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ABSTRACT Clostridium perfringens is an important
opportunistic microorganism in commercial poultry
production that is implicated in necrotic enteritis (NE)
outbreaks. This disease poses a severe financial burden
on the global poultry industry, causing estimated
annual losses of $6 billion globally. The ban on in-feed
antibiotic growth promoters has spurred investigations
into approaches of alternatives to antibiotics, among
which Bacillus probiotics have demonstrated varying
degrees of effectiveness against NE. However, the pre-
cise mechanisms underlying Bacillus-mediated benefi-
cial effects on host responses in NE remain to be
further elucidated. In this manuscript, we conducted in
vitro and genomic mining analysis to investigate anti-
C. perfringens activity observed in the supernatants
derived from 2 Bacillus amyloliquefaciens strains
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(FS1092 and BaD747). Both strains demonstrated
potent anti-C. perfringens activities in in vitro studies.
An analysis of genomes from 15 B. amyloliquefaciens,
11 B. velezensis, and 2 B. subtilis strains has revealed
an intriguing clustering pattern among strains known
to possess anti-C. perfringens activities. Furthermore,
our investigation has identified 7 potential antimicro-
bial compounds, predicted as secondary metabolites
through antiSMASH genomic mining within the pub-
lished genomes of B. amyloliquefaciens species. Based
on in vitro analysis, BaD747 may have the potential as
a probiotic in the control of NE. These findings not
only enhance our understanding of B. amyloliquefa-
ciens’s action against C. perfringens but also provide a
scientific rationale for the development of novel antimi-
crobial therapeutic agents against NE.
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INTRODUCTION

Necrotic enteritis (NE) is a debilitating disease in
broiler chickens, manifesting in both clinical (high mor-
tality) and subclinical (poor performance in growth and
higher feed conversion) forms (Lee and Lillehoj 2016,
Tsiouris 2016). Clostridium perfringens is an important
opportunistic pathogen implicated in NE outbreaks in
commercial poultry production (Lee and Lillehoj 2021).
NE ranks as one of the most economically devastating
bacterial enteric ailments, causing annual losses
exceeding 6 billion US dollars for the global poultry
industry (Wade and Keyburn 2015). NE is a multifacto-
rial disease, necessitating several predisposing and co-
factors for an outbreak, including co-infection with coc-
cidiosis, dietary factors (the use of fishmeal and cereal-
based diets may lead to increased digesta viscosity and
intestinal mucus), immunosuppression, and poor man-
agement practices such as high stocking density, ammo-
nia exposure, and heat stress (Prescott et al. 2016).
Additionally, the presence of the critical NE B-like toxin
(netB) gene in C. perfringens Type G strains is a key
contributing factor (Timbermontet et al. 2009, Prescott
et al. 2016). The rise in NE incidence is closely linked to
the voluntary reduction or removal of antibiotic growth
promoters from feed (Cooper and Songer 2009). There-
fore, exploring alternatives to antibiotics is paramount
to reducing the growing NE problem.
Extensive efforts have been directed toward develop-

ing antibiotic alternatives to safeguard poultry health
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and performance (Gadde et al. 2017a). These alterna-
tives include probiotics, prebiotics, synbiotics, organic
acids, enzymes, antimicrobial peptides, hyperimmune
egg antibodies, bacteriophages, clay, and metals. Among
them, Bacillus-based direct-fed microbials have gained
prominence in maintaining or restoring the intestinal
health of poultry with increasing regulation since the
ban on antimicrobial growth promoters. This is mainly
owing to their capability to confer gut health benefits
and survive the rigorous conditions during chicken feed
preparation (Gadde et al. 2017b, Grant et al. 2018, Kha-
lique et al. 2020). These probiotics exert their effects by
outcompeting pathogenic bacteria for nutrients, produc-
ing natural antimicrobial peptide compounds, and mod-
ulating the gut microbiota to promote beneficial
microorganisms in the gastrointestinal tract, thus con-
tributing to various immunological benefits (Neveling
and Dicks 2021).

Bacillus amyloliquefaciens (Ba), a gram-positive bac-
terium found in soil and formerly categorized as B. subti-
lis subvariant, is commonly employed as a biocontrol
agent for enhancing plant growth and controlling plant
diseases (Zhang et al. 2022a). In recent years, it has gar-
nered much attention as a potential probiotic in food
animal agriculture, including chickens (Latorre et al.
2015, de Oliveira et al. 2019, Shini et al. 2020, Zhang et
al. 2022b). In chickens, the gut microbiome plays a piv-
otal role in overall health and productivity, in which an
imbalance may lead to various health issues, including
digestive problems, reduced nutrient absorption, and
heightened susceptibility to diseases. B. amyloliquefa-
ciens has been demonstrated to effectively ameliorate
subclinical NE, thereby enhancing gut health by increas-
ing gut microbiota diversity and reducing the abundance
of harmful bacteria (Zhang et al. 2022a). Additionally, it
has been shown to improve nutrient absorption, leading
to enhanced feed efficiency and overall performance
(Latorre et al. 2015, de Oliveira et al. 2019, Shini et al.
2020).

However, the precise mechanisms by which B. amylo-
liquefaciens promotes performance remain to be further
defined. This study aims to predict antimicrobial sec-
ondary metabolites or their corresponding peptides
derived from B. amyloliquefaciens strains by compre-
hensive genomic analysis and test their in vitro activities
of antimicrobial compounds that can inhibit the growth
of pathogenic C. perfringens.
MATERIALS AND METHODS

Bacillus Bacteria and Cultures

B. amyloliquefaciens strain FS1092 and D747
(EMFSL lab, ARS, USDA, Beltsville, MD, USA), along
with Bacillus subtilis 168 (ATCC, Manassas, VA), were
cultivated in Tryptic Soy Broth media (TSB, Sigma-
Aldrich, St. Louis, MO) at 28°C. C. perfringens strains
Del1 and LLY_TpeL17 were initially isolated from NE-
afflicted chicken farms (Li et al. 2017, Gu et al. 2019).
The Del1 and LLY_TpeL17 strain stocks were cultured
in Tryptose Sulfite Cycloserine medium (TSC, Perfrin-
gens Agar Base, Oxoid, Nepean, Ontario, Canada) with
C. perfringens selective supplement (D-cycloserine
0.4 mg/mL, Oxoid). Subsequently, the C. perfringens
strains were anaerobically grown at 37°C in chopped
meat glucose (CMG) medium (Anaerobe Systems, Mor-
gan Hill, CA), followed by BYC medium [(3.7% brain
heart infusion medium (BD Bacto, Sparks, MD), 0.5%
yeast extract (Fisher Scientific, Hampton, NH), 0.05%
L-cysteine (Sigma-Aldrich, St. Louis, MO)]. The com-
plete genome sequences for strain FS1092 are available
from a previous study (Gonzalez-Escalona et al., 2020),
but the genome sequence for strain Ba D747 is unpub-
lished.
Inhibition of C. perfringens Growth by B.
amyloliquefaciens Cell-Free Supernatant in
Liquid Culture and Well Diffusion Assay

The cell-free supernatants from B. amyloliquefaciens
and B. subtilis cultures were acquired by centrifugation
for 5 min at 6,000 x g after culturing 24, 48, and 72 h, fol-
lowed by filtration through a 0.2-micron pore-size filter
(Millipore, St. Louis, MO). The supernatants were
stored at 4°C until use.
To determine if the cell-free supernatant from the

above bacteria could inhibit the C. perfringens growth,
the overnight culture from C. perfringens Del1 and LLY-
TpeL17 strains were diluted in BYC broth, and the cell-
free culture supernatant from Ba D747 or TSB broth was
added into freshly diluted bacterial culture in 1:10 ratio,
and cultivated overnight anaerobically. The optical den-
sity at 590 nm (OD590) values was recorded for the bac-
teria growth, and inhibition capability by Ba D747 was
determined by comparison with the TSB control.
To assess the antimicrobial activity of B. amylolique-

faciens cell-free supernatant against C. perfringens
strains and optimal collection times of cell-free superna-
tant, the agar well diffusion method was employed. TSC
broth with 1.5% agar (20 mL) was poured into a sterile
round petri dish (90 mm diameter, Biologix Inc, Lenexa,
Kansas, MO). After agar solidification, 10 mL of auto-
claved TSC agar mixed with 50 mL overnight BYC cul-
tures of C. perfringens Del1 and LLY-TpeL17 was
poured on the previous agar layer. Wells were created
using pipettor tips of 6-mm diameter, and each well was
loaded with 100 mL of cell-free supernatant from each B.
amyloliquefaciens isolates Ba D747, FS1092 or Bs 168,
or supernatant collected at 3 different time points. The
plates were refrigerated at 4°C for 3 to 4 h to allow the
supernatant to be absorbed by the agar. Each test was
performed in triplicates. Subsequently, the plates were
anaerobically incubated at 37°C overnight. Clear inhibi-
tion zones devoid of C. perfringens growth around the
sample-dropping wells were observed against the back-
ground of full bacterial growth on TSC agar plates, and
the diameters of these zones were measured. Once the
optimal collection time of supernatant was determined,
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such supernatant would be used for further inhibition
testing from different bacterial sources.
Computational Genomics and Gene Analysis
of B. amyloliquefaciens, Bacillus velezensis,
and B. subtilis strains

Detailed genome identification and sequence analysis
information for B. amyloliquefaciens, related B. velezen-
sis, and B. subtilis strains is shown in Table 1. Genomic
data for the study were retrieved from GenBank. A phy-
logenetic tree was constructed based on the similarities
and differences in DNA, projected RNA, or protein
sequences among these organisms. This tree serves as a
visual representation of the evolutionary relationships
among different species or taxonomic groups (Pearson et
al. 2009). To examine the patterns of gene presence and
absence across the 14 B. amyloliquefaciens strains, we
employed the Roary tool, known for its efficiency in con-
structing comprehensive pan genomes from prokaryotic
samples and delineating both core and accessory gene
sets (Page et al. 2015, Costa et al. 2020). In this proce-
dure, the genomes of each of the 28 strains listed in
Table 1 underwent initial annotation using the Prokka
procedure (Seemann 2014). Subsequently, Roary was
employed to generate a pan-genome from the gff files
produced by Prokka. To establish a core gene alignment,
MAFFT with specific options was utilized (Katoh and
Standley 2013). Ultimately, the “gene_presence_ab-
sence.Rtab” and “accessory_ binary_ genes. fa. newick”
output files served as the basis for assessing presence-
Table 1. Genomes of B. amyloliquefaciens and closely related
species strains used for gene mining in this study.

Bacterial species Strain Accession#

Bacillus amyloliquefaciens B15 CP130445.1
B25 CP065159.1
BA11 CP071042.1
BA40 CP018152.1
C6.7 LN999829.1
CAU B946 CP079834.1
D747 Unpublished
EA19 HE617159.1
ELA1901024 CP075547.1
FS1092 JALMGL010000001.1
GXU-1 JALMGM010000001.1
H57 LMUC01000001-

LMUC01000016
LM2303 CP038028
SN16-1 CP021505.1
SRCM101367 CP014783.1

Bacillus velezensis 19573-3 CP067043.1
BV5 ASM2453958v1
BZR 277 CP064845
BZR 86 CP064846
DTU001 CP035533.1
Hx05 CP040672.1
LF01 CP058216
M75 CP016395.1
SRCM101368 CP031694
WRN014 CP041361.1
ZL918 CP021338.1

Bacillus subtilis CP009684.1 168
AL009126.3 B-1
absence patterns and conducting phylogenetic tree anal-
yses across all strains. Prediction of the secondary/spe-
cialized metabolite biosynthetic gene clusters (SM
BGCs) was performed using the program “antibiotics
and secondary metabolite analysis shell—antiSMASH”
in microbial genome mining tasks (Blin et al., 2023).
Statistical Analysis

The OD590 values of bacterial cultures or the diame-
ters of the inhibition zones were subjected to analysis
using the GLM procedure of SAS v9.4 for Windows
(Cary, NC). Statistically significant differences were
defined at p ≤ 0.05, and all data were presented as mean
§ standard deviation for each treatment.
RESULTS

Inhibition of C. perfringens Growth

This study aimed to investigate whether these B.
amyloliquefaciens PS1092 and D747 strains could also
suppress the growth of the very pathogenic C. perfrin-
gens strains, isolated from the NE-afflicted chicken
gut. When B. amyloliquefaciens D747 supernatant
was added to the diluted overnight C. perfringens cul-
ture at a 1:10 dilution, it exhibited robust inhibition
activity against C. perfringens LLY_TpeL17 strain,
with highly significant differences (P ≤ 0.001)
(Figure 1A).
Next, we determined the optimal time for collecting

supernatants from bacterial cultures. Figure 1B illus-
trates the inhibition zones of Ba D747 cell-free superna-
tant on the growth of the C. perfringens LLY_TpeL17
strain. The diameters of the clear inhibition zones were
measured for the supernatants collected from 24, 48,
and 72-h cultures, resulting in measurements of 14.5,
18.5, and 19.5 mm, respectively. Notably, the diameter
of the inhibition zone for the supernatant collected at
the 48-h (18.5 mm) nearly approached that of the 72-h
collection (19.5 mm), but was significantly larger than
the 24-h collection (14.5 mm). Consequently, the 48-h
culture supernatant was selected for our subsequent
inhibition studies.
Interestingly, C. perfringens colonies initially

appeared black on TSC agar with selective supplement
(observed at 14-h culture), but their color gradually
faded during extended incubation periods (observed at
26-h culture, as shown in Figure 1B).
Figure 1C demonstrates the inhibition zones produced

by supernatants from 3 different bacterial cultures on
the growth of C. perfringens. Ba D747 exhibited supe-
rior anti-C. perfringens activity compared to FS1092,
displaying significant differences (p ≤ 0.01) as evidenced
by the larger inhibition zone diameter against both C.
perfringens Del1 and LLY_TpeL17 strains. In contrast,
the supernatant from Bs168 did not show inhibition
ability, as no clear visible inhibition zone was observed
(Figures 1C and 1D).



Figure 1. The growth inhibition of Clostridium perfringens by cell-free supernatant from Bacillus amyloliquefaciens D747 in liquid culture (1A),
collected at 3 times of points by Bacillus amyloliquefaciens strain D747 (1B) or by culture supernatant from various sources (1C, 1D) in agar well dif-
fusion assay. In 1A, the cell-free supernatants from Ba D747 24-h culture were added into C. perfringens cultures of Del1 and LLY_TpeL17
(TpeL17) strains, and OD590 was measured after the overnight culturing anaerobically. In 1b, the C. perfringens LLY_TpeL17 strain was seeded
in the TSC agar plate, and the cell-free supernatant collected from 3-time points of cultures from B. amyloliquefaciens D747 was then loaded on the
plate well, and images were taken after 14-h and 26-h culture. In 1C, 3 culture supernatant samples from B. subtilis 168 strain, B. amyloliquefaciens
D747, and FS1092 strains were loaded on the wells of C. perfringens LLY_TpeL17-seed TSC agar plate. The inhibition zone diameters were mea-
sured and analyzed for both C. perfringens Del1 and LLY_TpeL17 strains (1D). The horizon line represents the base level of the empty well diame-
ter. All the data were expressed as mean § standard deviation for each treatment. The symbols of ** and *** represent statistical differences at P ≤
0.01, and P ≤ 0.001, respectively.
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Genomic Analysis of B. amyloliquefaciens,
Bacillus velezensis and B. subtilis Strains

Given the robust anti-C. perfringens activity dis-
played by these 2 B. amyloliquefaciens strains, it
becomes intriguing to delve into the potential gene clus-
ters responsible for the biosynthesis of antimicrobial sub-
stances they may generate. The genomic information is
publicly available for Ba FS1092 (Genbank Accession#:
CP038028), while it is unpublished for Ba D747. Conse-
quently, the genome of Ba FS1092 was mainly utilized
as a reference to perform sequence similarity searches
against available complete genome sequences of other B.
amyloliquefaciens strains and closely related species in
Genbank. In total, 27 complete genomes were analyzed
within this study, comprising 14 B. amyloliquefaciens,
11 B. velezensis, and 2 B. subtilis strains.

The resulting phylogenetic tree for B. amyloliquefa-
ciens strains revealed that FS1092 clustered with other
Ba strains known for their published anti-C. perfringens
activities, such as Ba40 and H57 (see Figure 2). Figure 2
also illustrates the Roary matrix for B. amyloliquefa-
ciens strains, a tool used for constructing large-scale
pan-genomes from prokaryotic samples by identifying
both core and accessory genes. Notably, Ba FS1092 may
possess some unique genes, as indicated in Table 2 (also
refer to Supplementary data). Among these genes, sdpC
was also found to belong to a cluster of genes in B.
subtilis responsible for encoding a peptide toxin known
as SDP. The SDP toxin appeared to induce autolysis by
disrupting the proton motive force during the early
stages of sporulation (Lamsa et al. 2012).
Microorganisms possess the capability to synthesize

small bioactive compounds as part of their secondary
metabolism, which serve critical roles in various bioac-
tivities, including their applications in medicine and
agriculture, particularly in antimicrobial contexts. To
facilitate the identification of natural product biosyn-
thetic pathways and the prediction of these bioactive
metabolites, scientists have developed specialized tools
like the antiSMASH software. This software enables the
exploration of microbial genomes through genome
sequencing and mining, with a particular focus on sec-
ondary/specialized metabolite biosynthetic gene clusters
(SM BGCs) (Blin et al. 2023). Table 3 provides a com-
prehensive list of antimicrobial compounds predicted
through the genome mining of SM BGCs using the anti-
SMASH tool. In general, these analyses indicate that
most B. amyloliquefaciences strains are capable of pro-
ducing 7 antimicrobial compounds, namely Bacillaene,
Bacillibactin, Bacilysin, Deficidin, Fengycin, Macrolac-
tin H (with a high degree of similarity, close to 100%),
and Surfactin (with similarity ranging from 78% to
86%). The pilot study of recent genome sequencing of
Ba D747 indicated that it may produce an additional
antimicrobial compound Thermoactinoamide. On the



Figure 2. Pangenome analysis for 26 Bacillus genomes (Table 1) using Roary. The left side represents evolutionary relationships among 26
strains based on their core genomes. The right side represents the matrix where conserved core genes and a variable set of accessory genes were either
present or absent.

Table 2. Unique genes among 14 Bacillus amyloliquefaciens strains.

Genes Annotation B15 BA40 FS1092 H57 SRCM101267 B25 B946 BA11 C6.7 EA19 ELA1901024 GXU-1 LM2303 SN16-1

thrZ Threonine−tRNA
ligase 2

Y Y Y Y N N N N N N N N N N

sdpC Sporulation delaying
protein C

Y Y Y Y Y N N N N N N N N N

group_1017 hypothetical protein Y Y Y Y Y N N N N N N N N N
nasA Nitrate transporter Y Y Y Y N N N N N N N N N N
nasB Assimilatory nitrate

reductase electron
transfer subunit

Y Y Y Y N N N N N N N N N N

nasC Assimilatory nitrate
reductase catalytic
subunit

Y Y Y Y N N N N N N N N N N

group_1758 Tryptophan RNA-
binding attenuator
protein inhibitory
protein

Y Y Y Y N N N N N N N N N N

group_1847 hypothetical protein Y Y Y Y Y N N N N N N N N N
group_1848 HTH-type transcrip-

tional regulatory
protein GabR

Y Y Y Y N N N N N N N N N N

group_2020 hypothetical protein Y Y Y Y N N N N N N N N N N
norG_1 HTH-type transcrip-

tional regulator
NorG

Y Y Y Y N N N N N N N N N N

argO Arginine exporter
protein ArgO

Y Y Y Y N N N N N N N N N N

group_2017 hypothetical protein Y Y Y Y N N N N N N N N N N
group_1943 hypothetical protein Y Y Y Y N N N N N N N N N N
group_272 hypothetical protein Y Y Y Y Y N N N N N N N N N
group_3429 hypothetical protein Y Y Y Y N N N N N N N N N N
group_1163 Thiol-disulfide oxi-

doreductase YkuV
Y Y Y Y N N N N N N N N N N

Y, presence; N, absence.
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other hand, Plantazolicin is predicted to be produced by
fewer than half of the Ba strains. In comparison, the
commonly studied B. subtilis 168 strain, often employed
in protease-deficient mutant research, is predicted to
produce Bacillaene, Bacillibactin, Bacilysin, Deficidin,
Fengycin, and Surfactin.
DISCUSSION

Probiotics offer an effective alternative to antibiotics
by nurturing beneficial bacteria in the gastrointestinal
tract. They promote nutrient absorption, bolster pro-
duction traits, and fortify immunity (El-Hack et al.
2020). In this study, we investigated the inhibitory
effects of B. amyloliquefaciens strains, on pathogenic C.
perfringens Del1 and LLY-TpeL17 strains, known for
carrying the netB gene. This gene encodes a pivotal viru-
lence factor, a pore-forming toxin, which contributes to
the pathogenesis of necrotic enteritis in broiler chickens
(Keyburn et al. 2010). The agar well diffusion study
unveiled that culture supernatants from both Ba D747
and FS1092 strains effectively curtailed the growth of C.
perfringens Del1 and LLY-TpeL17 strains, with Ba
D747 demonstrating superior inhibitory activity. It is
worth noting that very pathogenic LLY_TpeL17 har-
bors not only the netB gene but also the tpeL gene which
encodes a large clostridial cytotoxin that is linked to
exacerbating the severity of necrotic enteritis in chickens
(Coursodon et al. 2012, Prescott et al. 2016).
Since genomic information for Ba D747 was unpub-

lished yet, we resorted to a BLAST alignment analysis
that placed D747 and FS1092 in proximity to other Ba
strains with documented C. perfringens inhibitory activ-
ities in the phylogenetic tree. These strains include H57,
BA11, and BA40. In genomic mining analysis, Ba
FS1092 was predicted as a potential producer of a range
of secondary antimicrobial compounds, including Subti-
lin. Subtilin, initially isolated from B. subtilis, is a neu-
tral metalloprotease and an alkaline serine protease with
a preference for targeting gram-positive microorganisms
(Stein et al. 2005).
Antimicrobial compounds are substances that can kill

or inhibit the growth of specific microorganisms, includ-
ing bacteria, viruses, fungi, and parasites. These com-
pounds demonstrate broad applications in the
treatment of infectious diseases and food preservation.
In our study, the majority of B. amyloliquefaciens
strains produced secondary antimicrobial compounds
such as Bacillaene, Bacillibactin, Bacilysin, Deficidin,
Fengycin, Macrolactin H, and Surfactin. Each of these
compounds may potentially suppress the growth of C.
perfringens at varying degrees. For instance, Bacillaene,
originally isolated from B. subtilis, inhibits prokaryotic
protein synthesis through mechanisms that remain
unclear (Rabbee and Baek, 2020). Bacillibactin, a cate-
cholic iron siderophore, plays a pivotal role in facilitating
Fe(III) acquisition and is suggested to passively inhibit
microbial pathogens (Li et al. 2014; Rabbee and Baek,
2020). Bacilysin acts as an antibiotic that relies on
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peptide transporters for entry into target cells, disrupt-
ing the biosynthetic pathway of bacterial peptidoglycan
or fungal mannoprotein (Rabbee and Baek, 2020). Fen-
gycin, composed of a cyclic octapeptide, is believed to
induce cell death in the target organism by compromis-
ing cell membrane integrity and altering cell permeabil-
ity (Rabbee and Baek, 2020). Macrolactin H, a product
of polyketide biosynthesis, inhibits bacterial peptide
deformylase (Schneider et al. 2007). Deficidin, originally
isolated from Bacillus subtilis, possesses potent in vitro
antibacterial activity by affecting the cell wall (Zimmer-
man et al. 1987). Surfactin, characterized by its amphi-
philic structure, functions as a biosurfactant molecule
with antimicrobial activity by damaging bacterial cell
membranes (Rabbee and Baek, 2020). The additional
compound Thermoactinoamide projected to be pro-
duced by Ba D747 is a new cyclic hexapeptide, originally
extracted from the thermophilic bacterium Thermoacti-
nomyces vulgaris strain ISCAR 2354 in Iceland, which
can inhibit the growth of Staphylococcus aureus ATCC
6538 (Teta et al. 2017). The lower levels of similarities
to some antimicrobial compounds for Ba D747 may
result from the partial genome sequencing of this strain
with the Illumina sequencing approach.

B. subtilis 168 exhibited no inhibitory effect on C. per-
fringens, in contrast to Ba FS1092 and D747. A compar-
ison of the antimicrobial compounds produced by B.
subtilis 168 and FS1092 revealed 4 shared (Bacillibactin,
Bacilysin, Fengycin, Surfactin) and 2 unique (Deficidin
and Macrolactin H) compounds for B. amyloliquefaciens
FS1092. The presence of Deficidin and Macrolactin H
may play pivotal roles in Ba FS10920s inhibitory activi-
ties against gram-positive C. perfringens strains,
although other factors or variations in compound con-
centration might also contribute to differences in C. per-
fringens inhibition.

Apart from the production of antimicrobial com-
pounds, B. amyloliquefaciens could outcompete C. per-
fringens for nutrients and other resources within the gut
environment. Studies involving murine models have
demonstrated that the Ba40 strain was able to outper-
form C. perfringens by adhering to gut epithelium and
proliferating (Zhao et al. 2016, Jiang et al. 2022). Addi-
tionally, B. amyloliquefaciens stimulates the host’s
immune response against C. perfringens, reducing the
release of pro-inflammatory cytokines (Zhao et al. 2016,
Jiang et al. 2022). By producing immunomodulatory
compounds such as exopolysaccharides, B. amyloliquefa-
ciens activates the host’s immune system, enhancing its
resistance to bacterial infections (Sung et al. 2022). In
essence, the inhibitory effects of B. amyloliquefaciens on
C. perfringens could result from a combination of direct
and indirect mechanisms, working synergistically to cur-
tail C. perfringens colonization and proliferation in the
gut, thereby promoting gut health in chickens.

Interestingly, the inhibitory activity from Ba D747
bacterial culture against pathogenic CP netB+tpeL+

LLY-TpeL17 strain was influenced by both culture tem-
perature (28°C and 42°C) and shaking speed (80 rpm
and 225 rpm) (data not shown). Supernatants collected
from 48-h bacterial cultures at 28°C (225 rpm), and 42°
C (80 rpm) demonstrated robust anti-CP activity,
whereas those from 42°C (225 rpm) cultures did not.
The mechanism remains unclear. Assumingly, the opti-
mal growth temperature range for many Bacillus strains
is around 30°C to 37°C. At temperatures below this
range (such as 28°C), bacterial growth may slow down,
allowing more time for the production and accumulation
of inhibitory compounds in the culture supernatant.
Conversely, at temperatures above the optimal range
(such as 42°C) at full aeration (high speed 225 rpm),
overgrowth may occur and the synthesis and secretion
of inhibitory compounds may be downregulated in
response to temperature and aeration changes, poten-
tially reducing the overall production of inhibitory sub-
stances.
While these findings hold promise for the use of B.

amyloliquefaciens as an inhibitory bioagent against C.
perfringens, further research is imperative to evaluate
its safety and efficacy in vivo. For example, in one study,
administration of lyophilized vegetative B. amylolique-
faciens cells with feed did not demonstrate a significant
protective effect against necrotic enteritis in an
extremely severe experimental broiler NE model, despite
the clear in vitro inhibitory activity of Ba supernatant
against C. perfringens strains (Geeraerts et al. 2016).
One plausible explanation could be that the established
infection model was exceptionally severe, as indicated
by a lesion score exceeding 3.0 in the challenge control
group. Under such circumstances, the beneficial effects
of Ba may have been overshadowed by the severity of
the infection. Currently, the lack of comprehensive geno-
mic information on this Ba strain limits the prediction of
antibiotic compound activity through genomic mining.
B. amyloliquefaciens also exhibits potential as a vac-

cine vector that delivers foreign antigens to the immune
system and elicits a protective immune response. B.
amyloliquefaciens possesses several attributes that make
it an attractive candidate for vaccine vector develop-
ment, including spore formation, resilience in challeng-
ing environmental conditions, and the ability to produce
immunomodulatory compounds. Genetically modified
protease-deficient strains of B. amyloliquefaciens were
developed as a host of efficient and stable expression vec-
tors (Wang et al. 2019). Extensive research is required to
construct Ba-specific shuttle vectors and express key
antigen targets, either in plasmid-based expression sys-
tems or on the spore surface display, targeting patho-
genic C. perfringens in vitro. Subsequent safety and
efficacy evaluations in vivo are essential steps in this
endeavor.
While direct-fed microbials (DFM) producing antimi-

crobials may offer benefits in animal health and perfor-
mance, it is essential to consider their potential
implications for antimicrobial resistance, as conven-
tional antibiotics growth promoters, in terms of indirect
selective pressures on the microbial populations in the
animal’s gut, horizontal gene transfer, cross-resistance,
and microbial ecological disruption. Some antimicrobial
peptides (AMP), for example, Pediocin A produced by
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Pediococcus pentaceus FBB61 and Sublacin produced
by B. subtilis 168, have demonstrated antimicrobial
activity against C. perfringens type A infection in poul-
try (Grilli et al. 2009; Wang et al. 2015). However, exces-
sive exposure of pathogens to antimicrobial peptides
may lead to the development of AMP-resistant strains
(Abreu et al. 2023). Very little information is available
on whether antimicrobial substances produced by DFMs
generate antimicrobial resistance. Further research is
needed to better understand these potential risks and to
develop strategies to mitigate them while maximizing
the benefits of using DFMs in food animal production.

In summary, our study highlights the potent anti-C.
perfringens activity of 2 B. amyloliquefaciens strains,
FS1092 and D747, as demonstrated in in vitro studies.
Particularly, D747 exhibited superior activity compared
to FS1092. Genomic mining analysis reveals that Ba
strains with anti-C. perfringens activities tend to cluster
together. Moreover, Ba strains are predicted to produce
7 major secondary antimicrobial metabolites with broad
antimicrobial potential for applications in medicine and
agriculture. Based on in vitro analysis, BaD747 may
have the potential as a probiotic in the control of NE.
While further research is required to fully understand
the potential benefits of B. amyloliquefaciens for animal
health, these initial findings highlight these bacterial
strains as promising probiotics with a wide range of
potential advantages.
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