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Abstract

Bronchoscopy is currently the least invasive method for definitively diagnosing lung cancer, which 

kills more people in the United States than any other form of cancer. Successfully diagnosing 

suspicious lung nodules requires accurate localization of the bronchoscope relative to a planned 

biopsy site in the airways. This task is challenging because the lung deforms intraoperatively due 

to respiratory motion, the airways lack photometric features, and the anatomy’s appearance is 

repetitive. In this paper, we introduce a real-time camera-based method for accurately localizing 

a bronchoscope with respect to a planned needle insertion pose. Our approach uses deep 

learning and accounts for deformations and overcomes limitations of global pose estimation by 

estimating pose relative to anatomical landmarks. Specifically, our learned model considers airway 

bifurcations along the airway wall as landmarks because they are distinct geometric features that 

do not vary significantly with respiratory motion. We evaluate our method in a simulated dataset of 

lungs undergoing respiratory motion. The results show that our method generalizes across patients 

and localizes the bronchoscope with accuracy sufficient to access the smallest clinically-relevant 

nodules across all levels of respiratory deformation, even in challenging distal airways. Our 

method could enable physicians to perform more accurate biopsies and serve as a key building 

block toward accurate autonomous robotic bronchoscopy.

I. INTRODUCTION

Lung cancer is the leading cause of cancer related deaths in the United States, contributing 

to over 120,000 deaths annually. Early diagnosis is critical in improving outcomes for 

patients, however, just 25% of patients get diagnosed at an early and favorable stage [1]. 

Currently, the least invasive method for definitively diagnosing suspicious lung nodules 

as cancer is bronchoscopy, a procedure during which a physician inserts a bronchoscope 

through the patient’s mouth, navigates through the airways, and inserts a needle into the lung 

to biopsy a nodule. Since clinically relevant nodules can be as small as 8mm in diameter 
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[2], accurate localization of the bronchoscope with respect to a planned needle insertion site 

in the airways is critical for the procedure’s success. Despite the availability of commercial 

systems that aid with peripheral lung navigation, a large proportion of bronchoscopies 

fail to result in a diagnosis in part due to poor intraoperative localization [3], [4]. Given 

the importance of bronchoscopy as a tool for early definitive diagnosis of lung nodules, 

improving bronchoscope localization is critical.

Localizing a bronchoscope during a procedure is challenging for several reasons, including 

the repetitive appearance of the airways, the airway lumen’s lack of distinguishing features, 

and the deformable nature of the environment. Traditionally, physicians navigate the 

bronchoscope by mentally registering the 2D video frames from the bronchoscope’s built-in 

camera to a virtual 3D reconstruction of the patient’s airways from a preoperative CT scan 

(see Fig. 1). To help the physician with this challenging registration task, several commercial 

systems have been developed that use additional sensors such as electromagnetic (EM) 

sensors or fiber Bragg gratings. However, these approaches have difficulty tracking when 

there is a discrepancy between the anatomical map created from a preoperative CT scan and 

the intraoperative patient anatomy. This problem, referred to as CT-to-body divergence, is 

prevalent in bronchoscopy because of the constant respiratory motion of the lungs, and it 

often worsens throughout the procedure due to physiologic changes in the tissue resulting 

in any initial registration becoming outdated [5]. Using the built-in camera for localization 

can overcome this problem from global respiratory motion since the camera’s internal view 

of the airways remains unchanged (i.e., the bronchoscope is moving along with the lungs). 

However, the repetitive appearance of the airways and the airway lumen’s lack of texture 

make visual odometry or global pose estimation challenging. Addressing these challenges in 

intraoperative bronchoscope localization in the vicinity of a planned needle insertion would 

improve biopsy accuracy and enable accurate autonomous robotic bronchoscopy.

To overcome these challenges, we introduce a camera-based method for localizing a 

bronchoscope with respect to a planned needle insertion pose using anatomical landmarks 

in the airways and deep learning. We use the bronchial tree bifurcations on the airway wall 

as our landmarks as they do not vary significantly with both global respiratory motion and 

local deformation, and they are distinct geometric features in an otherwise feature-sparse 

environment. By localizing the bronchoscope in the bifurcation’s local coordinate frame, our 

method is not affected by the ambiguity of the anatomy that makes global pose estimation 

challenging or from accumulating errors that burden relative pose estimation. Furthermore, 

by not being directly tied to a specific CT scan’s global coordinate frame, our method can 

generalize across patients, which is important in the medical domain as data is often limited. 

To the best of our knowledge, this is the first method for bronchoscope localization that has 

shown such interpatient generalizability.

To localize the bronchoscope, we trained a deep neural network to estimate the 

bronchoscope’s pose in reference to bifurcations on the airway wall whose relative 

transformation to the planned needle insertion site is known from the preoperative CT 

scan. The network takes as input a single image frame from the bronchoscope’s camera and 

outputs the relative transformation to the nearest visible bifurcation in real-time.
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We show that our method is tolerant to physiologic respiratory motion by evaluating our 

method in simulations of human lungs deforming based on patient-derived respiratory data. 

We also show that our method performs well in distal airways (see Fig. 2) which have 

been notoriously challenging for existing approaches because of the increased deformation 

in these regions. Our method achieves average translation and orientation errors under 

3mm and 10 °, respectively, across all airway generations. By accurately estimating the 

bronchoscope pose at the time of needle insertion, our method could enable physicians to 

perform more accurate biopsies using current bronchoscopes and could also be integrated 

with a robotic system to enable accurate autonomous bronchoscopy.

II. RELATED WORK

A. Bronchoscope Localization

Bronchoscope localization methods can be broadly classified into three categories.

1) Sensor Based Methods: Sensor based localization methods leverage a sensor other 

than the bronchoscope’s built-in camera to localize the bronchoscope in the patient’s 

anatomy. A common approach is electromagnetic (EM) sensor-based localization, which 

is used by several commercial systems [6]. Another approach is fiber optic shape sensing 

technology, which has shown improved localization performance [7]. While fiber optic 

sensors are not affected by noise from metal objects like EM sensors are, both of 

these approaches have poor tracking accuracy when there is a discrepancy between the 

intraoperative patient anatomy and the preoperative CT scan (i.e., CT-to-body divergence). 

To overcome this issue, the use of cone beam CT for intraoperative imaging during needle 

deployment has been proposed [8], but at the expense of additional radiation exposure to the 

medical team and patient.

2) Vision Based Methods: The bronchoscope’s camera moves with the airways when 

the lung deforms during respiration, which has motivated research into overcoming the 

challenge of CT-to-body divergence by leveraging the optical information from the camera 

for localization. A common approach has been to localize the bronchoscope by finding the 

best match for the real bronchoscopic view in a large collection of virtual bronchoscopic 

views generated using a patient’s preoperative CT scan [9], [10]. Variations on this approach 

have included performing comparisons in eigenspace [11], identifying regions of interest 

in the image [12], and using geometric properties of the environment such as depth and 

surface normals [13], [14]. Recently, several groups have leveraged deep neural networks 

to extract higher quality depth maps [15] and also to perform style transfer to make the 

real image share appearance properties with the virtual domain [16], [17]. The challenge 

with this general approach has been that the repetitive appearance of the airways creates 

a global ambiguity whereby multiple distinct regions in the airways look nearly identical. 

To address some of these challenges, several groups have proposed methods that navigate 

the bronchoscope by tracking lumen centers [18], counting branching points [19], and 

extracting structural lumen characteristics [20]. An alternative approach has been to use 

visual odometry (VO), both in the context of incremental image alignment [21], established 

SLAM algorithms [22], incremental point-cloud registration [23], and using deep neural 
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networks for direct relative pose regression [24], [25]. The lack of texture in the airways and 

variable speed of the bronchoscope limits the success of classic feature-tracking approaches 

like SLAM and VO, while direct relative pose prediction also suffers from accumulating 

errors. A recent work proposed localizing the bronchoscope by first predicting which airway 

is visible and then regressing the camera’s pose relative to the furthest point in the airway 

[26], but the work only reports results when the model correctly identified the airway, 

ignoring the effect of global ambiguity, and excluded evaluation cases where there was 

visible CT-to-body divergence. While many of these works have shown great localization 

performance in proximal airways, very few evaluated their methods in distal airways and 

those that did have not shown similarly good performance. Distal airways represent the 

greatest challenge in clinical bronchoscope localization because of the increased respiratory 

deformation in these regions.

3) Hybrid Methods: Hybrid methods combine information from both sensor-based and 

vision-based techniques to improve the overall localization of the bronchoscope. These 

approaches typically use the EM sensor to get a rough estimate of the bronchoscope’s 

location and then refine the prediction by optimizing the similarity between the 

bronchoscope’s intraoperative view with a dataset of virtual bronchoscopy images [27], [28], 

[29], [30], [31]. These works have shown promising results, but their vision-based solutions 

still suffer from the same drawbacks as the vision-only methods described above.

The method we propose can be classified as either a hybrid solution or a vision-only based 

solution in that it can be integrated with an existing sensor-based system for navigation or be 

used independently with the physician providing the relevant navigation input prior to needle 

insertion.

B. Toward Autonomous Robotic Bronchoscopy

While accurate localization in the airways is challenging, it is a core component for enabling 

autonomous robotic bronchoscopy. Several works have developed such systems using 

various types of localization techniques mentioned above [26], [32], [33]. Additionally, the 

feasibility of leveraging autonomous robots for automating nodule targeting with a needle 

has been shown in animal models [34], [35], for which localization prior to needle insertion 

is critical [36].

III. PROBLEM DEFINITION

We consider the entire bronchoscopic procedure in two stages when describing our method: 

a preoperative stage and an intraoperative stage. The workflow of our method according to 

these stages is shown in Fig. 3.

In the preoperative stage prior to a bronchoscopic procedure, a patient undergoes a CT scan 

which generates a static 3D image of the anatomy. Physicians use this image to extract 3D 

segmentations of the airways and lung nodule, and to virtually plan their procedure. Let 

S represent the volumetric CT scan image that is defined in the coordinate frame of the 

CT scanner, CCT . Let A be the 3D segmented model of the airways. Let p ∈ SE 3 , also 

defined in CCT , represent the planned needle insertion pose (position and orientation) along 
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the airway wall to reach the nodule. This pose can be determined manually by a physician 

or using a motion planning algorithm [37], [36]. Although p is defined in SE 3 , since the 

bronchoscope and needle are coaxial, rotations about the axial axis of the bronchoscope with 

respect to p do not affect the needle’s final insertion position. Finally, let L be a set of poses, 

li ∈ SE 3 , that correspond to the bifurcations on the airway wall. This set of landmark poses 

is either provided by the physician or automatically extracted from S.

In the intraoperative stage, which occurs hours to days after the preoperative stage, the 

physician uses the built-in camera and any additional available sensor information (e.g., EM) 

to navigate the bronchoscope through the airways to a planned needle insertion pose. During 

the procedure, the lungs are undergoing physiologic respiratory deformation. Let b ∈ SE 3
represent the pose of the bronchoscope in world coordinate frame, CW , and I represent a 

2D RGB image from the bronchoscope’s built-in camera. We assume that a coarse mapping 

exists from CW  to CCT  such that the physician is able to identify which bifurcation, li, they 

see in I. This mapping is determined either from an additional sensor (e.g., EM) or directly 

by the physician. To get an accurate localization of the bronchoscope with respect to p, we 

need to refine this localization while overcoming the effect of respiratory motion. To localize 

the bronchoscope in the real-world deformed lung, we need to estimate the bronchoscope’s 

pose relative to p given I. In order to achieve real-time performance, we need to perform this 

estimation in under 33 milliseconds to provide localization at the bronchoscope camera’s 

typical frame rate of thirty frames per second. Let Tpb ∈ SE 3  represent our prediction for 

the true transformation, Tpb ∈ SE 3 , from b to p.

We evaluate our prediction’s accuracy using the equation:

E = Tpb
−1 · Tpb

(1)

where E is the relative transformation between the true and predicted transformations [38]. 

When Tpb  and Tpb  are equal, E is the identity matrix. We calculate the translational and 

rotational error using the following two equations [39]:

Etrans = trans(E) 2

(2)

Erot = arccos
trace rot(E)−1 ⋅ rot(E)

2 ,

(3)
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where trans() and rot() are functions that extract the translational and rotational components 

of E, respectively. Eq. 3 is equivalent to calculating the angle from the axis-angle 

representation of rot(E).

We formalize the acceptable translation and orientation error between the planned and 

achieved needle insertion as done in prior work [23]. Specifically, we consider a lung nodule 

with radius r and a straight needle with maximum insertion length ℎ. Fig. 4 illustrates the 

different error scenarios in a 2D representation of a needle biopsy. When there is only 

translation error, the translation error tolerance, et, is equal to the radius of the nodule, r (Fig. 

4b). When there is only orientation error, the orientation error tolerance, er, is arctan(r/ℎ)
(Fig. 4c). When there is both translation and orientation error, the error tolerance values 

depend on one another and on their relative directions (Fig. 4d). Therefore, we can estimate 

the ranges of acceptable translation and orientation errors as [ − r, r] and [ − arctan(2 ∗ r/ℎ), 
arctan(2 ∗ r/ℎ)], respectively. In this paper, we consider r = 4 mm and ℎ = 25 mm, which 

represents the smallest clinically-relevant nodules and the capability of current clinical tools 

[2]. Based on these values, we calculate et = 4 mm and er = 17 °.

IV. METHOD

In this section, we describe our proposed method and how it integrates in a typical clinical 

workflow for a patient, starting with preoperative CT image acquisition and ending in 

bronchoscope localization relative to a planned needle insertion pose.

A. Data Acquisition

Using S, we manually segmented A and manually determined the 6 DoF pose, li ∈ L, of 

every bifurcation on the airway wall. Using a simulator we developed in 3D Slicer [40], we 

generated virtual bronchoscopies in A. For each camera frame throughout the bronchoscopy, 

we recorded the camera’s pose with respect to the closest visible bifurcation in its view. The 

result of the simulation is a dataset of I, Tlib  pairs. Fig. 5 shows the simulation environment 

including a sample airway segmentation, its tagged landmark poses, and the simulated 

bronchoscopy view.

To increase the breadth of our dataset, we augmented the data in several ways. To increase 

the diversity of camera views, for each camera frame, we generated additional I, Tlib
pairs by transforming the bronchoscope’s pose by some translational and rotational noise, 

b′ = b · Tnoise. The Euler angles for the rotational noise were sampled from a uniform 

distribution over [−20,20] degrees, and the translational noise was sampled from a Gaussian 

distribution N (0, 2) mm for the camera’s x and y axes and from a uniform distribution 

over [−25,0] mm for the z axis. Since every bronchoscopy we simulate starts at the trachea, 

the frequency with which landmarks are seen decreases with the depth of the landmark 

in the airways. To increase the representation of distal bifurcations in our dataset, we 

created additional I, Tlib  pairs by transforming the virtual camera randomly with respect 

to the pose of each bifurcation. To encourage the model to be invariant to color features 
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and instead focus on geometric properties of the bifurcations, we augmented our data by 

randomly coloring triangles in the mesh representation of A within our simulator.

We perform several filtering steps to ensure that the data we generate is informative. We 

filter images where 30% or more of the image is purely white. To avoid images where the 

nearest landmark is on the border of the camera’s view and not in its main area of focus, 

as can happen when the bronchoscope travels past a landmark, we filter all images where 

the landmark appears in the outer 90% of the image. Additionally, since rotations about 

the axial axis of the bronchoscope do not affect the needle’s position after its insertion, we 

remove ambiguity about this axis from the dataset by arbitrarily setting all landmark poses to 

one hemisphere. To avoid ambiguity on the edges of the hemisphere, we remove all images 

within ten degrees of the borders. We consider a landmark as the true label of a given camera 

frame when it is the nearest landmark in the image and within 25mm from the camera’s 

position. The camera is always within 25mm of a landmark other than when it is at the 

top of the trachea or the top of the left main bronchus. Since physicians do not pierce the 

airways at these proximal generations, excluding these images from our dataset does not 

affect the clinical application our method is addressing.

B. Learning Landmark Based Localization

Since p is defined in CCT  and is not visible in I, which is defined in CW , we cannot predict 

Tpb  directly from I. However, the bifurcations, li, are visible in I. Given I with li as the 

nearest visible landmark, we need to estimate Tlib , the relative transformation from b to li in 

b’s frame.

To predict Tlib , we learn a function F(I) = [t, q], where t ∈ ℝ3 represents a prediction for the 

true relative translation, t, and q ∈ S2 represents a prediction for the true relative orientation, 

q. q is composed of the roll and pitch angles, β and γ, respectively. We do not learn α, the 

relative angle about the axial axis of the bronchoscope, since changes about this axis do 

not affect the final position of the needle. This reduction in the dimensionality of the output 

space reduces the number of variables that our method needs to regress compared to other 

orientation representations such as quaternions ℝ4 , log quaternions ℝ3 , or axis-angle ℝ3 . 

We represent F as a deep neural network. We use the following loss function to train our 

network:

L = t− t 1 + μ q−q 1

(4)

where μ is a hyperparameter that scales the orientation loss to help jointly learn translation 

and orientation. We train our model in a supervised fashion using the ground-truth I, Tlib
pairs we generated. The result of training is a learned model that, given I, predicts Tlib  for 

the nearest visible landmark, li, in I.
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Our model is structured as an encoder-decoder network. We use a ResNet [41] model 

with 50 layers that was pretrained on ImageNet [42] as our encoder and a series of four 

convolutional layers as our decoder, similar to the pose decoder presented in [43]. We 

implemented our method in Pytorch and trained the model for 20 epochs using Adam [44] 

with a weight decay of 1e−3. We set our learning rate to 1e−4 for the first 6 epochs and then 

decay it by 1e−1 every 6 epochs. We used a batch size of 32 and an input image resolution of 

480 × 544. We set the loss scaling term, μ, to 10. Training was done using an NVIDIA Tesla 

V100 GPU and takes approximately 24 hours.

C. Intraoperative Localization

Using our trained model, F, we can recover the pose of the bronchoscope relative to 

the planned needle insertion pose. Given I, we use F to predict the transformation Tlib . 

Since both p and the landmarks, li ∈ L, are defined in CCT , we can calculate the relative 

transformation from li to p in li’s frame, Tlib , using S. Since the bifurcations do not vary 

significantly under respiratory motion, the transformation Tlib  does not vary between CCT

and CW . We then calculate b relative to p as Tpb = Tlib · Tlib  (see Fig. 6). Since our 

prediction of Tpb  is done with respect to the local coordinate frame of li, our method is 

tolerant to deformation from respiratory motion.

V. EVALUATION

We evaluated our approach on 3 human patient cases for which chest CT scans were 

publicly available in the EXACT’09 dataset [45]. For each patient, we segmented A from 

the expiratory CT scan using 3D Slicer and manually labeled L. We use the airways at 

expiration since it has been shown that the lung closely resembles this state intraoperatively 

[46], [47]. Table I shows characteristics of the data. We applied our method and trained a 

model F on each patient individually from data spanning all airway generations.

Respiratory Deformation Evaluation Data

During a bronchoscopy procedure, patients are mechanically ventilated and the lungs deform 

similarly to a normal respiratory cycle. This constant motion of the anatomy causes CT-to-

body divergence and presents a challenge for localization. To evaluate the performance 

of our model under physiologic respiratory motion, we created an evaluation dataset by 

deforming A from the expiratory state over varying levels of patient-derived respiratory 

deformation characteristics. To estimate a patient’s respiratory deformation, we performed 

deformable image registration [48] between the CT scan at expiration with a CT scan for 

the same patient at inspiration. These CT scan pairs are available in EXACT’09. The result 

of this deformable registration is a 3D deformation field that we interpolated to generate 

a series of three deformed segmentations corresponding to increasing levels of deformed 

airways states between expiration and inspiration. We interpolated the deformation field 

to match reported displacement values of the lungs throughout breathing [8], [49], [50], 

producing Low, Medium, and High deformation states. We then generated our evaluation 

data using our simulator on the airways in the Low, Medium, and High deformation states. 
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Fig. 7 shows the respiratory motion for one patient in our dataset along with the deformation 

displacement by lung region across all patients.

We report results for our method across the three levels of deformation, which the models 

never saw or used during training. To show that our method can accurately localize the 

bronchoscope in peripheral airways, we report results for all distal airway generations. In all 

experiments, we use Eq. 2 and Eq. 3 to evaluate our model. Since we do not regress α, we 

ignore its effect when reporting the orientation error. Our method localizes the bronchoscope 

in under 20 milliseconds per image, achieving real-time performance.

B. Tolerance to Respiratory Motion

Fig. 8 shows our model’s results by airway generation and level of deformation averaged 

across the three patients. Figs. 8(a) and (b) show the model’s error in translation, Etrans, and 

orientation, Erot, respectively. These results show that the model is able to accurately localize 

the bronchoscope with respect to the nearest landmark in the anatomy, achieving overall 

average (± standard deviation) translational errors of 2.97mm ± 2.20mm (median 2.36mm) 

and average rotational errors of 9.57 ° ± 8.60 ° (median 7.59 °), which are below the strictest 

clinical requirements we calculated for et and er in Sec. III. These results also show that the 

model’s performance is invariant to depth in the airways, accurately localizing the camera in 

distal airway generations that are notoriously challenging for accurate localization because 

of increased levels of deformation. We also see that the method’s absolute performance does 

not vary significantly with increasing levels of deformation, indicating that the model is able 

to overcome the effects of respiratory deformation when localizing the bronchoscope.

C. Generalization Across Patients

While in a typical clinical setting every patient will have a preoperative CT scan, being 

able to generalize across patients is beneficial in terms of leveraging limited data in the 

medical domain and in developing robust learning-based algorithms. To evaluate the ability 

of our method to generalize across patients, we evaluated our trained models on simulated 

bronchoscopies of a separate patient from a different dataset. We used a segmentation 

of a human CT scan from [51], a publicly available dataset of medical environments for 

robot motion planning, and we manually labeled the bifurcations. Fig. 9 shows the average 

performance of the three models that were trained on the three patients from EXACT’09 

and evaluated on this new patient. The model trained on EXACT09–18 generalizes slightly 

less well than the other two models likely as a result of the fewer bifurcations in that patient 

which limits the variety of landmarks the model is exposed to during training. Overall, the 

results show that our method generalizes across patients, achieving similar performance to 

the performance in the experiments above under respiratory deformation. This suggests that 

the models learn generalizable features for accurate localization.

D. Tracking a Bronchoscope Over Time

To evaluate our method as it would be used in a bronchoscopy procedure, we apply 

our method to simulated bronchoscopy video sequences where the camera approaches 

a planned needle insertion pose. We evaluate our model’s ability to accurately localize 

the bronchoscope throughout the sequence of frames. We arbitrarily selected four needle 
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insertion poses in deformed airways from our evaluation dataset and recorded videos of 

the bronchoscope traveling towards the planned needle insertion pose. The insertion poses 

span airway generations four through nine. The bronchoscope starts 15 to 20mm from the 

planned insertion pose and the videos range from 209 to 421 frames. We randomly added 

translational and rotational noise with 25% probability per frame to the camera throughout 

the sequence to simulate unexpected motion intraoperatively. The average translation and 

orientation errors across the 4 videos was 1.8 mm ± 0.9 mm and 3.7° ± 1.4°, respectively. 

Fig. 10 shows the localization results of our method on two sample sequences. These results 

show that our method is able to accurately localize the bronchoscope along a bronchoscopic 

sequence. Furthermore, since our method considers every image independently, an error 

from a poor prediction on one challenging image does not propagate to future predictions.

VI. CONCLUSION

In this paper, we developed a real-time camera-based method for accurately localizing a 

bronchoscope intraoperatively with respect to a planned needle insertion pose using the 

airway bifurcations along the airway wall as landmarks and leveraging deep learning. We 

show that since the bifurcations do not vary significantly with respiratory motion, our 

method overcomes localization challenges from global and local respiratory deformation. 

We show that by localizing the bronchoscope in the local coordinate frame of the 

bifurcations, our method is unaffected by the repetitive appearance of the airways that 

afflicts global pose estimation and that the geometric features of the bifurcations enable our 

method to learn features that generalize across varying levels of intra-patient deformation 

and inter-patient variation despite the lack of texture on the airway wall. Our method is 

able to localize the bronchoscope in distal airways with levels of accuracy required for the 

smallest clinically-relevant lung nodules. In the future, we hope to evaluate our method 

on real bronchoscopy images and address challenges from local deformations caused by 

the bronchoscope. We also hope to analyze the relationship between the number of tagged 

landmarks and our method’s performance. Our hope is that our method can be integrated 

with existing bronchoscope navigation systems to increase physicians’ nodule targeting 

accuracy and also serve as a core component in an autonomous robotic bronchoscopic 

needle insertion system.
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Fig. 1. 
During bronchoscopy, a physician deploys a bronchoscope through the airways to target a 

suspicious lung nodule (yellow) for biopsy or treatment. The physician needs to localize the 

bronchoscope’s tip intraoperatively (right) in reference to the planned needle insertion pose 

generated from the reconstruction of a preoperative CT scan (left). The airways’ repetitive 

appearance, the airway lumen’s limited distinguishable features, and respiratory deformation 

make this a challenging task.
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Fig. 2. 
Human lungs consist of a left lung and a right lung. The right lung has three lobes: right 

upper lobe (RUL, gray), right middle lobe (RML, blue), and right lower lobe (RLL, orange). 

The left lung has two lobes: left upper lobe (LUL, green), and left lower lobe (LLL, pink). 

The bronchial tree (tan) begins at generation 0 and the generation count is incremented 

at each bifurcation (right). Localization in distal airways (generations 4+) is clinically 

challenging because of increased respiratory deformation in these peripheral lung regions.
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Fig. 3. 
Workflow of our proposed method. In the preoperative stage, a patient undergoes a CT scan 

that generates a static 3D image of the anatomy which is used to segment the airways, plan 

the procedure, and identify landmarks. In the intraoperative stage, bronchoscope localization 

is performed using the bronchoscope camera’s view in a lung undergoing respiratory 

motion.
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Fig. 4. 
Assuming a nodule (yellow) with radius r and a needle with maximum insertion length ℎ, we 

can calculate the error tolerance from a planned insertion site (arrows) on the surface of the 

airway wall (tan).
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Fig. 5. 
A 3D model of the airways segmented from a preoperative CT scan where each bifurcation 

is tagged with a 6 DoF pose (visualized using the coordinate frames) (left). Simulated 

bronchoscopy views from inside the airways with the bifurcation tags (middle), and the 

same views as they exist in the dataset without explicit tags (right).
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Fig. 6. 
We localize the bronchoscope (b) with respect to the planned needle insertion pose (p) using 

the bifurcations on the airway wall li .
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Fig. 7. 
Intraoperative respiratory motion results in CT-to-body divergence. The bronchoscope (teal 

frustum, magnification) is displaced with the airways, which affects localization methods 

like EM, but the camera’s internal view is only affected by local deformations, which are 

less significant at bifurcations (left). A boxplot showing the displacement of bifurcations in 

our evaluation data across the three levels of deformation by lung lobes averaged across the 

three patients.
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Fig. 8. 
Average translation (top) and orientation (bottom) regression performance averaged across 

the three patients at each airway generation, grouped by level of deformation.
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Fig. 9. 
Using the three models trained on patients in the training set, we display average translation 

(top) and orientation (bottom) regression performance on 9,875 images from a new, separate 

patient.

Fried et al. Page 22

Rep U S. Author manuscript; available in PMC 2024 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 10. 
Tracking performance of our method approaching a piercing pose on two virtual 

bronchoscopy sequences. Black dotted lines indicate a change in the visible bifurcation. 

Coordinate frames in the images inside the airways show the estimated pose of the 

bronchoscope projected onto the bifurcation using Tlib . Teal and pink coordinate frames 

are the planned and estimated needle insertion poses, respectively.
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