HSA21 gene cluster 1) andKCNJ15
(HSA21 gene cluster 2) in individuals with T21 (n = 304). For (h, i) rho and q-values
(Benjamini–Hochberg adjusted p-values) for Spearman correlation are denoted.
Points are colored by density; blue lines represent the fitted values from linear
regressions, with 95% confidence intervals in grey.
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T21 vs. D21 proteomes:a
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Fig. 4 | Plasma proteomics reveals varied immune and inflammatory dysre-
gulation across subtypes. a Diagrams show overlapping differentially abundant
proteins identified by linear regressions in comparisons of eachmolecular subtype
(MS1, n = 107; MS2, n = 95; MS3, n = 102) against euploid controls (D21, n = 103).
b, c Heatmaps showing select canonical pathways (b) and disease and biological
functions (c) from Ingenuity Pathway Analysis (IPA) of linear regression results
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immune heterogeneity of DS could be gauged with commonly used
clinical parameters.

Lastly, we investigated whether the molecular subtypes asso-
ciated with different patterns of co-occurring conditions. This analysis
revealed only modest trends in the overrepresentation of certain co-
occurring conditions within specific subtypes, which did not achieve
statistical significance after multiple hypotheses correction (Supple-
mentary Fig. 8c). Nonetheless, these trends justify further investiga-
tions using larger cohorts to understand how variation in HSA21 gene
expression may modulate the appearance and severity of various
developmental and clinical hallmarks of DS.

Discussion
DS manifests as a highly heterogeneous medical condition in terms
of number and severity of phenotypes and co-occurring conditions1.
This inherent heterogeneity poses significant challenges to the
clinical management of DS, revealing the need for a personalized
medicine approach to serve this population. A plausible driver of
phenotypic variation in DS is inter-individual variability in HSA21
gene overexpression, as individuals with heightened or dampened
overexpression of specific HSA21 genes may display unique char-
acteristics from those with dissimilar expression profiles. However,
deciphering the precise contributions of individual HSA21 genes to
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the varied phenotypes of DS is an ongoing challenge. Although some
genes on HSA21 have been shown to contribute to specific traits of
DS, such as APP8, the interferon receptors9, and DYRK1A10, a com-
prehensive mapping of HSA21 gene-to-phenotype relationships is
missing.

Whole blood transcriptome analysis demonstrates that HSA21
genes are not coordinately overexpressed in DS. We identified two
distinct clusters of co-expressed genes on HSA21 and revealed three
subtypes of individuals with T21, distinguished by their expression
patterns of HSA21 genes (Fig. 9a, b). Several studies previously
reported variability in HSA21 gene expression patterns in DS13–16, and
some studies proposed the existence of gene dosage compensation
in DS, with both supporting and opposing evidence in the
literature14,16–21. Collectively, we did not observe clear signs of global
dosage compensation, with overexpression of HSA21 genes aver-
aging the expected 1.5-fold increase. However, we observed strong
inter-individual variability in HSA21 gene overexpression, revealing
the presence of mechanisms differentially affecting distinct sets of
genes on HSA21, such as epigenetic regulation or cell type-specific
expression within the blood cell lineages. Epigenetic control is
influenced by genetic variation, physiological changes, environ-
mental exposures, and other mechanisms22,23 and the expression of
several HSA21 genes have been reported to be epigenetically
regulated24–26. Cell type-specific variation in gene expression across
blood cell types is also well documented, to the point that immune
cell frequencies can be deduced, to some extent, from deconvolu-
tion of bulk transcriptome data27,28. Subsequent research should
probe further into these potential mechanisms of variegated HSA21
overexpression, emphasizing potential regulons that could underlie
the variability observed across subtypes.

Our analysis revealed that the whole blood transcriptome of
MS1 is characterized by signatures related to cellular proliferation
(e.g., MYC), mitochondrial metabolism (e.g., oxidative phosphor-
ylation) and protein translation (e.g., EIF2 signaling), whereas MS3
presents a prominent pro-inflammatory phenotype, with elevated
signatures of interferon signaling and other immune processes
(Fig. 9c). Although all these signatures are elevated in the entire T21
cohort relative to euploid controls, it is now clear that distinct sub-
sets of individuals within the DS population are driving these
broader transcriptomic shifts, revealing an unexpected molecular
heterogeneity. Considering the differential expression profiles of
HSA21 genes across subtypes, it is plausible that inter-individual
variability in HSA21 gene expression underlies this overall hetero-
geneity in transcriptome signatures. For example, heightened
expression of the interferon receptors is likely contributing to the
inflammatory and immune phenotype in MS3. In fact, we previously
showed that normalization of interferon receptor copy number in
the Dp16 mouse model of DS rescues hyperactive inflammatory
transcriptomic signatures and several DS-associated phenotypes

including immune hypersensitivity, congenital heart defects, cra-
niofacial abnormalities, developmental delays, and cognitive
deficits9. Whether heightened expression of specific HSA21 cluster 1
genes is a driver of broader transcriptomic shifts characteristic of
MS1 remains to be elucidated. Hence, future studies should be
focused on understanding the roles of different HSA21 genes in
influencing transcriptomic variability and overall clinical hetero-
geneity in T21.

While all subtypes exhibited increased levels of plasma inflam-
matory markers compared to the euploid population, each was
characterized by a distinct proteomic profile. This not only further
emphasizes the molecular heterogeneity of DS, but also suggests a
potential influence of selective overexpression of specific HSA21
genes in shaping this variability. Most notably, the MS3 plasma
proteome is marked by an amplified acute phase response, high-
lighted by elevated markers of IL-6 signaling (e.g., IL-6, CRP, SAA)
(Fig. 9d). In contrast, the acute phase response signature is dam-
pened in MS2 relative to euploid controls, and it is not different in
MS1. Although these findings deepen our understanding of the
molecular variation in T21, how this diversity might drive clinical
heterogeneity remains to be determined. Furthermore, pinpointing
individual, or sets of, HSA21 genes that drive these alterations is an
ongoing effort. Elevated levels of both IL-6 and CRP have been pre-
viously reported in DS29–32. The clinical importance of these markers
is underscored by their associations with a range of adverse clinical
outcomes in the general population including autoimmunity33,34,
increased risk of cardiac complications (e.g., heart disease, failure,
infarction)35–37, cognitive impairment/decline38–40, and compromised
lung function41–44. As research progresses, future efforts should seek
to deconvolute the relationship between variability in HSA21 gene
overexpression, the resulting dysregulated proteomic signatures,
and the broader impact on the clinical manifestations of DS.

Analysis of plasma metabolomics revealed that individuals with
DS exhibit depletion of circulating amino acids, which was notably
exacerbated in MS3 (Fig. 9e). Complementing these findings, results
from whole blood RNA-seq showed decreased expression of enzymes
essential for amino acid synthesis and increased expression of uptake
transporters in MS3. However, it is unclear whether these metabolic
differences arise from differential overexpression of HSA21 cluster 2
genes in MS3, its distinct inflammatory profile, or neither. Lending
credence to the potential role of inflammation, amino acid catabolism
is known to escalate amid inflammatory processes and both adaptive
and innate immune responses45. Notably, we observed that amino acid
levels negatively correlated with the MS3 cytokine score. In addition,
various amino acid transporters upregulated in our analysis have been
shown to play roles in immunological responses. For example, SLC1A5
is induced by IL-2 and is necessary for interferon gamma production
and degranulation46,47; SLC7A5 is increased inpatients with rheumatoid
arthritis and is induced in monocytes by lipopolisacharide and

Fig. 5 | Molecular subtypes associate with distinct inflammatory milieus.
a Overlapping differentially abundant inflammatory markers identified by linear
regressions comparing each molecular subtype (MS1, n = 87; MS2, n = 75; MS3,
n = 87) against euploid controls (D21, n = 131). b Sina plots for IL-6, CRP, and SAA in
D21 (n = 131, gray), MS1 (n = 87, red), MS2 (n = 75, green), and MS3 (n = 87, blue).
q-values (Benjamini–Hochberg adjusted p-values), derived from linear regressions
are displayed above swarms for comparisons to D21 and above lines for MS3 vs.
MS1. Boxes represent interquartile ranges (IQR) andmedians, notches approximate
95% confidence intervals. c Clustering of Spearman correlations between HSA21
gene expression vs. inflammatory markers. Asterisks indicate q < 0.1 after
Benjamini–Hochberg adjustment. Colors indicate HSA21 gene cluster 1 (teal) and 2
(orange). d Scatter plots depicting expression of KCNJ15 vs. IL-6, CRP, and SAA in
T21 (n = 249). rho and q-values (Benjamini–Hochberg adjusted p-values) for
Spearman correlations are denoted. Points are colored by density; blue lines
represent the fitted values from linear regressions, with 95% confidence intervals in

grey. e Cytokine scores in D21 (n = 131, gray), MS1 (n = 87, red), MS2 (n = 75, green)
and MS3 (n = 87, blue). q-values (Benjamini–Hochberg adjusted p-values), derived
from linear regressions are displayed above swarms for comparisons to D21.
q-values over lines indicate comparisons between MS. Boxes represent IQRs and
medians, notches approximate 95% confidence intervals. f Volcano plot showing
Spearman correlations between cytokine scores vs. HSA21 gene expression in T21
(n = 249). Colors indicate HSA21 gene cluster 1 (teal) and 2 (orange). Dashed line
indicates q = 0.1. g Scatter plots depicting examples from (f). rho and q-values
(Benjamini–Hochberg adjusted p-values) for Spearman correlation are denoted.
Points are colored by density; blue lines represent the fitted values from linear
regressions, with 95% confidence intervals in grey.hHeatmap showing results from
gene set enrichment analysis (GSEA) of correlations between cytokine scores and
all mRNAs, with asterisks indicating q < 0.1 after Benjamini–Hochberg adjustment.
i Results from canonical pathway Ingenuity Pathway Analysis (IPA) of correlations
between cytokine scores and plasma proteins.
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infection48; SLC15A4 is necessary for TLR-dependent type I interferon
production and is involved in IL-1B production49; and SLC15A3 is
upregulated by TLR2, 4, 7 and 9 via NfkB activation50. Notably, indivi-
duals with DS display traits of sarcopenia and hypotonia51,52, which can
affect circulating amino acid levels. Hence, future investigations
should seek to unravel the relationships between HSA21 gene over-
expression, amino acid depletion, and clinical conditions associated
with DS.

We observed that all three subtypes exhibit some degree of
immune cell alterations (Fig. 9f). However, MS3 displayed the

most pronounced and distinctive changes characteristic of DS.
This was marked by significant enrichment of neutrophil
and inflammatory monocyte populations, coupled with stark
depletion of both T cells and B cells. While all subtypes displayed
noticeable depletion of naive T and B subsets, a pattern consistent
with previous literature in DS53–55, MS3 alone shows total T cell
lymphopenia and the most pronounced B cell lymphopenia. CBC
analysis unequivocally supported the finding of pronounced lym-
phopenia in MS3. These significant immune shifts observed in
MS3, alongside its selective overexpression of HSA21 cluster 2
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genes and its unique inflammatory landscape raise questions
about the interplay between genetic and immune factors in DS.
Given these changes, understanding the relationship between
these immune alterations and other DS-related clinical manifes-
tations will be a key aspect of future research endeavors. The
exact mechanisms underlying the pronounced lymphopenia
observed in MS3, and whether it stems from developmental issues,
active depletion, or a combination of both, needs further
elucidation.

While this study provides insights into the molecular hetero-
geneity of T21, there are some limitations to be considered. First, it is
unclear whether these MS classifications are stable or if they change
over time. This was partly addressed by longitudinal analyses of
cytokine and CBC measurements which showed characteristics of
MS3 are stable over a one-year period. Future investigations could
seek to investigate stability of the multiomics signatures that define
each subtype over longer periods of time. Another limitation is the
lack of a clear relationship between the molecular features of each
subtype and their clinical variables. We observed that the three
subtypes are not significantly different in terms of age, sex dis-
tribution, or BMI, but whether or not they show significant differ-
ences in terms of number and/or severity of core DS phenotypes and
co-occurring conditions will require further investigation and larger
sample sizes. These future investigations would not only enhance
our understanding of how the observed molecular and immune
subtypes influence pathological processes in DS but may also pro-
vide insights toward tailored therapeutic applications for the dif-
ferent T21 subtypes.

In this study, we have established that HSA21 gene over-
expression is not uniformly exhibited across individuals with DS.
This finding challenges a prevailing notion of consistent over-
expression of all HSA21 genes in DS, revealing instead that the extent
of overexpression varies both among different HSA21 genes and
across individuals. This variability, as demonstrated through the
identification of the molecular subtypes, seems to underpin distinct
downstream molecular profiles, provoking intriguing questions
about the nature of T21 pathobiology. It is unclear at this point
whether MS1-3 represent stable and distinct pathophysiological
states versus variations along a continuum. While some of our
findings place MS2 as an intermediate along a spectrum between
MS1 and MS3 (e.g., HSA21 gene cluster 1 expression, plasma amino
acid depletion), it also exhibits unique traits not seen in the other
subtypes (e.g., signatures of inhibited acute phase response). This
intricate scenario underscores the need for deeper exploration,
particularly through integrating clinical outcomes and data on co-
occurring conditions. Future research that links these molecular
differences with clinical manifestations in DS will enhance our
understanding of the diverse pathobiology of DS, paving the way for
personalized care strategies tailored to the unique molecular land-
scape of individuals with DS.

Methods
Study participants
The results and analyses presented herein are part of a nested study
within the Crnic Institute’s Human Trisome Project (HTP) cohort
study. Participants in the HTP were enrolled under a protocol
approved by the Colorado Multiple Institutional Review Board
(COMIRB 15-2170, NCT02864108, see also www.trisome.org). All
study participants, or their legal guardians, provided written
informed consent. In addition to biospecimen collection, a clinical
history for each participant was curated from both medical records
and participant/family reports. Medical records took precedence in
cases of discordance. Biological datasets analyzed in this study were
generated from de-identified biospecimens and linked to demo-
graphic and clinical metadata. All research participants consented
for sharing of their de-identified demographics and clinical
metadata.

Inclusion and ethics
This study included local researchers throughout the entire research
process. This research is relevant both locally and globally. This has
been determined in collaboration with local advocacy organizations
supporting the population with Down syndrome. The roles and
responsibilities of the authors and collaborators were determined
both ahead of research and as needed throughout the process. This
research was not restricted or prohibited in the setting where it was
conducted. Participants were enrolled under a protocol approved by
the Colorado Multiple Institutional Review Board (COMIRB 15-2170,
NCT02864108, see also www.trisome.org). While this research does
not result in stigmatization, incrimination, discrimination, or
otherwise personal risk to participants, all information has been de-
identified to ensure the safety and wellbeing of research partici-
pants. All research activities and experimental procedures were
carried out with strict compliance with all federal, state, local and
University regulations to mitigate any potential risks to the colla-
borators. Biospecimens utilized in this research are available
through the Human Trisome Project Biobank and can be requested
online through www.trisome.org.

Blood sample collection and processing
The biological datasets analyzed herein were derived from periph-
eral blood samples and matched to demographic and clinical
metadata. Peripheral blood was collected using PAXgene RNA Tubes
(Qiagen) and BD Vacutainer K2 EDTA tubes (BD). Whole blood from
PAXgene collection tubes was processed for RNA sequencing as
described below. Samples collected from EDTA tubes were pro-
cessed and used to generate other biological datasets as described.
Two 0.5mL aliquots of whole blood were withdrawn from each tube
and processed for mass cytometry as described below. The
remaining EDTA blood samples were centrifuged at 700 × g for
15min to separate plasma, buffy coat containing white blood cells

Fig. 6 | Plasma metabolomics reveals depletion of amino acids associates
with MS3. a, b Sina plots showing levels of non-essential amino acids (a) and
essential amino acids (b) in MS1 (n = 107, red), MS2 (n = 95, green), and MS3
(n = 102, blue) relative to euploid controls (D21, n = 103, gray). q-values, derived
from linear regressions and adjusted using the Benjamini–Hochberg method, are
displayed above individual data swarms for comparisons to D21 and above lines for
MS3 vs. MS1. Boxes represent interquartile ranges and medians, with notches
approximating 95% confidence intervals. c Heatmap showing median z-scores
relative to euploid controls (D21, n = 103) of all amino acids in metabolome dataset
acrossMS1 (n = 107),MS2 (n = 95), andMS3 (n = 102). Asterisks indicate significance
(q< 0.1) from linear regressions vs. D21 after Benjamini–Hochberg adjustment for
multiple hypotheses. d, e Sina plots showingmRNA expression of enzymes related
to non-essential amino acid biosynthesis (d) and tissue uptake (e) in D21 (n = 103,
gray), MS1 (n = 107, red), MS2 (n = 95, green), MS3 (n = 102, blue). q-values, derived

from DESeq2 and adjusted using the Benjamini–Hochberg method, are displayed
above individual data swarms for comparisons to D21 and above lines for MS3 vs.
MS1. Boxes represent interquartile ranges and medians, with notches approx-
imating 95% confidence intervals. f Volcano plots showing Spearman correlations
between levels of amino acids vs. expression of HSA21 cluster 1 (teal) and HSA21
cluster 2 (orange) genes in individuals with T21 (n = 304). Dashed line indicates
q = 0.1. g Heatmap showing Spearman correlations between cytokine scores and
levels of amino acids. Asterisks indicate significance (q< 0.1) after
Benjamini–Hochbergadjustment formultiple hypotheses.hScatter plots depicting
relationship between cytokine scores vs. asparagine levels in individuals with T21
(n = 304). rho and q-values (Benjamini–Hochberg adjusted p-values) for Spearman
correlation are denoted. Points are colored by density; blue lines represent the
fitted values from linear regressions, with 95% confidence intervals in grey.
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(WBC), and red blood cells (RBCs). Samples were then aliquoted,
flash frozen and stored at −80 °C until subsequent processing and
analysis. Centrifugation and storage of samples took place within 2 h
of collection.

Whole-blood RNA sequencing
RNA was extracted and purified from whole blood collected in PAX-
gene RNA tubes using a PAXgene Blood RNA Kit (PreAnalytiX). RNA
extracts were assessed for quality using a 2200 TapeStation system

(Agilent) and quantified on a Qubit fluorometer (Invitrogen). Globin
RNA depletion was carried out using a GlobinClear kit (ThermoFisher
Scientific). Poly-A( + ) RNA enrichment and strand-specific library
preparation was carried out using NEBNext Poly(A) mRNA Magnetic
Isolation Module, and NEBNext Ultra II Directional RNA Library Prep
Kit for Illumina (New England Biolabs). Paired-end sequencing with a
read length of 150bp was carried out by Novogene Co., Ltd on an
Illumina NovaSeq 6000 instrument. Files were delivered in FASTQ
format.
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SomaScan® plasma proteomics
EDTA plasma (125 µL) was analyzed by SomaScan® using established
protocols56. Briefly, SOMAmer reagents (n = 4500+) bind target pep-
tides in the sample and levels are quantified on custom Agilent
hybridization chips. Normalization and calibration were performed
according to SomaScan Data Standardization and File Specification
Technical Note (SSM-020)56. The output of the SomaScan assay is
reported in relative fluorescent units (RFU).

Profiling of plasma immune markers using Meso Scale
Discovery assays
Analysis of plasma immune markers was performed as previously
described11. Briefly, from each EDTA plasma sample, two replicates of
12–25 µL were analyzed using the Meso Scale Discovery (MSD) multi-
plex immunoassay platformV-PLEXHumanBiomarker 54-Plex Kit (Cat
# K15248D) on a MESO QuickPlex SQ 120 instrument. Assays were
carried out as per the manufacturer’s instructions. Concentration
values were calculated against a standard curve with provided cali-
brators. MSD data are reported as concentration values in picograms
per milliliter of plasma.

Mass cytometry of white blood cells
For mass cytometry, two 0.5mL aliquots of EDTA whole blood sam-
ples underwent red blood cell lysis andwhite blood cellfixation using
Lyse/Fix Buffer (BD Phosflow Lyse/Fix Buffer 5X, BD Biosciences).
White blood cells were then washed 1x in PBS (Rockland), resus-
pended in Cell Staining Buffer (Fluidigm) and stored at −80 °C. For
antibody staining, samples were thawed at room temperature,
washed in Cell Staining Buffer, barcoded using a Cell-ID 20-Plex Pd
Barcoding Kit (Fluidigm), and combined per batch. Each batch was
able to accommodate 19 samples with a common reference sample.
Antibodies were either purchased pre-conjugated to metal isotopes
or conjugation was performed in-house using a Maxpar Antibody
Labeling Kit (Fluidigm). See Supplementary Data 8 for antibody
details. Working dilutions for antibody staining were titrated and
validated using the common reference sample and comparison to
relative frequencies obtained by independent flow cytometry analy-
sis. Surface marker staining was carried out for 30min at 4 °C in
Cell Staining Buffer with added Fc Receptor Binding Inhibitor
(eBioscience/ThermoFisher Scientific). Staining was followed by a
wash in Cell Staining Buffer. Next, cells were permeabilized in Buffer
III (Transcription Factor Phospho Buffer Set, BD Pharmingen) for
20min at 4 °C followed by washing with perm/wash buffer (Tran-
scription Factor Phospho Buffer Set, BD Pharmingen). Intracellular
transcription factor and phospho-epitope staining was carried out
for 1 h at 4 °C in perm/wash buffer (Transcription Factor Phospho
Buffer Set, BD Pharmingen), followed by a wash with Cell Staining
Buffer. Cell-ID Intercalator-Ir (Fluidigm) was used to label barcoded
and stained cells. Labeled cells were analyzed on a Helios instrument

(Fluidigm). Mass cytometry data were exported as v3.0 FCS files for
pre-processing and analysis.

Mass spectrometry-based plasma metabolomics and lipidomics
EDTA plasma samples were thawed on ice and extracted using a
modified Folch method (chloroform/methanol/water 8:4:3) as pre-
viously described11. Briefly, samples (20μL) were diluted in water
(130μL, LC-MS grade), a 2:1 mixture of chloroform/methanol was
added (600μL), and the mixture was vortexed for 10 s. This was fol-
lowed by incubation at 4 °C for 5minutes, a pulse vortex (5 s), then
centrifugation (14,000× g for 10min) at 4 °C. The aqueous (top) and
organic (bottom) phases were transferred to separate tubes for
metabolomic (aqueous) and lipidomic (organic) analysis. Analyses
were carried out using a Vanquish UHPLC coupled online to a Q
Exactive high resolutionmass spectrometer (ThermoFisher Scientific).
As previously described57, using a 5min C18 gradient on a Kinetex C18
column (Phenomenex), samples (10μL per injection) were rando-
mized and analyzed using positive and negative electrospray ioniza-
tion methods in separate runs. Data were analyzed using Maven58, the
KEGG database and an in-house standard library.

Complete blood count assessments
Complete blood count (CBC) measurements were performed using
whole blood samples collected in EDTA tubes. Prior to analysis, sam-
ples were thoroughly mixed to ensure uniformity. A volume of 12 µL
was then processed using an AcT 10 hematology analyzer (Beckman
Coulter). Results are reported as white blood cell count (WBC, 103/μL),
red blood cell count (RBC, 103/μL), hemoglobin (Hgb, g/dL), hemato-
crit (Hct, %), mean corpuscular volume (MCV, fL), mean corpuscular
hemoglobin (MCH, pg), mean corpuscular hemoglobin concentration
(MCHC, g/dL), platelet count (Plt, 103/μL), absolute lymphocyte count
(103/μL) and percentage of lymphocytes (%).

Statistical analyses
Data pre-processing, statistical analysis, and plot generation for all
datasets was carried out using R (R 4.0 +/RStudio 2022.12.0 +/Bio-
conductor 3.16+)59,60 as detailed below. All figures were assembled in
Adobe Illustrator v25.1 with select graphical elements from Biorender.

Data visualization
Comparisons of data distributions between different groups were
shownby sina plots using ggplot2 (v3.4.4) and the geom_sina() function
from the ggforce (v0.4.1) R packages61,62. For sina plots, all points were
jittered horizontally by local density with overlayed boxes represent-
ing medians and interquartile ranges. For comparison of continuous
data, XY scatterplots were generated using ggplot2 (v3.4.4)62. Points
were colored by local density using a custom function. Heatmaps were
generated using the ComplexHeatmap (v2.16.0), tidyheatmap (v1.8.1)
and ConsensusClusterPlus (v1.64.0) R packages.

Fig. 7 | Themolecular subtypes ofDown syndromepresent unique immune cell
landscapes. a Illustration of immune cell differentiation and heatmaps comparing
levels of individual immune cell types in MS1 (n = 98), MS2 (n = 90), MS3 (n = 96).
Values are median z-scores relative to euploid controls (D21, n = 96). Asterisks
indicate significance (q <0.1) from beta regressions vs. D21 after
Benjamini–Hochberg adjustment for multiple hypotheses. b–e Sina plots showing
levels of eosinophils and neutrophils (b), intermediate monocytes and classical
monocytes (c), T cells (d), and B cells (e) in MS1 (n = 98, red), MS2 (n = 90, green),
MS3 (n = 96, blue) compared to euploid controls (D21, n = 90, gray). q-values,
derived from beta regressions and adjusted using the Benjamini–Hochberg
method, are displayed above individual data swarms for comparisons toD21. Boxes
represent interquartile ranges and medians, with notches approximating 95%
confidence intervals. f Scatter plots depicting relationship between neutrophil
levels vs. expression of HSA21 cluster 1 gene (NDUFV3) and HSA21 cluster 2 gene
(PTTG1IP). Points are colored by density; blue lines represent the fitted values from

beta regressions, with 95% confidence intervals in grey. Significance is defined as
q < 0.1 after multiple hypothesis correction using the Benjamini–Hochberg
method. g Heatmap showing levels of complete blood count (CBC) parameters in
MS1 (n = 39), MS2 (n = 19), MS3 (n = 33). Values are median z-scores relative to
euploid controls (D21, n = 70). Asterisks indicate significance (q <0.1) from linear
regressions vs. D21 after Benjamini–Hochberg adjustment formultiple hypotheses.
h Sina plots showing levels for lymphocyte percentage and absolute lymphocytes
in MS1 (n = 39, red), MS2 (n = 19, green), MS3 (n = 33, blue) compared to euploid
controls (D21, n = 70, gray). q-values, derived from linear regressions and adjusted
using the Benjamini–Hochberg method, are displayed above individual data
swarms for comparisons to D21 and above lines for MS3 vs. MS1. Boxes represent
interquartile ranges and medians, with notches approximating 95% confidence
intervals. Panel a created with graphical elements from BioRender.com released
under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Interna-
tional license.
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Fig. 8 | Temporal stability and clinical detection of molecular subtypes of
Down syndrome. a Rank plot showing ranked Spearman correlations of immune
markers between longitudinal visits in individuals with T21 (n= 25). Red indicates
markers altered inMS3.b Scatter plots depicting specific examples from (a). rho and
q-values (Benjamini–Hochberg adjusted p-values) for Spearman correlation are
denoted. Points are colored by density; blue lines represent the fitted values from
linear regressions, with 95% confidence intervals in grey. c Scatter plot depicting
correlation ofMS3 cytokine score between longitudinal visits in individuals with T21.
rho and q-values (Benjamini–Hochberg adjusted p-values) for Spearman correlation
are denoted. Points are coloredbydensity; blue lines represent thefitted values from
linear regressions, with 95% confidence intervals in grey.dRankplot showing ranked
Spearman correlations for CBC parameters between longitudinal visits in individuals
with T21 (n= 31). Red indicates parameters altered in MS3. e Scatter plots depicting
specific correlations from (d). rho and q-values (Benjamini–Hochberg adjusted
p-values) for Spearman correlation are denoted. Points are colored by density; blue

lines represent the fitted values from linear regressions, with 95% confidence inter-
vals in grey. f Sina plots showing ratios for CRP to absolute lymphocytes, IL-6 to
percent lymphocytes, SAA1 to absolute lymphocytes and neutrophils to absolute
lymphocytes in MS1 (n= 107, red), MS2 (n=95, green) and MS3 (n= 102, blue)
compared to euploid controls (D21, n= 96, gray). Units employed when using these
ratios are relative abundance from SomaScan analyses for CRP, IL-6, and SAA1;
percentage among live cells for neutrophils; absolute counts for absolute lympho-
cytes; andpercentage ofWBC for percent lymphocytes. q-values, derived from linear
regressions and adjusted using the Benjamini–Hochberg method, are displayed
above individual data swarms for comparisons to D21 and above lines for MS3 vs.
MS1. Boxes represent interquartile ranges andmedians, with notches approximating
95% confidence intervals. g Table illustrating how ratios shown in (f) can be used to
discern MS3 with varying sensitivity and specificity. Cutoff values are based on 90th
percentile value from euploid controls.
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Ingenuity pathway analysis (IPA)
Results from DESeq2 analysis of whole-blood transcriptomes (RNA-
seq) and linear regressions of plasma proteomics (SomaScan) were
analyzed with the use of QIAGEN IPA (version 01-22-01, QIAGEN Inc.,
https://digitalinsights.qiagen.com/IPA)63. Analysis of both RNA-seq
and SomaScan datasets specified the reference set as ‘User Dataset’
and considered only direct relationships. For RNA-seq, we employed

cutoffs for both expression fold change (−1.5/1.5) and q-value (0.1),
whereas for SomaScan, only a q-value threshold (0.1) was set. Results
were exported and visualized using R and RStudio.

Gene set enrichment analysis (GSEA)
GSEA64 was carried out in R using the fgsea package (v1.14.0)65, using
Hallmark gene sets66 and either log2-transformed fold-changes
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Fig. 9 | Graphical summary of molecular subtypes of Down syndrome.
a Individuals with trisomy 21 (T21) can be grouped into three distinct molecular
subtypes (MS) based on expression of chromosome 21 (HSA21) genes. b HSA21
genes are expressed in two distinct co-expression clusters, HSA21 gene cluster 1
(teal) and 2 (orange). MS1 has the highest expression of HSA21 cluster 1 genes
relative to euploid controls (D21, +++), followedbyMS2 (++), thenMS3 (+).MS3has
the highest expressionofHSA21 cluster 2 genes relative toD21 (+ + +).MS1 andMS2
overexpress HS21 cluster 2 genes at similar levels (+). c The whole blood tran-
scriptomeofMS1 is characterizedby signatures of highcell proliferation, increased
protein translation, and elevated oxidative phosphorylation. MS3 shows the

strongest upregulation of signatures indicative of hyperactive immune and
inflammatory processes. MS2 has dampened signatures of both MS1 and MS3.
d Relative to euploid controls, plasma proteomics signatures of the acute phase
response are not different for MS1, decreased in MS2, and elevated in MS3.
e Relative to euploid controls, all subtypes show depletion of plasma amino acids,
with increasing severity from MS1 to MS3. f All subtypes show elevated basophils
and depleted eosinophils, but only MS3 is distinguished by clear neutrophilia
concurrent with T and B cell lymphopenia. Panels a–f created with BioRender.com
released under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0
International license.
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(for RNA-seq) as previously described11 or Spearman rho values (for
correlations) as the ranking metric.

Spearman correlation and beta regression analysis
Spearman correlation coefficients (rho) and p values were calculated
for all genes in the RNA-seq dataset using the rcorr () function from the
Hmisc package (v5.1.1), with Benjamini–Hochberg adjustment of p
values and an estimated false discovery rate threshold (q) of 0.1. These
correlations were subset to individual matrices comparing HSA21
genes to each other and the global transcriptomes. This method was
also applied to correlations of HSA21 gene expression vs. relative
abundance of plasma SomaScan and MSD analytes and LC-MS
metabolites.

Analysis of whole-blood RNA-seq data
RNA-seq data yield was ~33–103 × 106 raw reads and ~21–69 × 106

final
mapped reads per sample. Data quality was assessed using FASTQC
(v0.11.5) and FastQ Screen (v0.11.0). Trimming and filtering of low-
quality reads was performed using bbduk from BBTools (v37.99)67 and
fastq-mcf from ea-utils (v1.05). Alignment to the human reference
genome (GRCh38) was carried out using HISAT2 (v2.1.0)68 in paired,
spliced-alignment mode against a GRCh38 index and Gencode v33
basic annotation GTF, and alignments were sorted and filtered for
mapping quality (MAPQ> 10) using Samtools (v1.5)69. Gene-level count
data were quantified using HTSeq-count (v0.6.1)70 with the following
options (-stranded=reverse –minaqual=10 –type=exon -mod-
e=intersection-nonempty) using a Gencode v33 GTF annotation file.
Differential gene expression for individual subtypes of T21 versus both
D21 and each other were evaluated using DESeq2 (v1.40.2)71 with
source, sex and age used as covariates. Benjamini–Hochberg adjust-
ment of p values was used to adjust for multiple hypotheses, with
q <0.1 (10% FDR) as the threshold for differential expression. Prior to
visualization, RPKMs were adjusted for age, sex, and sample source
using the removeBatchEffect() function from the limma package
(v3.56.2)72.

Consensus clustering of individuals with DS based on HSA21
gene expression
Clustering of individualswith T21 based onHSA21 gene expressionwas
carried out using the ConsensusClusterPlus() function from the Con-
sensusClusterPlus package (v1.64.0)73. RNA-seq data for HSA21 genes
were adjusted for differences in source, sex and age using the remo-
veBatchEffect() function from the limma package (v3.56.2)72. Adjusted
RPKMsof HSA21 geneswere used to define z-scores among individuals
with T21. Adjusted z-scores were used as inputs with 100-fold sub-
sampling, Spearman as the distance measure, and agglomerative
hierarchical clustering. Examination of the delta area plot and corre-
sponding consensus matrix indicated 3 clusters gave a reasonable
compromise between gains in cluster stability and number of clusters.

Analysis of SomaScan® proteomics data
Normalized data (RFU) in the SomaScan® adat file format was
imported to R using the SomaDataIO R package (v3.1.0). Extreme
outliers were classified per-karyotype and per-analyte as measure-
ments more than three times the interquartile range below or above
the first and third quartiles, respectively (below Q1 – 3*IQR or above
Q3 + 3*IQR) and excluded from further analysis. Differential abun-
dance analysis for SomaScan® proteomics was performed using
linear regression in R with log2-transformed relative abundance as
the outcome/dependent variable, trisomy 21 MS as the predictor/
independent variable, and age, sex, and sample source as covariates.
Fold changes were calculated between eachMS and euploid controls
and against each other. Multiple hypothesis correction was per-
formed with the Benjamini–Hochberg method using a false dis-
covery rate (FDR) threshold of 10% (q < 0.1). Prior to visualization or

correlation analysis, SomaScan® data were adjusted for age, sex, and
sample source using the removeBatchEffect() function from the
limma package (v3.56.2)72.

Analysis of MSD inflammatory marker data
Plasma concentration values (pg/mL) for each of the cytokines and
related immune factors measured across multiple MSD assay plates
were imported to R, combined, and analytes with >10% of values out-
side of detection or fit curve range flagged. For each analyte, missing
valueswere replacedwith either theminimum(if belowfit curve range)
or maximum (if above fit curve range) calculated concentration per
plate/batch andmeans of duplicatewells used for subsequent analysis.
Extreme outliers were classified per-karyotype and per-analyte as
measurements more than three times the interquartile range below or
above the first and third quartiles, respectively, and excluded from
further analysis. Differential abundance analysis for MSD was per-
formed using linear regression in R with log2-transformed concentra-
tion as the outcome/dependent variable, MS as the predictor/
independent variable, and age, sex, and sample source as covariates.
Fold changes were calculated between each MS and euploid controls
and against each other. Multiple hypothesis correction was performed
with the Benjamini–Hochberg method using a false discovery rate
(FDR) threshold of 10% (q < 0.1). Prior to visualization or correlation
analysis, MSDdatawere adjusted for age, sex, and sample sourceusing
the removeBatchEffect() function from the limma package (v3.56.2).

Analysis of mass cytometry data
Pre-processing. Normalization and demultiplexing of mass cyto-
metry data were performed using Matlab (version 9.12). Bead-based
normalization via polystyrene beads embedded with lanthanides,
both within and between batches, followed by bead removal was
carried out as previously described using the Matlab-based Nor-
malizer tool74. Batched FCS files were demultiplexed using the
Matlab-based Single Cell Debarcoder tool75. Reference-based nor-
malization of individual samples across batches against the common
reference sample was then carried out using the R script Batch-
Adjust(). For the analyses described in this manuscript, CellEngine
(CellCarta, version accessed 2022) was used to gate and export per-
sample FCS files at four levels: Firstly, CD3 + CD19+ doublets were
excluded and remaining cells exported as ‘Live’ cells; Live cells were
then gated for hematopoietic lineage (CD45-positive) non-
granulocytic (CD66-low) cells and exported as CD45+CD66low.
Lastly, CD45+CD66low cells were gated on CD3-positivity and CD19-
positivity and exported as T- and B-cells, respectively. Per-sample
FCS files were then subsampled to a maximum of 50,000 events per
file for subsequent analysis.

Unsupervised clustering. For each of the four levels (live, non-
granulocytes, T cells, and B cells), all 388 per-sample FCS files were
imported into R as a flowSet object using the read.flowSet() function
from the flowCore (v2.0.1) R package76. Next, a SingleCellExperiment
object was constructed from the flowSet object using the prepData()
function from the CATALYST (v1.12.2) package77. Arcsinh transfor-
mation was applied to marker expression data with cofactor values
ranging from ~0.2 to ~15 to give optimal separation of positive and
negative populations for each marker, using the estParamFlowVS()
function from the flowVS (v1.34.0) R package78 and based on visual
inspection of marker histograms. Quality control and diagnostic
plots were examined with the help of functions from CATALYST
(v1.12.2) and the tidySingleCellExperiment (v1.3.3) R package.
Unsupervised clustering using the FlowSOM algorithm79 was carried
out using the cluster() function from CATALYST (v1.12.2), with grid
size set to 10 × 10 to give 100 initial clusters and a maxK value of 40
was explored for subsequent meta-clustering using the Consensu-
sClusterPlus (v1.64.0) algorithm. Examination of delta area and
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minimal spanning tree plots indicated that 30–40meta clusters gave
a reasonable compromise between gains in cluster stability and
number of clusters for each level. Each clustering level was re-run
with multiple random seed values to ensure consistent results.

Cell type classification. To aid in assignment of clusters to specific
lineages and cell types, the MEM (v3) package (marker enrichment
modeling) was used to call positive and negative markers for each cell
cluster based on marker expression distributions across clusters.
Manual review and comparison to marker expression histograms, as
well as minimal spanning tree plots and tSNE plots colored by marker
expression, allowed for high-confidence assignment of most clusters
to specific cell types. Clusters that were insufficiently distinguishable
were merged into their nearest cluster based on theminimal spanning
tree. Relative frequencies for each cell type/cluster were calculated for
each sample as a percentage of total live cells and as a percentage of
cells used for each level of clustering: total CD45+CD66low cells, total
T cells, or total B cells.

Beta regression analysis. To identify cell clusters for which relative
frequencies are associated with trisomy 21 status or subtype, beta
regression analysis was carried out using the betareg (v3.1.1-4) R
package, with each model using cell type cluster proportions (relative
frequency) as theoutcome/dependent variable andeither T21 status or
clinical subgroups as independent/predictor variables, along with
adjustment for age and sex, and a logit link function. Extreme outliers
were classified per-karyotype and per-cluster as measurements more
than three times the interquartile range below or above the first and
third quartiles, respectively (below Q1 − 3*IQR or above Q3 + 3*IQR)
and excluded from beta regression analysis. Correction for multiple
comparisons was performed using the Benjamini–Hochberg (FDR)
approach. Effect sizes (as fold-change in T21 vs. euploid controls or
among T21 subgroups) for each cell type cluster were obtained by
exponentiation of beta regression model coefficients. Fold-changes
were visualized by overlaying on tSNE plots using ggplot2. For visua-
lization of individual clusters, data points were adjusted for age and
sex, using the adjust() function from the datawizard (v0.9.0) R pack-
age, and visualized as sina plots.

Analysis of plasma metabolomics and lipidomics data
Peak intensity data from LC-MS of metabolomics and lipidomics was
processed and analyzed using R. Zero values were replaced with ran-
domvalues sampled from0–0.5x theminimumnon-zerovalue for that
metabolite. Data was normalized by applying a scaling factor, which
was calculated by dividing the global median intensity value across all
metabolites by each sample median intensity. Median normalization
was chosen as it is simple to employ, relies on few assumptions, and
performs on-par with more complex normalization techniques.
Extreme outliers were determined on a per-karyotype and per-analyte
basis. Values greater than three times the interquartile range below the
first quartile or above the third quartile were considered outliers and
are omitted from further analysis. Differential abundance of metabo-
lites was assessed through linear regression using log2-transformed
relative abundance as the outcome/dependent variable, trisomy
21 status as the predictor/independent variable, and age, sex, and
sample source as covariates. Multiple hypothesis correction was per-
formed with the Benjamini–Hochberg method using a false discovery
rate (FDR) threshold of 10% (q <0.1). Prior to visualization or correla-
tion analysis, metabolite data were adjusted for age, sex, and sample
source using the removeBatchEffect() function from the limmapackage
(v3.56.2)72.

Analysis of co-occurring conditions
Clinical metadata, including co-occurring conditions and past diag-
noses for individuals with trisomy 21 (T21), were analyzed for

conditions present in at least 10 cases in each MS. The prevalence of
each condition across molecular subtypes (MS) was compared using
Fisher’s exact test for pairwise comparisons to identify differences in
overrepresentation. These analyses utilized the tabyl() and fisher.test()
functions from the janitor package (v2.2.0).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the SupplementaryMaterials. The demographics and
clinical data used in this study have been deposited on the Synapse
data sharing platform under accession code syn31488784. The whole
bloodRNA-seq data used in this study havebeendepositedon Synapse
under accession code syn31488780 and Gene Expression Omnibus
under accession code GSE190125. The MSD plasma proteomics data
used in this study have been deposited on Synapse under accession
code syn31475487. The SomaScan plasmaproteomics data used in this
study have been deposited on Synapse under accession code
syn31488781. The plasma LC-MSmetabolomics data used in this study
have been deposited on Synapse under accession code syn31488782
and Metabolomics Workbench under accession code ST002200. The
immune cell mass cytometry data used in this study have been
deposited on Synapse under accession code syn31488783. The entire
integrated multidimensional dataset used for this study has been
deposited on the Synapse data sharing platform under accession code
syn31481952 and the INCLUDE Data Hub (https://portal.includedcc.
org/). Please note that the INCLUDE Data Hub does not provide URLs
for specific datasets. This is a registered access platform that requires
users to create an account and request access to these data files. All
data used in this study are also provided in Sourcedata files. Databases
used in the generation of these results include KEGG, the Human
Molecular Signatures Database (MSigDB, https://www.gsea-msigdb.
org/gsea/msigdb/collections.jsp), the Genome Reference Consortium
Human Build 38 (GRCh38, https://www.ncbi.nlm.nih.gov/grc/human),
and GENCODE Release 33 annotations (https://www.gencodegenes.
org/human/release_33.html). Biospecimens are available through the
Human Trisome Project Biobank and can be requested online through
www.trisome.org. Source data are provided with this paper.
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