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Summary

As the value of clinical imaging is expanded through retrospective analyses, it is imperative that 

all efforts are made to optimize validity. Such considerations for retrospective designs should 

prioritize factors like naturalistic conditions for observations and measurement replicability, while 

avoiding sample biases and reliance on strict clinical timelines. Valid methodological approaches 

are immanent for successful translation from retrospective observational designs into prospective 

pragmatic research with actionable potential. In particular, thousands of studies have sought 

to associate clinical outcomes to measures of body composition across diverse patient groups. 

Post-hoc use of computed tomography (CT) to quantify adiposity and lean tissue characteristics 

has most frequently involved just a single slice at the level of the third lumbar vertebrae (L3). 

Abundant in statistical significance and inconsistencies alike, such methods have yet to be 

implemented or deemed valuable for making real-world clinical decisions. We present herein a 

concerning perspective, for both magnitude and prevalence, of a widely overlooked source of data 

variability for this methodology: the hinderance of pants and other tightly fit clothing.
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Introduction

Retrospective analysis of computed tomography (CT) imaging has been widely utilized 

in clinical populations as the “gold standard” method for quantifying body composition 

and tissue volumes.1 Thousands of published studies across the last 30 years suggest 

a concerningly high heterogeneity for statistical associations involving skeletal muscle 
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and adiposity across patient populations that represent all types of cancer, COPD, and 

recently COVID-19.2-8 Like most clinical datasets, the extensive presence of confounds, 

inconsistencies, and missing data tend to complicate post-hoc imaging analyses.9 In addition 

to obvious data artifact, ample threats to study validity can be well concealed by lengthy 

patient charts, co-occurring factors, and methodological limitations. In the absence of 

a highly controlled environment, we neglect to consider the multiplicity of factors that 

can influence naturally occurring data, and thus, real-world utility of findings.9,10 Most 

importantly, we often fail to rehumanize collections of datapoints to understand patterns, 

compound clinical effects, and limitations experienced by both the clinical team and patient 

that maximize the value of post-hoc conclusions.

Most studies utilize a single axial slice at the level of the third lumbar vertebrae (L3) 

for estimating body composition.11 Justification for use of the L3 slice specifically is 

rarely discussed, though it has been suggested to have the strongest correlation to full 

body composition.12,13 Notably, the L3 slice is minimally affected by anatomical variation 

that stems from differing position of the arms and legs, making it seemingly consistent 

across individuals. Further, this region is rarely affected by foreign structures (i.e. joint 

replacements, port-systems, implantable cardioverter defibrillators, etc.) aside from the 

occasional spinal implant.

Despite the L3 slice having the greatest anatomical consistency among populations, 

consistent views of this lumbar level require imaging of the abdominopelvic region or 

“full-body” scans, as chest or thorax windows alone often fail to caudally extend to L3. As 

such, many studies have attempted to utilize axial slices from the more commonly imaged 

thoracic and upper lumbar regions, 14 though these rarely demonstrate full-body associations 

superior to that of L3.13

Single slice surface area (SA) and attenuation (radiodensity) of skeletal muscle, 

intramuscular adipose tissue (IMAT), subcutaneous adipose tissue (SAT), and visceral 

adipose tissue (VAT) are the most widely quantified variables. These tissue characteristics 

are suggested to represent tissue quantity and quality, and have been associated with 

functional and clinical outcomes including survival, treatment toxicity, and cachexia.2-4,15-18 

These variables are often acquired using semi-automated segmentation of an axial image 

based upon pre-defined radiodensity ranges, or via manual segmentation, potentially 

increasing inter-study variability.11 Single slice variables can be used on their own or in 

combination with other variables; for example, many established cut points for sarcopenia 

utilize skeletal muscle index (SMI), which is defined as single slice skeletal muscle SA 

normalized to body height.11 Skeletal muscle gauge (SMG) is also commonly used, defined 

as the product of SMI and mean attenuation of the skeletal muscle.19 Similarly, multiple 

equations have been developed for estimation of full-body fat mass (FM) and fat-free 

mass (FFM) using these variables.20 Characterization of the described tissues via CT has 

more frequently been used to stratify patient cohorts cross-sectionally, with fewer studies 

longitudinally tracking the same cohort of patients using these methods.

Commonly reported protocols for L3 slice segmentation involve a single axial DICOM 

image, retrospectively obtained, provided to the research team and further analyzed using 
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software such as Slice-O-Matic, ImageJ, Osirix, or directly within PACS.11 Under this 

methodology, concern for how a single axial slice relates to the rest of the body is not 

considered. Can we afford to ignore the considerable displacement of tissues in this region 

frequently caused by clothing, namely pants?

A critical issue when utilizing retrospective data for post-hoc analysis is consideration for 

the context in which the data were initially obtained.9 To clarify, virtually no CT images are 

clinically obtained for the primary purpose of assessing body composition or tissue volumes. 

In the context of standard of care procedures that involve CT imaging, patients may not be 

instructed to remove clothing if it does not hinder the objective of the test. In oncological 

PET/CT imaging, which is becoming increasingly common, clothing is unlikely to impede 

the ability to monitor for metastases, and thus, is often not removed. This seemingly 

insignificant influence of clothing has yet to be studied or even discussed as a limitation 

for this widely utilized research method. As demonstrated in Figure 1, two-dimensional 

perspectives from the L3 axial slice may not indicate any reason for concern; however, the 

depicted L3 axial slice exists within the affected region in each of these four patients.

Prevalence of Clothing Interference

To assess the prevalence of clothing artifacts at the waist, including at the L3 level, all 

public-access full-body and skull-to-thigh PET/CT scans from The Cancer Imaging Archive 

(TCIA) were visually inspected.22 1026 scans were evaluated across 23 open-access TCIA 

datasets (466M/560F, age 62.0±11.7y, BMI 27.3±5.6 kg/m2); of the scans assessed, 96.2%, 

the presence of pants or undergarments was apparent in 96.2% of scans, though noticeable 

tissue displacement existed in 72.7%. Further, 60.8% of scans had an apparent presence of 

pants or undergarments specifically at the mid-L3 level, including 51.1% with noticeable 

tissue displacement. Breakdowns of clothing artifact prevalence by patient diagnosis and for 

each TCIA dataset are provided in Tables 1 and S1, respectively.

The sexually dimorphic influence of clothing should be particularly emphasized. Notable 

tissue displacement from pants or undergarments was more common in females (436 of 560 

scans, 77.9%) than males (310 of 466 scans, 66.5%). This effect, however, is particularly 

evident at the L3 level, the region most widely utilized for body composition; at the L3 slice, 

69.6% of females demonstrated tissue displacement, compared to only 28.8% of males. This 

sexually dimorphic effect is likely due to the tendency for women to wear their pants higher 

than men, as well as sex differences in the regional distribution of adipose tissue. When 

apparent in males examined herein, lower-body clothing appeared to begin around the L4/L5 

vertebral level and extend into the sacrum, which was substantially lower than most females.

Additional relationships with clothing artifact also existed for age and BMI. Compared to 

scans unrestricted by lower-body clothing, scans with pant-related tissue displacement were 

from a significantly older cohort of patients (p<0.0001, 3.52y mean difference), including 

at the L3 level (p=0.001, 2.43y mean difference). Similarly, scans restricted by lower-body 

clothing also represented a patient cohort with significantly higher BMI (p<0.0001, 2.53 

kg/m2 mean difference), including at the L3 level (p<0.0001, 2.26 kg/m2 mean difference). 
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Increasing BMI tended to correspond with overall severity of clothing-associated tissue 

displacement for both males and females.

It should be noted that the L3 level is not the only area of concern for this type of 

interference. Though less common, use of the umbilicus and various thoracic vertebrae have 

also been explored as potential landmarks in this type of research.53-56 Herein, we identified 

51.3% of scans to have notable tissue displacement at the level of the umbilicus (526 of 

1026 scans), and thoracic restriction resulting from the bra was present in 28.0% of female 

scans (157 of 403 scans).

Magnitude of Clothing Interference

To further assess the impact that clothing restriction may have on measured variables, tissue 

volumes for a single patient were segmented across affected slices using Slice-O-Matic 

(version 6.6); following the Alberta protocol,57 skeletal muscle (-29 to 150 HU), IMAT 

(-190 to -30 HU), VAT (-150 to -50 HU), and SAT (-190 to -30 HU) were segmented across 

51 consecutive axial slices, spanning a vertical distance of 163 mm. Skeletal muscle and 

IMAT were further combined to represent all tissue within the muscle fascia. Total surface 

area (SA), encompassing all tissues, was also examined for each slice.

Slice-by-slice comparisons are demonstrated in Figure 2, including representations of key 

tissue proportions (Figure 2B), attenuation mean and standard deviation (SD; Figure 2C-D), 

and SA (Figure 2E). Compared to tissue proportions across the 51-slice volume, single 

slice SA of each tissue was highly variable across near slices (Figure 2B). Relative tissue 

SA quantified from slices with the lowest and highest proportions have a range of 24.1% 

for SAT (16.6–40.7%), 11.5% for VAT (13.7-25.2%), and 10.5% for combined muscle and 

IMAT tissues (18.1-28.5%).

While not as drastic as shifts to SA, changes also appear to exist for averages and variability 

(SD) in tissue radiodensity. VAT and muscle tissues experience absolute minima for mean 

attenuation within the bodily region experiencing the greatest clothing constriction (Figure 

2C). This region, highlighted in yellow in Figure 2C-E, also reflects the maximum SD of 

SAT radiodensity (Figure 2D). Average single slice SAT attenuation had a range of 10 HU 

(-103.3 to -93.3 HU), 12.8 HU for VAT (-100.4 to -87.6 HU), and varied by 34.2 HU within 

the muscle fascia (-2.1 to 32.1 HU).

The most compelling evidence surrounding clothing artifact comes from sizable changes to 

tissue SA (Figure 2E). Compared to the slice with the lowest SA, the largest slice was 49.4% 

greater in total 2D area (20 slices, 65.4 mm distance). This relative difference in SA had 

substantial variability for all key tissues; compared to the slice with the lowest SA, the slice 

with the largest SA was 165·6% greater in SAT SA (45 slices, 147.2 mm), 66.1% greater 

in VAT (16 slices, 52.4 mm), and 54.8% greater in muscle and IMAT tissues combined 

(49 slices, 160.23 mm). Considerable changes to tissue SA occurred in only a few slices; 

compared to the slice most affected by pant restriction, there was a 61.5% and 79.9% greater 

SAT SA on the axial image five slices above and below it, respectively (16.35 mm distance). 
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Across the same distance, VAT SA reflected a decrease of up to 15.4%, whereas muscle 

increased by up to 16.8%.

Conclusion

Taken together, the high slice-to-slice intraindividual variability for these widely used 

variables presents a difficult challenge for post-hoc analyses. SMI cut points of 39 and 41 

across the L3 to L5 region are commonly used to stratify females for sarcopenia;5,11,58 the 

patient case presented herein can be classified as above or below either of these thresholds 

based solely upon slice selection between L3 and L5. Relative changes alone that occur 

to tissues over the span of a few slices provide reason for concern, but these effects may 

be even further compounded among calculated metrics, such as SMG, that considers both 

skeletal muscle SA and attenuation from a given axial slice.

Not only can single slice selection influence stratification to patient cohorts in cross-

sectional analyses but it could also affect the reliability of repeated measures analyses 

in tracking longitudinal changes. On top of any real change to tissues, differences in the 

location or magnitude of clothing interference between scans could artificially distort, inflate 

or mask any real change within tissues.

The high prevalence of tissue displacement by result of clothing, especially in females, has 

the potential to substantially effect clinical research findings, as well as their applications, 

when utilizing methods that involve only a single axial slice in the lumbar region. These 

data emphasize the importance of performing data quality assessments regarding real-world 

context and variability within clinical presentation of data. As software advancements 

continue, methodology to account for the potential influence of clothing interference should 

be inherent in all study designs; namely, the use of volumetric segmentation or standardized 

regions/volumes of interest (ROI/VOI) across patients should be prioritized.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 2D & 3D Representations of Patients Imaged with Clothing
Four patients (two female patients on the left, two male patients on the right) depicted as 3D 

reconstructions and as 2D axial views from the L3 level using the 3D Slicer software.21
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Figure 2A-E. Tissue Morphology by Influence of Pants
A) 3D rendering of a female patient (78 years old, BMI of 23.9). B) Volumetric proportions 

of key tissues used in body composition evaluations, representing the high variability in 

relative tissue proportions from 51 consecutive axial slices (left) and the volumetric tissue 

proportion across all combined slices (right). C) Slice-by-slice representation of average 

attenuation (HU) by tissue. D) Slice-by-slice representation of attenuation standard deviation 

(HU) by tissue. E) Slice-by-slice representation of surface area (cm2) by tissue.
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Table 1.

Open Access PET/CT Scans Reviewed from TCIA

Diagnosis
# Scans

Reviewed

# Scans with Apparent
Pants

# Scans with Tissue
Displacement from Pants

Dataset
CitationsAny L3 Any L3

Breast Cancer 218 215 165 162 145 22-25

Endocrine Cancers 1 1 0 1 0 22,26

Gastrointestinal Cancers 2 2 1 2 1 22,27,28

Gynecological Cancers 79 74 63 67 56 22,29-32

Lung Cancers 663 633 366 461 295 22,33-42

Non-cancer 4 4 4 4 4 22,43

Prostate Cancer 26 25 7 22 6 22,44-46

Skin & Soft Tissue Cancers 24 24 12 18 11 22,47-50

Urological Cancers 9 9 6 9 6 22,51,52

Total 1026 987 (96.2%) 624 (60.8%) 746 (72.7%) 524 (51.1%)

Full-body and skull-to-thigh PET/CT scans reviewed from datasets available from The Cancer Imaging Archive (TCIA). Of the reviewed scans, 
the number of scans classified as suspected to have clothing present (apparent pants) and the number of scans with pants causing noticeable 
displacement of tissues are displayed; each are quantified across any location, as well as specifically at the level of the third lumbar vertebrae (L3).
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