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Oral epithelial dysplasia (OED) is apremalignant histopathological diagnosis given to lesions of theoral
cavity. Its grading suffers from significant inter-/intra-observer variability, and does not reliably predict
malignancy progression, potentially leading to suboptimal treatment decisions. To address this, we
developed an artificial intelligence (AI) algorithm, that assigns anOralMalignant Transformation (OMT)
risk score based on the Haematoxylin and Eosin (H&E) stained whole slide images (WSIs). Our AI
pipeline leverages an in-housesegmentationmodel to detect and segment both nuclei and epithelium.
Subsequently, a shallow neural network utilises interpretable morphological and spatial features,
emulating histological markers, to predict progression.We conducted internal cross-validation on our
development cohort (Sheffield; n = 193 cases) and independent validation on two external cohorts
(Birmingham and Belfast; n = 89 cases). On external validation, the proposed OMTscore achieved an
AUROC = 0.75 (Recall = 0.92) in predicting OED progression, outperforming other grading systems
(Binary: AUROC = 0.72, Recall = 0.85). Survival analyses showed the prognostic value of our
OMTscore (C-index = 0.60, p = 0.02), compared toWHO (C-index = 0.64, p = 0.003) and binary grades
(C-index = 0.65, p < 0.001). Nuclear analyses elucidated the presence of peri-epithelial and intra-
epithelial lymphocytes in highly predictive patches of transforming cases (p < 0.001). This is the first
study to propose a completely automated, explainable, and externally validated algorithm for
predicting OED transformation. Our algorithm shows comparable-to-human-level performance,
offering a promising solution to the challenges of grading OED in routine clinical practice.

Head andneckcancer is among the top tenmost prevalent cancers globally1,
constituting a significant public health challenge. In Europe alone,
approximately 150,000 new cases are reported annually2. These cancers are
often detected at an advanced stage (approximately 60%), resulting in poor
prognosis and a five-year survival rate of only 40%2. With early diagnosis
followed by timely treatment, survival increases to 80-90%2. Therefore, early
detection plays a crucial role in improving patient outcomes.

Oral squamous cell carcinoma (OSCC) is the most common type of
head and neck cancer1, that may arise from an oral potentially malignant

disorder (OPMD) suchas leukoplakia or erythroplakia3. These disorders are
often associated with lifestyle habits such as tobacco smoking, betel quid
chewing, and excessive alcohol consumption, although genetic factors may
also play a role4–6. Following a biopsy and microscopic examination, these
lesionsmaybe given ahistopathological diagnosis of oral epithelial dysplasia
(OED), which carries a higher risk of progressing to OSCC4,7. Histological
atypia inOED typically manifests in the basal layer and progresses upwards
through the epithelial layers. Cytological changes often include changes to
the shape, size, and colour of nuclei/cells, the presence of atypical mitotic
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figures, and increased cellularity3. Architectural changes typically include
irregular epithelial stratification, loss of basal cell polarity, drop-shaped rete
pegs, and loss of epithelial cohesion3.

There are different grading systems to classify OED and inform
treatment decisions. The 2017WorldHealth Organisation (WHO) grading
is a three-tier system for grading cases asmild, moderate, and severe, taking
into accountover 15different features.This systemsplits the epithelium into
thirds, suggesting that architectural/cytological changes confined to the
lower third may be classed as mild, in the middle moderate, and those
progressing towards the upper third as severe8. However, this system
oversimplifies a complex disease process, lacks standardisation, and intro-
duces ambiguity and subjectivity, which could result in an inaccurate
diagnosis with potentially detrimental implications for outcomes. A meta-
analysis conducted by Iocca et al.9, confirmed the greater risk of malignant
transformation in moderate/severe dysplasia cases when compared to mild
cases. An alternate binary grading system, categorising lesions as low- or
high-risk, based on the number of cytological and architectural features,
aimed to improve grade reproducibility8,10. However, studies have shown
significant variability in grading using both systems3, highlighting the need
for a more objective and reproducible method that can better predict
malignant transformation in OED.

The availability of graphical processing units (GPU) and the rise of
convolutional neural networks (CNNs) and deep learning have revolutio-
nised computer vision, including medical imaging11. Computational
pathology is an active area of research that leverages machine learning and
deep learning algorithms for the analysis of histological patterns in multi-
gigapixel whole-slide images (WSIs) to tackle pathology-related tasks12,13.
Deep learning models have become commonplace in laboratories world-
wide, being used for tasks such as segmentation, detection, and
classification14–18. Numerous deep learning algorithms have been applied to
tasks such as tissue and nuclei segmentation inWSIs19–24, as well as making
slide-level predictions for histopathological diagnoses25–27. Multiple studies
have proposed generating slide-level predictions by aggregating patch-level
predictions or features using pooling or attention-based mechanisms28–33.
Efforts are underway to consolidate the diverse deep learning methods
employed in computational pathology, exemplified by initiatives like the
TIAToolbox34.

Several studies have explored the use of artificial intelligence (AI) in
grading and prognostication of OED lesions. Bashir et al.23 used the mean
widths of epithelial layers as a proxy for epithelial stratification, within Ran-
domForests to predict OED grade. Shephard et al.26 achieved varying success
in predicting OED recurrence/transformation using nuclear shape/size fea-
tures in H&E images. Mahmood et al.35 employed pathologist-derived fea-
tures inCoxproportionalhazards regressionmodels topredict recurrenceand
transformation, identifying prognostic features such as bulbous rete pegs,
hyperchromatism, and nuclear pleomorphism. Although manual feature
extraction was required, the study demonstrated the link between OED fea-
tures and clinical outcome. In contrast, Bashir et al.36 used weakly supervised
multiple instance learning and identified peri-epithelial lymphocytes (PELs)
as a prognostic feature for transformation at the WSI-level. However, this
method required manually refined epithelial masks, and its success was not
validatedonexternaldatasets.These studiesdemonstrate thepotential ofAI in
improving OED diagnosis and prognosis but also emphasise the need for
further development and validation of fully automated methods.

In this study, we present an end-to-end, fully automated and
explainable pipeline for predicting OED transformation. We utilise an in-
house multi-task model20 to generate nuclear and intra-epithelial layer
segmentations and extract morphological/spatial features. These features
are then fed into a multi-layer perceptron (MLP) to predict slide-level
malignant transformation of OED. Our contributions to the scientific
community include:
1. Introduction of our pipeline’s automatically generated OMTscore, to

improve diagnosticOEDgrading. External validation of theOMTscore
was conducted on independent cohorts from Birmingham and
Belfast, UK.

2. Presentation of a newly trained HoVer-Net+, a state-of-the-art model
capable of simultaneous segmentation and classification of nuclear
instances and intra-epithelial layers. We have released the model code
and weights as part of the TIAToolbox34, along with an example
notebook (https://github.com/TissueImageAnalytics/tiatoolbox/blob/
develop/examples/09-multi-task-segmentation.ipynb).

3. Demonstrated the capability of our OMTscore when compared to
conventional histological grading in predicting malignancy transfor-
mation. Our code for model inference is publicly accessible at: https://
github.com/adamshephard/OMTscoring_inference.

Results
To predict the OED risk score (OMTscore), we implemented a multi-step
pipeline (see Fig. 1). First, we trained an in-house deep learning model for
the segmentation of both intra-epithelial layers andnuclei.We thenused the
trained model to produce segmentations for all slides in our cohorts. Fol-
lowing this, we tessellated each slide into tiles and generated tile-level
morphological features (based on these nuclear segmentations) for tiles
within the epithelium. Finally, these tile-level features were used within an
MLP to predict whether the case transformed to malignancy (our
OMTscore).

Layer and nuclei segmentation
The first stage of our model pipeline involved generating both nuclear and
epithelium segmentation masks for all WSIs in our internal and external
cohorts.We perform this task simultaneously withHoVer-Net+20, a multi-
task model that takes input H&E-stained images and produces nuclear
instance segmentations (and classifications) and intra-epithelial layer seg-
mentation maps. We trained and evaluated our model’s segmentation
performance based on the internal Sheffield dataset alone. For an overview
of the model performance for semantic segmentation and nuclear seg-
mentation/classification, see Table 1. For a visual comparison between
HoVer-Net+ results and ground-truth annotations, refer to Supplementary
Fig. 2.Overall,wedeemed these results satisfactory and thusused the trained
HoVer-Net+model for inference on cases from both internal and external
cohorts.

Slide-level transformation prediction
After segmentation, each WSI was tessellated into smaller 512 × 512 tiles
(20× magnification, 0.50 microns per pixel, mpp), and tile-level features
were generated, based on the HoVer-Net+ nuclear segmentations. For
slide-level prediction, anMLPwas trainedusing the iterativedraw-and-rank
method introduced by Bilal et al.29 with our tile-level features. We call the
output of our MLP model, the OMTscore.

In this section, we show the performance of our model, trained with
patch-level morphological/spatial features, both quantitively, when com-
pared to the pathologist grades (see Table 2) and qualitatively (see Fig. 3 for
heatmaps, and Fig. 4 for Venn diagrams). On internal validation, ourmodel
attained competitive results with an AUROC of 0.77, outperforming both
theWHOgrade (AUROC= 0.68) and thebinary grade (AUROC= 0.71). In
total, ourOMTscorehad48 truepositives (TPs), 148 truenegatives (TNs), 65
false positives (FPs), and 9 false negatives (FNs). In contrast, the binary
grading systemresulted in40TPs, 152TNs, 61FPs, and17FNs. For external
validation on the Birmingham-Belfast cohort (see Table 3), our model
achieved superior results in terms of AUROC and recall (AUROC= 0.75,
Recall = 0.92) compared to both the WHO and binary grades. Our OMT-
score had a total of 37 TPs, 20 TNs, 29 FPs, and 3 FNs, whilst the binary
grading systemhad 34 TPs, 29 TNs, 20 FPs, and 6 FNs. The ROC curves for
our proposed model are shown in Fig. 2a.

The heatmaps produced by ourmodel were inspected by a pathologist
(SAK). They revealed prognostic areas with obvious or high grades of
dysplasia, and a significant presence of immune cells within and around the
epithelium.An example heatmap of amildOEDcase is shown in Fig. 3 (top
left), which was correctly predicted by our model to transform. Further
examination of the hotspots indicated a focus on dysplastic areas with a
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prominent lymphocytic infiltrate within the epithelium and peri-epithelial
lymphocytes.WealsoprovideVenndiagrams showing theoverlapof binary
grade and OMTscore patient stratifications on internal and external vali-
dation in Fig. 4. It is clear that both our pipeline and binary grades are
frequently predicting the same slides as high-risk, having a high overlap, but
with the OMTscore being more sensitive than the binary grade.

Survival analyses
We further conducted survival analyses to determine the prognostic utility
of our OMTscore when compared to the pathologist-assigned grading sys-
tems. See Fig. 2b for the Kaplan-Meier (KM) curves for the OMTscore and
binary/WHOgrades on the internal cohort. TheOMTscore demonstrated a
clear separation between the low- and high-risk cases, with strong con-
cordance, (C-index = 0.74, p < 0.001) outperforming the binary grade (C-
index = 0.69, p < 0.001) andWHOgrade (C-index = 0.69). Results from the
Cox proportional hazard model (see Table 4) showed that both the OMT-
score (p < 0.001, HR = 8.48 [3.06, 21.30]) and binary grade (p < 0.005,
HR = 3.96 [1.45, 11.10]) were statistically significant. The WHO grade
(p = 1.00, HR = 1.06 [0.57, 2.04]) was not significant. The OMTscore
exhibited the highest hazard ratio (HR), indicating better prognostic utility.
No other clinical variables were found to be significant.

For external validation, KM survival curves were presented for the
Birmingham-Belfast cohort (Fig. 2b). The OMTscore exhibited statistically
significant differences in KM curves (p = 0.02) according to a log-rank test.
TheOMTscore also achieved a comparable C-index of 0.60 compared to the
WHO grade’s C-index of 0.64 (p = 0.003) and the binary grade of 0.65
(p < 0.001). Results from the multivariate Cox PH models (see Table 4)
showed no variables to be statistically significant. However, both the binary
grade (p = 0.14, HR = 2.64 [0.70, 8.83]), andOMTscore (p = 0.32, HR = 3.01
[0.71, 20.62]), had high hazard ratios, highlighting their prognostic utility
over the other clinical variables.

Feature analyses
In order to determine the most important features used by the model for
predicting malignant transformation, we performed several analyses. First,
we compare the cellular composition and morphology of the most pre-
dictive patches in correctly predicted cases. Second, we looked at the feature
importance for the 168 morphological/spatial features, based on a Random
Forest classifier (see Supplementary Material pp 5). Third, we study partial
dependency probability plots (PDPs), to determine the effect each feature
has on the predicted outcome in isolation. Together, these analyses give
more explainability to the models predictions.

Fig. 1 | Proposed pipeline for generating theOMTscore for predicting malignant
transformation. aOverview of the data used in our experiments from three different
centres. This includes Sheffield data for internal training/validation, and Birming-
ham and Belfast data for external validation. b Summary of the model pipeline for

generating an OMTscore. The model first uses a newly trained HoVer-Net+ to
generate nuclear and layer segmentations. Next, patch-level morphological/spatial
features are generated, and used within a trained MLP for predicting malignant
transformation (i.e. the OMTscore).
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We analysed the most important features used by our model, in terms
of cellular composition and morphology, by comparing the top five pre-
dictive patches in true positive cases to the top predicted patches in true
negative cases on both internal and external validation cases (see Supple-
mentary Fig. 4 for a random selection of patches and Supplementary
Material pp 5 for the internal validation results). On external validation,
patch-level nuclear counts revealed higher cellularity in true positive (TP)
patches compared to true negatives (TNs) (Cohen’s d = 0.35, p < 0.001; see
Fig. 3, Cellular Composition: Entire Patch), primarily driven by “other”
nuclei in TPs (d = 1.30, p < 0.001). In contrast, there were more epithelial
cells in TNs (labelled as “All Epith” in Fig. 3; d = 0.78, p < 0.001). When
focussing on the nuclear counts within the epithelial region of the patch
alone (Fig. 3, Cellular Composition: Epithelium), significant differences
were found in the number of “other” nuclei within the epithelium (d = 1.16,
p < 0.001). Additionally, there were more epithelial nuclei within the epi-
thelial layer in TNs (d = 0.91, p < 0.001), while slightly more (but not sig-
nificantly) basal epithelial nucleiwere observed inTPs (d = 0.11,p = 0.13).A
significant difference was also found in the number of keratin nuclei
between classes (d = 0.47, p < 0.001). Lastly, Fig. 3 (Cellular Composition:

Connective Tissue) illustrates a larger number of “other” nuclei within the
connective tissue of TPs compared to TNs (d = 1.00, p < 0.001).

When analysing the distributions of tissue types (or morphology)
within patches (Fig. 3,Morphology: Entire Patch), we found that TPpatches
had a higher ratio of connective tissue (presumed from “other” tissue)
compared to TNs (d = 1.66, p < 0.001). This is consistent with the prior
nuclear analysis showing more “other” nuclei in TP patches. Additionally,
TP patches often had more basal tissue (d = 0.72, p < 0.001), but less epi-
thelial tissue (d = 0.45, p < 0.001), compared to TNs. Interestingly, TNs had
significantlymore surface keratin compared toTPs (d = 0.52,p < 0.001). TN
patches primarily contained the epithelium,whereas TP patches specifically
were restricted to the basal layer and connective tissue.

We produced PDPs for all features based on the entire external test set
for theMLPmodel producing theOMTscore. PDPsgive an indication of the
importance of each individual feature in predicting transformation, with
positive gradients giving a positive association. We give nine of the features
that appeared to have the largest gradients in Fig. 5. Within the top row,
these plots show clear positive associations between largermaximummajor
axis lengths, convex and contour areas in “other” nuclei, and malignant
transformation.We see in themiddle row the positive relationship between
themaximum area (bounding box and convex area) of epithelial nuclei and
variance in major axis length in epithelial nuclei, and malignant transfor-
mation. Finally, in the bottom row, we see a positive correlation between
higher amounts of “other” nuclei surrounding epithelial nuclei. Results for
internal validation can be seen in the Supplementary Material (pp 6).

Discussion
We introduced the OMTscore, a risk score that incorporates interpretable
morphological and spatial features for predictingOED transformation.Our
approach involved first introducing a new model for simultaneous seg-
mentation of intra-epithelial layers and nuclei in H&E WSIs. We then
generatedpatch-levelmorphological/spatial features, resembling cytological
features used by pathologists for OED grading (e.g. anisonucleosis, nuclear
pleomorphism). These features were fed into a shallow neural network,
yielding high predictive performance for OED transformation.

Overall, our OMTscore achieved comparable performance to
pathologist-assigned grades on external validation. Notably, the OMTscore
attained a higher AUROC and sensitivity than the binary grading system,
although this camewith a higher false alarm rate. In contrast, theWHOand
binary grades gained slightly higher C-indexes. Despite this, ourOMTscore
still effectively distinguished between low- and high-risk cases. In relation to
the multivariate Cox models, both the OMTscore and binary grade
demonstrated prognostic significance on internal validation. However,
external validation did not identify any statistically significant variables,
likely influenced by the lower sample size. Nevertheless, both the binary
grade and OMTscore had high hazard ratios, underlining their potential as
strong prognostic indicators. These findings highlight the prognostic utility
of ourOMTscore, with its enhanced sensitivity aiding in the early detection
of high-risk lesions. This has important implications for patient care,
potentially enabling more timely interventions and reducing the risk of
cancer development.

Table 2 | Slide-level mean (standard deviation) results for
transformation prediction on internal validation

Sheffield (n = 270)

Model F1-score Recall Fall-out AUROC

OMTscore 0.57 (0.08) 0.84 (0.07) 0.30 (0.12) 0.77 (0.08)

Binary Grade 0.51 (0.08) 0.70 (0.09) 0.28 (0.07) 0.71 (0.06)

WHO Grade G1 0.46 (0.08) 0.94 (0.07) 0.59 (0.07) 0.68 (0.05)

WHO Grade G2 0.34 (0.16) 0.41 (0.19) 0.24 (0.08) 0.58 (0.11)

WHOGradeG1 ismild vsmoderate/severe cases,whilstWHOGradeG2 ismild/moderate vs severe
cases. Best model/scores are given in bold.

Table 1 | Performance metrics for HoVer-Net+ on internal
testing

Semantic
Segmentation, F1

Nuclear
Segmentation

Nuclear
Classification, F1c

Background 0.88 Dice 0.69 Other 0.72

Other Tissue 0.84 AJI 0.62 Basal
Epithelium

0.61

Basal
Epithelium

0.74 DQ 0.74 Epithelium 0.66

Epithelium 0.87 SQ 0.69 Mean 0.66

Keratin 0.81 PQ 0.51

Mean 0.83 F1d 0.82

The provided Dice score is for nuclei vs background. AJI Aggregated Jaccard Index, DQ Detection
Quality, SQ Segmentation Quality, PQ Panoptic Quality, F1d F1-score for detection over all nuclear
types, F1c F1-score for classification.

Table 3 | Slide-level mean (standard deviation) results for transformation prediction on external validation

Birmingham (n = 47) Belfast (n = 42) Combined (n = 89)

Model F1-score Recall Fall-
out

AUROC F1-
score

Recall Fall-
out

AUROC F1-score Recall Fall-
out

AUROC

OMTscore 0.44 (0.01) 0.87 (0.06) 0.57
(0.07)

0.73 (0.01) 0.84
(0.02)

0.93 (0.03) 0.69
(0.05)

0.71 (0.03) 0.69 (0.01) 0.92 (0.04) 0.60
(0.06)

0.75 (0.01)

Binary Grade 0.55 0.80 0.30 0.75 0.80 0.87 0.75 0.56 0.72 0.85 0.41 0.72

WHO Grade G1 0.55 0.90 0.38 0.76 0.79 0.87 0.83 0.52 0.71 0.88 0.49 0.69

WHO Grade G2 0.40 0.30 0.05 0.63 0.39 0.27 0.25 0.51 0.39 0.28 0.10 0.69

WHO Grade G1 is mild vs moderate/severe cases, whilst WHO Grade G2 is mild/moderate vs. severe cases. Best model/scores are given in bold.

https://doi.org/10.1038/s41698-024-00624-8 Article

npj Precision Oncology |           (2024) 8:137 4



Fig. 2 | ROC plots and Kaplan-Meier survival curves for the OMTscore and
pathologist grades. a ROC plots for predicting malignant transformation with
internal validation on Sheffield (left), and external validation on the Birmingham-
Belfast datasets by our algorithm (right). b Kaplan-Meier transformation-free sur-
vival curves based on the internal validation (left) and the external validation set

(right) for the predictions from theWHO2017 grade (top),WHOgradeG1 (mild vs.
moderate/severe), the binary grade and the OMTscore (bottom). Confidence
intervals supplied for the OMTscore output AUROC/Kaplan-Meier curves are
generated by the standard deviation of the model output over repeated runs of the
experiment.
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Fig. 3 | Feature analysis pipeline and results. An example mild OED case with our
algorithm prediction heatmap overlaid (left), where our algorithm correctly pre-
dicted the case to transform tomalignancy. On the right is an examplemild case that
our algorithm correctly predicted would not transform. The diagram shows how the
top predicted patches from true positive (TP) cases (left), and the top predicted
patches from the true negative (TN) cases (right), are taken and morphology and
cellular composition features are found (based on the HoVer-Net+ segmentations).
This was performed over the entire Sheffield cohort and t-tests (with FDR

correction) were used to determine any differences. The bottom of the image has
boxplots showing the distribution of nuclear counts (cellular composition) within
the entire patch, the epithelium alone, and the connective tissue alone, of the top five
predicted patches from true positive (TP) cases, and the top five patches from true
negatives (TNs). We additionally give boxplots showing the distribution of area
ratios (morphology) within the top five predicted patches from TPs, and the top five
patches from TNs.
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Ourmodel generalisedwell to newdomains on external validation, but
despite this, therewas a drop in performance.We offer two explanations for
this. First, the external dataset exhibited drastically lower survival rates (see
Supplementary Fig. 10) compared to the Sheffield dataset, reflecting the
clinical reality and underscoring the complexity of the problem. Second, we
suggest that this drop may be partially attributed to HoVer-Net+’s limited
generalisability to unseen domains. Visual inspection revealed unsatisfac-
tory segmentations in a small subset of cases within the external cohort,
which, when excluded, led to improved model performance in terms of
AUROC (see Supplementary Material pp 6). This suggests that the per-
formance decrease may not solely reflect the quality of the proposed
transformation prediction pipeline, but rather indicate a need for further
enhancing HoVer-Net+ ’s generalisability.

We additionally acknowledge the variations in OMTscore’s perfor-
mance across external cohorts. While our model outperforms grading
systems on the Belfast cohort, it shows comparable AUROC but lower F1-
scores on the Birmingham cohort. This has also resulted in our model
achieving substantially higherAUROC scores on theBelfast cohort than the
Birmingham cohort, but much lower F1-scores. This disparity can be
attributed to our model’s high sensitivity, combined with the Birmingham
cohort having fewer cases that transformed to malignancy (n = 10) when
compared to Belfast (n = 30). This variation in the number of events is a

clear indication of a type II prior (domain) shift between external cohorts37,
and is the clinical reality of retrospective data. However, these individual
cohorts are relatively small, and so we argue that evaluating ourmodel (and
grading systems) across both cohorts combined provides a more compre-
hensive understanding.We also add that when we performed an additional
quality control step to find poorly segmented cases (see the Supplementary
Material pp 6), allwere in theBirminghamcohort. This further supports our
hypothesis that HoVer-Net+ may not generalise as effectively to external
data, contributing to the drop in prediction performance. Overall, our
model achieved higher AUROC and recall across both cohorts combined,
demonstrating strong prognostic utility.

Our model’s utilization of domain-agnostic morphological/spatial
features contributed to its generally robust performance on external cohorts,
whilst enhancing interpretability. Thus, the inclusion of PDPs and Random
Forest analyses provided valuable insights into the behaviour of morpho-
logical and spatial features during external validation.While PDPs revealed
consistent patterns between internal (see SupplementaryMaterial pp 6) and
external validation, RF analyses (see SupplementaryMaterial pp 5) unveiled
differences in feature importance. Notably, spatial features were found to be
most prominent in internal validation, whereas a combination of mor-
phological/spatial features proved most important in external validation.
This discrepancy prompts a critical examination of nuclear classification
robustness on the external test set. Within Supplementary Fig. 3, we show
that nuclear classification is visibly poorer in some cases on external vali-
dation. Thus, the potential reliance on spatial features for discriminating
between nuclear types may have contributed to less accurate signals for the
model, possibly influencing the observed performance drop. This therefore
again suggests that futurework should aim to improve the generalisability of
HoVer-Net+ .

The feature analyses revealed that non-transforming cases exhibit
more epithelial cells, while transforming cases exhibited higher counts of
basal epithelial cells, and “other” nuclei in both connective tissue and the
epithelium. The PDP analyses further supported this, indicating that the
density of “other” nuclei surrounding epithelial nuclei was positively asso-
ciated with malignant transformation. These findings are consistent with
previous studies noting increased immune cell infiltration in oral lesions
progressing to OSCC38, and recognising distinct immune-related subtypes
inmoderate/severeOED39.Given that the epithelium typically only contains
epithelial nuclei or intra-epithelial lymphocytes (IELs), we suggest that these
“other” nuclei within the epithelium are IELs.We additionally posit that the
elevated density of “other” nuclei in the connective tissue likely represents
peri-epithelial lymphocytes (PELs). This is further supported by thework of
Bashir et al.36, who showed a higher density of PELs in cases that exhibited
malignant transformation. Together, these results suggest that an increased
density of IELs and PELs may signify a predisposition for the lesion to
progress to cancer. This is intriguing, given that in oral cancer, a higher
density of immune cells typically signifies a robust immune response and
better outcomes. This finding calls for thorough exploration, emphasizing
the crucial need to understand immune mechanisms in OED and identify

Table 4 | Multivariate Cox Proportional Hazard Model output for malignant transformation based on the OMTscore and other
clinical variables

Internal Validation – Sheffield (n = 270) External Validation – Combined (n = 89)

p HR Lower 95% HR Upper 95% HR p HR Lower 95% HR Upper 95% HR

OMTscore <0.001 8.48 3.87 21.30 0.32 3.01 0.71 20.62

Binary Grade <0.001 3.96 1.45 11.10 0.14 2.64 0.70 8.84

WHO Grade 1.00 1.06 0.57 2.04 0.96 1.27 0.64 2.50

Age 0.54 1.01 0.98 1.03 1.00 1.00 0.97 1.02

Sex 0.60 1.34 0.71 2.51 0.81 1.29 0.61 2.62

Site 0.36 1.19 0.85 1.67 0.07 1.59 1.03 2.55

Best model/scores are given in bold.

Fig. 4 | Venn diagrams comparing model predictions to the Binary grading
system. aThe producedVenn diagrams show the overlap in predictions between the
OMTscore and binary grading system on an internal and b external validation.
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specific cell profiles linked to malignant transformation. Such insights may
facilitate the development of more targeted treatments, including exploring
the potential role of immunotherapy in managing high-risk lesions. This
approach holds particular promise for patients unsuitable for surgery,
emphasizing the significance of advancing our understanding of immune
dynamics in OED for improved therapeutic interventions.

While our study represents one of the first endeavours to predict OED
malignant transformation, which has been validated on multiple external
cohorts, it carries several limitations. This may be the largest known OED
dataset with clinical outcomes for computational pathology, yet the sample
size is still relatively small,with the trainingdata sourced froma single centre
(albeit using two scanners), and annotated by a sole pathologist. Addi-
tionally, the retrospective nature of our study poses inherent constraints.
Future research should therefore expand on both themethods and findings
of this work, whilst evaluating the utility of the OMTscore on an inter-
nationally acquired, multi-centric, and prospectively collected dataset, with

multiple independent annotators, to ensure unbiased testing. Furthermore,
exploring additional pathologist-derived patch-level cytological features,
such as hyperchromatism and mitoses, could enhance the predictive cap-
ability of our model. In the Supplementary Material (pp 6), we provide
insights into the potential importance of monitoring mitosis using pub-
lished detection methods40,41. Architectural changes, such as irregular epi-
thelial stratification and drop-shaped rete pegs, also warrant further
exploration35. Finally, our feature analysis mainly focussed on true positive
and true negative patches, driven by our goal to evaluate the model’s per-
formance in correctly identifying transforming cases. However, we suggest
future work should also examine false positives and false negatives to
identify features contributing to incorrect model predictions and guide
further optimization efforts.

In summary, our study has introduced an automated pipeline for
predicting OED transformation using a state-of-the-art deep learning fra-
mework and patch-level morphological/spatial features. Our results

Fig. 5 | Partial dependency plots for theOMTscore on external validation. Partial
Dependency Probability Plots are given for the OMTscore based on the entire
external validation data. Here, “epithelial” nuclei are labelled as [1] and “other”

nuclei are labelled as [0]. Distances are given inmicrons. The confidence intervals are
based on the standard deviation across the three repeats of external validation
experiments.
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demonstrate the strong prognostic significance and generalisability of our
model compared to manual grades on internal and external cohorts. This
has significant clinical implications for patient management, offering a
potentiallymore accurate and objective predictionmethod.Our study paves
the way for future research and the potential to enhance patient outcomes
through early detection and intervention. However, further investigations
are required to identify additional slide-level features and validate themodel
on larger external cohorts with longer follow-up periods.

Methods
Study data
The study cohort used for trainingourmodels consistedof subjects collected
retrospectively between 2008 and 2016 from the Oral and Maxillofacial
Pathology archive at the School ofClinicalDentistry,Universityof Sheffield,
UK. Sections were newly cut (4 µm thickness) and H&E stained from
formalin-fixed paraffin embedded blocks.

In total, 244 cases were assessed for eligibility. This comprised of
321 slides with a histological diagnosis of OED, scanned using either a
Hamamatsu NanoZoomer 360 (Hamamatsu Photonics, Japan) or an
Aperio CS2 (Leica Biosystems, Germany) digital slide scanner at 40×
objective power (0.2258mpp and 0.2520mpp, respectively) to obtain digital
WSIs. Of these 244 cases, only 202 cases met the study inclusion criteria
(279 slides; see the Supplementary Materials pp 2 for inclusion criteria).
Further, clinical information including patient age, sex, intraoral site, OED
grade (binary andWHO2017), and transformation status, was available for
just 193 cases (270 slides). The case transformation information was gath-
ered from multiple sources, primarily patient clinical systems. The evalua-
tion involved a thorough assessment of patient records and the diagnostic
database, which included both electronic and physical files (by a clinician,
HM). Specifically, transformation was defined as the progression of a dys-
plastic lesion to OSCC at the same clinical site within the follow-up period.
Multiple certified/consultant pathologists independently evaluated the cases
when initially reported using the WHO grading system (PMS, PMF, DJB,
KDH), to ensure diagnostic consistency. Blind re-evaluationwas performed
by an Oral & Maxillofacial Pathologist (SAK) and an Oral Surgeon spe-
cialising in OED analysis (HM), to confirm the WHO (2017) grade and
assign binary grades. In total, the cohort included 193 unique OED patients
(270 slides) with 42 patients (57 slides) exhibiting malignant transforma-
tion. Slides from the same patients were consistently assigned to the same
fold during training/internal cross-validation. A summary of the cohort is
provided in Supplementary Table 1, and a CONSORTdiagram is also given
in Supplementary Fig. 1.

For training our segmentation models, one expert pathologist (SAK)
exhaustivelymanually delineated the intra-epithelial layers (basal, epithelial,
and superior keratin layers) in 59 OED cases, in addition to nine controls
(collected with the Aperio CS2 scanner as per the above protocols), using
our in-house WASABI software (a customised version of HistomicsTK42).
We then generated tissue masks for each of the segmented WSIs via Otsu
thresholding and the removal of small objects andholes in the segmentation
mask.A layermaskwas then generated for eachWSIby combining the layer
segmentations with the tissue mask.

Themanual segmentationof individual nucleiwithinWSIs is laborious
and subject to inter/intra-rater variability. Thus, nuclear instance masks
were generated for a small subset of cases, 30 regions of interest (oneROIper
case), where a pathologist (SAK) annotated each nucleus as either epithelial
or “other”. The point annotations were usedwithin theNuClick framework
to generate nuclear boundaries21. NuClick is a deep learning framework that
takes a raw image and a guiding signal “click” as an input and then produces
a nuclear instance boundary as an output. Thismethodhas been found to be
superior to fully automated approaches for generating nuclear instance
segmentations, particularly in the cases of touching/overlappingnuclei21. To
ensure that all nuclear segmentations were of a high quality, themasks were
thenmanually refined when found to be visibly incorrect. A total of 71,757
labelled nuclei segmentationswere obtained across the 30 ROIs, whichwere
used to train our segmentation models.

For external validation, OED cases from two independent centres,
Birmingham and Belfast, were recruited. A total of 47 OED patients’ data
were collected from Belfast and 71 OED cases were collected from Bir-
mingham.TheBirminghamandBelfast slideswere scannedat 40×objective
power using a Pannoramic 250 (3DHISTECH Ltd., Hungary; 0.1394 mpp)
and an Aperio AT2 (Leica Biosystems, Germany; 0.2529 mpp) scanner,
respectively. On receipt of cases, all cases were blindly re-evaluated by SAK
to confirm histological grade (WHO 2017 and binary) and ensure the
inclusion criteria were met. They additionally had time to transformation
data. The combined Birmingham-Belfast external validation cohort con-
sisted of 118 uniqueOED cases, however, of these cases, 29 did notmeet the
study criteria. This resulted in 89 OED cases (89 slides), with 40 cases
transitioning to malignancy. A summary of this cohort is provided in
Supplementary Table 1, and a CONSORT diagram is also given (see Sup-
plementary Fig. 1).

Analytical workflow overview
To predict the OED risk score, we implemented a multi-step pipeline (see
Fig. 1). First, a deep learningmodelwas trained toautomatically segment the
epithelium and nuclei. This model was then used for inference on all slides.
For the downstream analysis, the slides were tessellated into smaller tiles,
and tile-level features were generated based on the nuclear segmentations
(in tiles with ≥50% epithelium). These features were used to train a shallow
neural network for slide-level prediction. The algorithm was internally
validated on the Sheffield cohort, and subsequently validated on the external
cohort, consisting of cases from two independent centres.

Layer and nuclear segmentation
To generate layer and nuclear segmentation for eachWSI in our cohort, we
trained/tested HoVer-Net+ on the internal Sheffield cohort, using the
ground-truth annotations.HoVer-Net+ is an encoder-decoder-basedCNN
that simultaneously segments and classifies nuclear instances, and seman-
tically segments the epithelial layers20. We used this model to semantically
segment the intra-epithelial layers (e.g. basal, epithelial, and keratin) and
other tissue (e.g. connective tissue), whilst also segmenting and classifying
nuclear instances as epithelial or “other”nuclei. Here, “other” nuclei are any
form of nuclei that are not epithelial nuclei, (i.e. connective/inflammatory).
We trained HoVer-Net+ using a multi-stage approach, based on the layer
segmentations of 56 cases/controls and the nuclear segmentation masks of
24 cases/controls. Themodelwas thentestedon the layer segmentationof 12
cases/controls and the nuclear segmentations of 6 cases/controls. HoVer-
Net+ takes 256×256 patches at 20× magnification (0.50 mpp), and pro-
duces nuclear instance segmentation/classification maps, and semantic
segmentations of the epithelial layers. Note, that a small patch size of 256 (at
20×) is necessary for accurate nuclear segmentation. The training involved
two phases, with the decoder branches trained for 20 epochs in phase one,
and all branches trained for 30 epochs in phase two. A batch size of 8 and 4
on each GPU was used across these phases, respectively. The Adam opti-
miser was used with a learning rate that decayed initially from 10-4 to 10-5

after 10 epochs in each phase. Data augmentations such as flip, rotation,
blur, and colour perturbation were applied during training. We also tested
the effect of stain augmentation using the TIAToolbox34 implementation of
the Macenko method43 that has been shown to effectively counter scanner-
induced domain-shifts to make our model more generalisable40,44. For
detailed information on model training, please refer to the Supplementary
Material (pp 3-4). Following model training, we used HoVer-Net+ for
inference on all slides from both the internal and external cohorts.

Slide-level transformation prediction
After segmentation, each WSI was tessellated into smaller 512 × 512 tiles
(20× magnification, 0.50 mpp) with 50% overlap. We used this tile size to
ensure that each tile contained enough information for the prediction task,
in linewithprevious studies29,36.We then generated tile-level features for use
in aweakly supervisedmodel for transformationprediction. For each tile,we
calculated 104 morphological and 64 spatial features. The morphological
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features were obtained from 13 shape features for each nucleus in a tile
(eccentricity, convex area, contour area, extent, perimeter, solidity, orien-
tation, radius, major/minor axis, equivalent diameter, bounding box area/
aspect ratio) with four tile-level statistics (mean, minimum, maximum,
standard deviation) per nuclear type (epithelial and other). This resulted in
104 morphological features per tile. We computed the number of different
nuclear types within a small radius of a nuclear instance, resulting in four
counts per tile (number of epithelial nuclei around another nucleus, number
of epithelial nuclei around epithelial nuclei, number of other nuclei around
epithelial nuclei, andfinally the number of other nuclei around othernuclei)
over four varying radii (100, 200, 300 and 400 pixel radii). Finally, we took
tile-level summary statistics (mean, minimum, maximum, standard
deviation) across these 16 features, resulting in 64 spatial features per tile.
We chose to use these 168 morphological/spatial features in preference to
“deep” features output by CNNs, such as in traditional prediction
tasks25,29,31,33, to offer transparency and explainability to the model inputs.

For slide-level prediction, a MLP was trained using the iterative draw-
and-rank (IDaRS) method introduced by Bilal et al.29 leveraging our tile-
level features. The output of our MLP is referred to as the OMTscore. The
MLP architecture consisted of three layers with 168 nodes in the input layer,
64nodes in thehidden layer, and2nodes in the output layer.Weemployed a
leakyReLUactivation function anddropout (0.2) after thehidden layer. The
MLPmodelswere trainedwith a symmetric cross-entropy loss function and
the Adam optimiser. This loss function was chosen as it has been shown
previously to help overcome errors associated with weak labels29,45. IDaRS
sampling was performed with parameter values of k = 5 for the top pre-
dictive patches and r = 45 random patches, using a batch size of 256. The
models underwent training for 100 epochs andwere evaluated through five-
fold cross-validation (repeated 3 times, with random seeds) for internal
validation. To generate slide-level predictions we calculated the average
probability over each tile in a slide to predict transformation. This method
demonstrated optimal performance during internal cross-validation. A
threshold was determined based on the internal cross-validation and
applied to external validation. External validation involved combining the
entire Sheffield cohort as a discovery cohort for model training, with vali-
dation performed on the combined Birmingham-Belfast cohort (repeated 3
times, with random seeds). It’s important to note that the use of the IDaRS
sampling method ensures robust predictions. By drawing from both ran-
domand informative (from the previous iteration) tiles, themodel is trained
to achieve discrimination between different tiles, even in the presence of
imbalanced data. This methodology aims to prevent slide-level predictions
from being hindered by small numbers of positive tiles.

To determine the utility of our predicted OMTscore, we compared its
prognostic capability against both the pathologist-assigned WHO and
binary grading systems. Whilst we note that these systems do not aim to
directly predict cases that will transform to malignancy; we argue that the
goal of the grading systems is to give patient prognosis and stratification, in
order to inform treatmentdecisions.This is ultimatelywhatweare aiming to
do with the OMTscore, thus making a fair comparison.

Survival analyses
Survival analyses were conducted to assess the prognostic significance of the
OMTscore, and the manually-assigned WHO/binary grades, in predicting
transformation-free survival. The OMTscore indicated whether the algo-
rithm predicted the case to transform (high-risk) or not (low-risk). Kaplan-
Meier curves were generated using the Python lifelines package, and log-
rank tests were used to determine the statistical significance of the grade
stratification (for OMT, WHO, and binary grades). Additionally, a multi-
variate Cox proportional hazards model was employed, incorporating sex,
age, lesion site, binary, and WHO grade, to predict transformation-free
survival. The purpose of this analysis was to validate the prognostic sig-
nificance of the predictedOMTscore relative to other clinical variables. This
analysis was performed on both the internal and external cohorts. Trans-
formationswere right-censored at eight years across these analyses to ensure
consistency between internal and external cohorts.

Feature analyses
We performed several post-hoc analyses based on both our internal and
external validation cohorts to add a level of explainability to our model
predictions. First, we focused on the nuclear count features within the top
five predicted patches of correctly predicted positive slides (true positives)
and compared them to the top five predicted patches of correctly predicted
negative slides (true negatives) within the testing subsets. Two-tailed t-tests
were performed with multiple comparison correction (false discovery rate,
FDR) to determine the statistical significance of any observed differences.
We conducted three comparative analyses of the cellular composition of the
top predicted patches: (1) nuclei within the entire patch (other, basal, epi-
thelial, keratin), 2) nuclei within the epithelium (other, basal, epithelial,
keratin), and 3) nuclei within the connective tissue surrounding the patch
(e.g., peri-epithelial “other” nuclei). In addition, we analysed the tissue type
ratios (morphology) within these top-predicted patches. Note, as multiple
runs of the experiments were conducted, these analyses contains true
positives and true negatives from correctly predicted cases from all runs.
These experiments enabled us to determine any associations between
nuclear types/areas and the predicted outcome.

Second, we investigated which of the 168 morphological/spatial fea-
tures used to train our MLP were most important for making the final
prediction.Weachieved thisby trainingaRandomForest classifierusing the
top five correctly predicted patches per correctly predicted case by ourMLP
model, utilizing the 168 nuclear features. Subsequently, we ranked the
feature importance, measured by mean decrease in impurity (MDI), and
identified the top ten features. To ascertain their statistical significance, we
conducted two-tailed t-tests with FDR correction.

Third, we also explored the PDPs for our MLP model when tested on
both internal and external cases. We systematically adjusted the value of
each of the 168 input features, one at a time, from its minimum to its
maximum value in 100 increments, and plotted this against the model’s
predicted probability output across all cases. These analyses provide insights
into the significance of each individual feature in predicting transformation.

Evaluation metrics
We evaluated the layer segmentation using the F1-score aggregated over
all image patches. For nuclear instance segmentation, we assessed the
Panoptic Quality (PQ), detection quality (DQ, or F1-score), and seg-
mentation quality (SQ). Additionally, we report theDice score comparing
segmented nuclei against the background, and the aggregated Jaccard
Index (AJI). We also calculate the average values over all images for: F1-
score for detection (Fd, all nuclear types) and F1-score for classification
(Fc) for each nucleus type (e.g. Fc

b for basal epithelial nuclei, Fc
e for epi-

thelial nuclei, and Fc
o for other nuclei). Detailed descriptions of these

metrics can be found in Graham et al.19. When evaluating the model’s
performance in predicting transformation, we calculated the average F1-
score andAUROC across all slides. The F1-score is the harmonicmean of
recall (sensitivity) andprecision, and thus provides a balancebetween false
positives and false negatives. In addition, we also include the model recall
(sensitivity) and fall-out (false positive rate).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All the data derived from this study are included in the manuscript. We are
unable to share thewhole slide images and clinical data, due to restrictions in
the ethics applications.

Code availability
We have made the model inference code publicly available online, along
withmodel weights (adamshephard/OMTscoring_inference(github.com)).
All code was written with Python 3.10 and PyTorch 2.0, along with TIA-
Toolbox 1.4.0.
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