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Gut metaproteomics can provide direct evidence of microbial functions actively expressed in the
colonic environments, contributing to clarify the role of the gutmicrobiota in human physiology. In this
study, we re-analyzed 10 fecal metaproteomics datasets of healthy individuals from different
continents and countries, with the aim of identifying stable and variable gut microbial functions and
defining the contribution of specific bacterial taxa to the main metabolic pathways. The “core”
metaproteome included 182microbial functions and 83 pathways that were identified in all individuals
analyzed. Several enzymes involved in glucose and pyruvate metabolism, along with glutamate
dehydrogenase, acetate kinase, elongation factors G and Tu and DnaK, were the proteins with the
lowest abundance variability in the cohorts under study. On the contrary, proteins involved in
chemotaxis, response to stress and cell adhesion were among the most variable functions. Random-
effect meta-analysis of correlation trends between taxa, functions and pathways revealed key
ecological andmolecular associations within the gut microbiota. The contribution of specific bacterial
taxa to the main biological processes was also investigated, finding that Faecalibacterium is the most
stable genus and the top contributor to anti-inflammatory butyrate production in the healthy gut
microbiota. Active production of other mucosal immunomodulators facilitating host tolerance was
observed, including Roseburia flagellin and lipopolysaccharide biosynthetic enzymes expressed by
members of Bacteroidota. Our study provides a detailed picture of the healthy human gut microbiota,
contributing to unveil its functional mechanisms and its relationship with nutrition, immunity, and
environmental stressors.

Along the gastrointestinal tract, many diverse microbial communities
colonize the different mucosal and luminal sites. These sites are character-
ized by specific conditions affecting the equilibrium between members of
the microbial consortia and the surrounding environment. Within the
microbial communities, each species regulates its own metabolic pathways
to improve biomass growth and replication and to protect the cell against
toxicity and stressful conditions. Notwithstanding the taxonomic hetero-
geneity of the human gut microbiota (GM), microbial adaptation to this
ecological environment implies the existence and interindividual sharing of
keystone microbial members and their biological functions. To this end,
“core” elements of the human GM are defined as those taxa and/or their
functions that are shared among individuals1. In the past decades, the
genomic features of the human GM have been investigated at different
levels, including 16 S rRNA gene amplicon and high-quality shotgun

metagenome sequencing, revealing distinct differences in the relative
representation of GM members at several taxonomic levels2–6. Metatran-
scriptomic studies revealed thatGMtranscriptional profiles are significantly
more individualized than functional potential profiles provided by meta-
genomics, but less variable thanGM taxonomic composition, and identified
a “core” and a “variable”metatranscriptome, including genes universally or
differentially transcribed over time and across participants, respectively7,8.
Gut metaproteomics, in turn, enables the identification and quantification
of protein functions (and relatedmetabolic pathways) actively expressed by
theGMand thus significantly contributing tohumanphysiology9.Although
this approach has increasingly been applied to studies investigating the
relationship between the GM and human diseases10–12, there is still a lack of
knowledge about the “core” colonic metaproteome of a healthy human
population, i.e., all those protein functions which could be considered as the
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“baseline” of GM biology requirements in non-diseased individuals. Fur-
ther, little is known about the contribution of specific taxa to metabolic
pathways and/or fluxes in physiological conditions. Despite the universally
acknowledged existenceof activemetabolic cross-feedingbetweenmembers
of the GM, the whole complexity of microbial interplays is still far from
being solved.Growing attentionhasbeenpaid tomonitoring theproduction
of specific metabolites by intestinal microbes, including short-chain fatty
acids (SCFAs), being key regulators in healthymetabolism and inmetabolic
disorders13. Robust data on the role of each taxon in the different metabolic
networks are thus keenly required.

In a pioneering metaproteomics study, our group analyzed the fecal
metaproteome of 15 healthy subjects from a native and highly monitored
Sardinian population. We investigated conserved and variable GM func-
tions expressed in that cohort, also examining the taxon-specific con-
tribution to metabolic pathways (including polysaccharide degradation,
glycan transport, glycolysis and SCFA production)14. Here, we aim to vali-
date and extend the previous observations by re-analyzing 10 fecal meta-
proteomics datasets, for a total of 134 healthy individuals from different
continents and countries. Taxonomic and functional data were parsed to
identify a “core” healthy gut metaproteome, along with more variable fea-
tures. In addition, we found strong correlation trends between taxa, func-
tions and pathways with important ecological and molecular implications.
Finally, we investigated the contribution of specific microbial taxa to the
main metabolic pathways and biological processes, with a focus on SCFA
biosynthesis, tricarboxylic acid (TCA) cycle and quorum sensing.

Results
Datasets and general metrics
Following a review of the scientific literature and a search for publicly
available fecal metaproteomics datasets containing healthy subjects, we re-
analyzedhere eight datasetsmatching the inclusion criteria (seeMethods for
details). These datasets spanned different sample preparation and mass
spectrometry methods and a wide geographic distribution, including
cohorts from Australia, Canada, China, Germany, Italy, Spain and USA.
The previously published Italian study14 was extended with further five
healthy subjects and two unpublished datasets (also matching the inclusion
criteria) were finally added, for a total of 10datasets (their characteristics are
listed in Table 1) and 134 healthy human subjects.

The same bioinformatic pipeline for peptide identification, quantifi-
cation and annotation (see Methods for details) was applied to the 10
datasets. A mean of 40,585 peptides matching the human gut metagenome
database were quantified per dataset (single dataset metrics are provided in
SupplementaryData 1). After filtering out peptides not assigned to bacterial

or archaeal taxa and merging the results from the 10 datasets, a total of 51
phyla, 421 genera, 2757 Kyoto Encyclopedia of Genes and Genomes
(KEGG) orthology (KO) functions, 150 KEGG pathways, 4343 phylum-
specific functions and 8861 genus-specific functions were detected (Sup-
plementary Data 2).

Abundance and variability of gut metaproteomic features
Ourfirst aimwas to get closer to adefinitionof the “core”humanhealthy gut
metaproteome, identifying taxonomic and functional features consistently
present with high abundance and frequency in the GM of healthy indivi-
duals. To this purpose, we aggregated normalized peptide abundances from
the 10 datasets according to taxon (namely, phyla and genera), function,
pathway and taxon-specific functional feature annotations (Supplementary
Data 2). Also, to counterbalance high variability and possible batch effects
between different datasets, we ranked features based on their relative
abundance in each subject, and then considered the rank distribution
among all subjects (Supplementary Data 3).

In taxonomic terms, 4 phyla and 22 genera were detected in the gut
metaproteome of all subjects, whereas 7 phyla and 45 genera were identified
in all datasets. Themost abundant taxa are shown in Fig. 1a (rank data) and
Supplementary Fig. 1A (relative abundance data). Starting from higher
taxonomic levels, Bacillota (formerly Firmicutes) was the first most abun-
dant phylum in 78% of the subjects and the second in the remaining 22%,
with an overall mean relative abundance of about 60%. Bacteroidota (for-
merly Bacteroidetes) was ranked as first, second and third phylum in 22%,
75%, and 3% of the subjects, respectively, with an overall mean relative
abundance of about 35%. Actinomycetota (formerly Actinobacteria) and
Pseudomonadota (formerly Proteobacteria) were at the third and fourth
place (bothwith relative abundance around 2%).All otherphylawere under
1% of abundance and much more variable in terms of median rank. Going
down to the genus level, it must be noted that around 70% of the measured
peptide abundance was related to peptides which could not be unambigu-
ously assigned to a specific genus.

Considering the genus-specific peptides, Prevotella stands out as the
genus with the highermean relative abundance and the second higher rank,
also showing a high variability between individuals, as demonstrated by the
mean coefficient of variation (cv) data (Fig. 2a). On the contrary, Faecali-
bacterium was first in rank and second in relative abundance, but with the
lowest cv among all genera. Bacteroides exhibited an intermediate cv value.
Other 12 genera were among the top 20 based on rank data while exceeding
1% of mean relative abundance, including several Bacillota (Ruminococcus,
Roseburia, Eubacterium, Clostridium, Oscillibacter, Subdoligranulum and
Dialister, in addition to Faecalibacterium), a few Bacteroidota (Bacteroides,

Table 1 | Characteristics of the datasets (re-)analyzed in this study

Dataset
code

# subjects Country Stool PT Sample
prep

LC
run (min)

Instrument
model

FM ProteomeXchange
accession

Reference

D01 6 Spain yes ISD 265 Q-Exactive HCD PXD020786 15

D02 16 Australia yes ISD 90 Q-Exactive HCD PXD008870 16

D03 20 China no FASP 150 Fusion HCD IPX0002453001 17

D04 17 Germany no Gel 165 Elite CID PXD010371 18

D05 19 Germany no FASP 155 Elite CID PXD034175 19

D06 20 Italy no FASP 180 Velos HCD PXD005780a 14a

D07 8 USA yes ISD 265 Fusion HCD PXD022433 20

D08 12 Italy no FASP 180 Q-Exactive HCD PXD046818 unpublished

D09 10 Italy no FASP 310 Velos HCD PXD046818 unpublished

D10 6 Canada yes ISD 120 Q-Exactive HCD PXD015482 21

CID Collision-induced dissociation, FASP Filter-aided sample preparation, FM fragmentation mode, HCD Higher energy collisional dissociation, ISD In solution digestion, LC Liquid chromatography, PT
Pretreatment. All instruments were Orbitrap mass spectrometers from Thermo Fisher Scientific.
aThe original study (and related dataset) reported data from 15 subjects; further 5 subjects from the same cohort had been analyzed following the same protocol and their data have been included in this
study (raw MS files have been deposited in ProteomeXchange along with those of datasets D08 and D09).
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Alistipes andPhocaeicola, in addition toPrevotella) and twoActinomycetota
(Bifidobacterium andCollinsella). Other Bacillota with lowermedian ranks,
such as Blautia,Dorea and Evtepia, exhibited a very low variability between
subjects in terms of mean abundance; on the contrary, very high cv values
were observed for some genera, including Acidaminococcus, Akkermansia,
Anaerostipes, Butyrivibrio, Enterocloster,Megasphaera and Tyzzerella.

In functional terms, 182 KO functions and 83 pathways were detected
in the gut metaproteome of all subjects, whereas 422 KO functions and 115

pathways were identified in all datasets. The most abundant KO functions
and pathways are shown in Fig. 1b (rank data) and Supplementary Fig. 1B
(relative abundance data). Among the most abundant proteins we found
many glycolytic enzymes, different types of glutamate dehydrogenase,
several ABC transporters, chaperones and elongation factors, as well as
flagellin and proteins belonging to the starch utilization system (Sus). The
mean relative abundance of the two most represented proteins, glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) and elongation factor Tu,

Fig. 1 | Main taxonomic and functional features of the healthy human gut
metaproteome.Violin plots were based on the distribution of rank data, as observed
in the 134 subjects analyzed in this study. Vertical black lines represent themedian of
the distribution. a Top 10 phyla (top) and top 20 genera (bottom), ordered by

decreasing median rank. b Top 20 KO functions (top) and KEGG pathways (bot-
tom), ordered by decreasing median rank. TS transport system; S-BP substrate-
binding protein; OMP outer membrane protein.

Fig. 2 | Variable and conserved features of the healthy human gutmetaproteome.
Aligned dot plots are based on the distribution of themean coefficient of variation of
the genus abundance among individuals, as observed in the 10 datasets analyzed in
this study. Each grey dot represents a different dataset, while vertical black linesmark

the mean of the distribution. Microbial genera (a) and KO functions (b) with the
lowest (top 10) and highest (top 10) mean coefficient of variation values, among
those detected in all datasets with > 0.01% mean abundance, are shown.
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was around 5%. They also resulted among the functions with the lowest
mean variability between subjects (Fig. 2b), along with less abundant pro-
teins such as the terminal enzyme of acetogenesis, acetate kinase; on the
contrary, the most variable functions were involved in many different
processes, including chemotaxis, response to (oxidative) stress, cell adhesion
and polysaccharide metabolism. Considering the most represented path-
ways, carbon metabolism (which includes enzymes belonging to many
other carbohydrate metabolism pathways) was the best ranked pathway
among all subjects, followed by glycolysis and amino acid biosynthesis.
Other important metabolic pathways, such as pyruvate, butanoate (i.e.,
butyrate) andpropanoate (i.e., propionate)metabolism,were among the top
ranked, together with non-metabolic pathways as ribosome, ABC trans-
porters and two-component system. As shown in Supplementary Fig. 1B,
themean abundance distribution of pathways appeared quite stable among
subjects and datasets.

Correlation trends between taxa, functions and metadata
Wewere also interested in investigatingdirect and inverse correlation trends
between GM features, to identify co-occurrence and mutual exclusion
dynamics. To this end, we calculated the Spearman’s coefficient of corre-
lation (rho) for the abundances of the main taxonomic and functional
features measured in the subjects (separately for each of the 10 datasets);
then, we performed a random effect maximum likelihood (REML) meta-
analysis to obtain a combined estimate for each feature pair (Supplementary
Data 4).

First, we sought for correlations between taxa. At the phylum level
(Supplementary Fig. 2), we observed as expected a significant inverse cor-
relation between the two main phyla, Bacillota and Bacteroidota (rho =
-0.85, FDR = 8.7 ∙ 10−18). At the genus level (Supplementary Fig. 3), themost
significant results were the positive correlation between Faecalibacterium
and Lachnospira (rho = 0.50, FDR = 1.4 ∙ 10−5) and the negative correlation
between Prevotella and Bacteroides (rho =−0.48, FDR = 4.0 ∙ 10−5).

More interestingly, we found 248 significant correlations between the
top 50 KO functions (Fig. 3). Among them, several correlation networks
were identified, mainly involving enzymes with a role in pyruvate and
butyrate metabolism (such as acetyl-CoA C-acetyltransferase,
3-hydroxybutyryl-CoA dehydrogenase and butyryl-CoA dehydrogenase),
chaperones (such as GroEL, GroES, DnaK and HSP20) and ABC trans-
porters (with various oligosaccharides and sugar acids as targets). These
latter, in turn, showed inverse correlations with Susmembers or enzymes as
malate dehydrogenase. We also examined the top 50 most variable KO
functions (based on cv values; Supplementary Fig. 4), finding strong direct
correlations between enzymes involved in sulfur metabolism (mainly
expressed by Desulfovibrio), as well as between several proteins (NADH-
quinone oxidoreductase, chemotaxis protein MotB, DedD protein, ami-
dophosphoribosyltransferase) dealing with very different biological activ-
ities (but all expressed mainly by Bacteroidota).

Moving to pathways (Fig. 4), 212 significant correlations could be
detected, even with extremely high rho values (also due to the considerable
number of enzymes shared between different pathways; see, for instance,
fatty acid, butanoate, propanoate and benzoate metabolism pathways).
More intriguingly, inverse correlations were identified between glycolysis
and features with relevant biological implications such as quorum sensing
and flagellar assembly.

We also investigated the correlation of the relative abundance of the
main taxa and functions with subjects’ chronological age, using the same
meta-analysis approach described above. However, no significant correla-
tions could be found.

Taxon-specific contribution to functions
Another key aim of this study was to investigate the taxon-specific con-
tribution to functions and pathways actively expressed by the members of
the human GM in physiological conditions. Accordingly, peptide abun-
dance data were aggregated based on taxonomic and functional annota-
tions, obtaining lists of phylum-specific and genus-specific functional

features (namely, KEGG KO functions and pathways), along with their
relative abundances and ranks (Supplementary Data 2 and 3). As shown in
Supplementary Fig. 5A, most of the best ranked phylum-specific functions
belonged to Bacillota, with starch-binding outermembrane protein (OMP)
SusD/RagB being the best ranked function expressed by Bacteroidota.
Down to lower taxonomic levels, most of the best ranked genus-specific
functions were assigned to Faecalibacterium and included several ABC
transporters and enzymes involved in glycolysis and butyrogenesis; of note,
Roseburia flagellin was the second-best ranked protein, with Sus proteins
from Prevotella and Bacteroides and cellulose 1,4-beta-cellobiosidase from
Ruminococcus being as well among the top ranked functions. Moving to
pathways (Supplementary Fig. 5B), Bacillota- and Faecalibacterium-specific
pathways were by far the best ranked. According to these data, Faecali-
bacterium appeared to be mainly involved in carbohydrate transport and
metabolism, especially in butyrate biosynthesis.

Then, we specifically compared the metaproteome profile of the two
main phyla, i.e., Bacillota and Bacteroidota, to find which functions and
pathways could be identified as typically expressed by each of these phyla in
the healthy GM (Supplementary Data 5). As shown in Fig. 5, several ABC
transporters, butyrogenic enzymes and flagellin were typical of Bacillota
(highest abundance log ratios), along with benzoate degradation, phos-
photransferase system and sulfur relay system (among others) within
pathways; on the other hand, several Sus members were among the func-
tions most typically expressed by Bacteroidota, with LPS biosynthesis,
protein export, and glutathione metabolism being the pathways with the
lowest log ratios in the Bacillota vs Bacteroidota comparison.

Moreover, among functions withmissing annotation at the genus level
for < 50% of their abundance, we selected those assigned at ≥ 90% (on
average) to a single genus to identify proper “genus-specific” functions. As a
result, over 50 genus-specific protein functions were defined (Supplemen-
tary Data 5), including several enzymes exclusively expressed by Prevotella,
Faecalibacterium, Ruminococcus and Oscillibacter, along with those
responsible for methanogenesis and produced by the archaeon Methano-
brevibacter. On the opposite direction, we also filtered functions to find
those assigned at <75% (on average) to a single genus, i.e., expressed
simultaneously by various members of the GM. These comprised 48
functions (Supplementary Data 5), including important enzymes such as
alpha-amylase (expressed by Ruminococcus, Eubacterium and Prevotella),
beta-glucosidase (Prevotella and Bacteroides) and dissimilatory sulfite
reductase (Bilophila and Desulfovibrio).

Roleofgutmicrobiotamembers inSCFAbiosynthesis, TCAcycle
and quorum sensing
Finally, we focused on some pathways of interest to dissect the taxon-
specific contribution to their metabolic steps and/or main components.
Firstly, we selected the different pathways responsible for SCFA biosynth-
esis, namely the Wood-Ljungdahl acetogenic pathway15 (included within
the KEGG pathway named carbon fixation pathways in prokaryotes),
succinate, acrylate and propanediol propionogenic pathways16 (within the
KEGG propanoate metabolism pathway) and the acetyl-CoA butyrogenic
pathway17 (within the KEGG butanoate metabolism pathway), due both to
their known relevance for host physiology and to their presence among the
best ranked pathways in the analyzed datasets. Figure 6, based on the lowest
common ancestor (LCA) taxonomic assignment of their peptides identified
in the 10 datasets, illustrates the taxon-specific contribution to SCFA bio-
synthesis. Note that acetogenesis and propionogenesis are presented toge-
ther as the enzymes involved in the two final steps of acetogenesis leading to
acetate, according to the data from this study and to the information pro-
vided by the KEGG database, might also catalyze the last reactions of pro-
pionate production; othermore specifically propionogenic enzymes capable
to carry out the same reactions (e.g., propionate kinase) were found at very
low abundances and/or in a small number of datasets.

As a result, enzymes catalyzing the acetogenic reactions from formate
to acetyl-CoAwere assignedmainly to Eubacteriales, but not to lower levels,
most likely due to a high degree of conservation of their sequences among
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Fig. 3 | Heatmap showing correlation trends between KO functions according to
Spearman’s rho values. The 50 KO functions with the highest relative abundance
among those detected in all datasets and in at least 75% of subjects on average are
shown (ribosomal proteins were not included). KO functions are ordered based on
hierarchical clustering. Diameter and color of each circle (see legend on the right for
color gradient) depend on the weighted average rho value computed via REML
meta-analysis for that KO-KO correlation in the 10 datasets. Asterisks mark sta-
tistically significant correlations (*** = FDR < 0.001; ** = FDR < 0.01; * = FDR
< 0.05). K21572, starch-binding outer membrane protein, SusD/RagB family;
K21573, TonB-dependent starch-binding outer membrane protein SusC; K00024,
malate dehydrogenase; K00239, succinate dehydrogenase flavoprotein subunit;
K04077, chaperonin GroEL; K04043, molecular chaperone DnaK; K13993, HSP20
family protein; K04078, chaperonin GroES; K20276, large repetitive protein;
K15125, filamentous hemagglutinin; K00134, glyceraldehyde 3-phosphate dehy-
drogenase (phosphorylating); K01805, xylose isomerase; K01610, phosphoe-
nolpyruvate carboxykinase (ATP); K03545, trigger factor; K02357, elongation factor
Ts; K00874, 2-dehydro-3-deoxygluconokinase; K02358, elongation factor Tu;
K03527, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase; K00927, phos-
phoglycerate kinase; K02355, elongation factor G; K01624, fructose-bisphosphate
aldolase, class II; K01803, triosephosphate isomerase (TIM); K01006, pyruvate,

orthophosphate dikinase; K10117, raffinose/stachyose/melibiose transport system
substrate-binding protein; K15770, arabinogalactan oligomer / mal-
tooligosaccharide transport system substrate-binding protein; K02035, peptide/
nickel transport system substrate-binding protein; K02406, flagellin; K10540,
methyl-galactoside transport system substrate-binding protein; K17318, putative
aldouronate transport system substrate-binding protein; K10200,
N-acetylglucosamine transport system substrate-binding protein; K02027, multiple
sugar transport system substrate-binding protein; K10192, oligogalacturonide
transport system substrate-binding protein; K01689, enolase; K01179, endogluca-
nase; K00261, glutamate dehydrogenase (NAD(P)+ ); K00262, glutamate dehy-
drogenase (NADP+ ); K03737, pyruvate-ferredoxin/flavodoxin oxidoreductase;
K03521, electron transfer flavoprotein beta subunit; K03522, electron transfer fla-
voprotein alpha subunit; K22432, caffeyl-CoA reductase-Etf complex subunit CarE;
K01938, formate--tetrahydrofolate ligase; K01818, L-fucose/D-arabinose isomerase;
K00656, formate C-acetyltransferase; K10112, multiple sugar transport system
ATP-binding protein; K00248, butyryl-CoA dehydrogenase; K00053, ketol-acid
reductoisomerase; K00616, transaldolase; K00260, glutamate dehydrogenase;
K00626, acetyl-CoA C-acetyltransferase; K00074, 3-hydroxybutyryl-CoA
dehydrogenase.
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the members of this order. Similar considerations can be made about the
propanediol pathway within propionogenesis; on the contrary, it can be
observedhowmembers of theNegativicutes, namelyPhascolarctobacterium
succinatutens and Dialister spp., are responsible, as expected, for most
reactions of the succinate pathway (viamethylmalonyl-CoA), together with
Bacteriodales. Phosphate acetyltransferase and acetate kinase were both
expressed by several members of Eubacteriales and Bacteroidales, including
Faecalibacterium and Prevotella. Moving to butyrogenesis, despite a clearly
high level of conservation of the enzyme sequences, some peptides could be
consistently assigned down to the genus or species level, namely to Rose-
buria, Faecalibacterium, Oscillibacter and Evtepia spp.

We were also interested in identifying which types of microbes were
specifically able to use the citrate cycle. As shown in Supplementary Fig. 6,
the sequences of the enzymes involved in this pathway appear to be very
conserved, as inmost cases they could only be identified as bacterial, with no
more specific taxonomic assignments. However, succinyl-CoA:acetate

CoA-transferase could be assigned to Phascolarctobacterium succinatutens
andDialister, consistently with their known ability to metabolize succinate.
Furthermore, other enzymes were expressed by Bacteroidales and their
members (mainly Prevotella, but also Bacteroides and Alistipes when con-
sidering malate dehydrogenase). The contribution of Eubacteriales was
instead minimal.

Finally, we focused our attention on proteins involved in the KEGG
pathways flagellar assembly and quorum sensing, because of their quanti-
tative and biological relevance. The abundance of the former pathway was
essentially due toflagellin,which in turnwas assigned at different taxonomic
levels (from phylum to species), including genera such as Roseburia,
Eubacterium and Clostridium (Supplementary Data 2). As far as quorum
sensing is concerned (Supplementary Fig. 7), a heterogeneous group of
peptide/protein transporters and translocases were identified. Transporters
were mappedmainly to members of Bacillota (including Faecalibacterium,
Roseburia, Oscillibacter, Clostridium, Lachnospira) and Actinomycetota

Fig. 4 | Heatmap showing correlation trends between KEGG pathways according
to Spearman’s rho values.Pathways exceeding 1% ofmean abundance and detected
in all subjects are shown. Pathways are ordered based on hierarchical clustering.
Diameter and color of each circle (see legend on the right for color gradient) depend

on the weighted average rho value computed via REML meta-analysis for that KO-
KO correlation in the 10 datasets. Asterisksmark statistically significant correlations
(*** = FDR < 0.001; ** = FDR < 0.01; * = FDR < 0.05).
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(Bifidobacterium and Collinsella), whereas translocases were only assigned
to members of Bacteroidota (mainly Prevotella).

Discussion
Fecal metaproteomics allows the collection of functional data con-
cerning the microbial consortia that colonize the distal colon. Even
though the fecal microbiome is insufficient to represent the whole GM,
the functions expressed by the colonic microbiota mirror the microbial
adaptation to an ecosystem that is strongly affected by diet and health,
and also conditioned by host secretions andmicrobial members coming
from the upper traits. Further, its relative ease of access has enabled
many large cohort studies by 16 S rDNA and shotgun metagenomics
analyses. As a proxy for human GM, stool is the most frequently used
sample also for metaproteomics studies. Therefore, to portrait the
“core”metaproteome of healthy human GM we analyzed the currently
available metaproteomic datasets from healthy human fecal samples.
Due to high variability in sample processing and analytical methods
between datasets (beyond genetic and environmental differences
between cohorts/countries), all results were rank-based or expressed as
mean between datasets.

Significant variability of thehealthyGMcompositionat low taxonomic
levels has been demonstrated by DNA sequencing1. We have previously
detected similar variability integrating shotgun metagenomic and meta-
proteomic analyses14. At higher taxonomic levels, instead, high abundances
of the phyla Bacillota and Bacteroidota are consistent between datasets and
individuals, showing beyond doubt their overall relevance for the GM
biology and interaction with the host. Both phyla include genera with
variable interindividual distribution and with strikingly different functions
(i.e., Bacillota Clostridium spp. vs Lactobacillus spp.). However, we also
observed genera present in all individuals and with very low interindividual
variability, a mark of keystone taxa highly connected with a healthy GM
ecosystem. Our data showed Faecalibacterium as the most stable genus. As
already assessed by metagenomic studies, this genus can account for up to
5% of the entire fecal microbiota in healthy individuals18. Faecalibacterium
has been suggested to support intestinal health and it has been characterized
by functional assays, showing anti-inflammatory properties due to its
butyrate production and lack of features involved in epithelial cell adhesion
and antimicrobial production19. In agreement with metagenomic data, we
observed here that Faecalibacterium mean abundance was among 5.70%
and 20.75% (when accounting or not for the abundance of peptides unas-
signed at the genus level) and stands as the top contributor to butyrate
production in the healthy GM. Moreover, our analyses provide a list of
features expressed by Faecalibacterium (as well as others expressed by other
taxa) with very low interindividual variability in the healthyGM.These data
can be further used to identify Faecalibacterium antigens/biomarker can-
didates to monitor the relative abundance of this taxon in case-control

studies of clinical relevance. The only genus with abundance similar to that
of Faecalibacterium was Prevotella. However, Prevotella showed a high
variability between individuals according to metaproteomic data. Con-
sistently with previousmetagenomics reports20, we show that its abundance
was inversely correlated to that of Bacteroides. Interestingly, both genera
showed starch-binding OMP SusD/RagB as their top KO function. Their
competition on the uptake and degradation of complex polysaccharides can
be the foundation for the inverse correlation of their abundance values. As
opposite to Faecalibacterium, Prevotella and its species (i.e., P. copri com-
plex) were also described as heterogeneous in terms of genetic potential for
metabolic functions, antimicrobial resistance, and correlations with the
human immune response and health21. More recently, species belonging to
this genus have been reassigned into seven genera whose distribution differ
significantly between human populations, likely because of distinct dietary
choices and exposure to antimicrobials22. Low-abundancegenusEvtepia can
also play a role as keystone member of the GM, since its stability was
remarkable in all metaproteomic dataset analyzed. Evtepiamost abundant
KOwas butyryl-CoA dehydrogenase, suggesting that production of SCFAs
canbe among theprevalentmetabolic activity of this genus.On the contrary,
the high variability of Akkermansia relative abundance (and the quite fre-
quent lack of its detection) in a healthy cohort contrasts with its widely
accepted importance for the GM homeostasis and casts doubts on its pre-
sence as an essential requisite to achieve healthy GM conditions, as recently
indicated23.

The “core” metaproteome of the healthy human GM included 182
functions and83pathways thatwere detected in all 134 individuals analyzed
in this study. The present re-analysis provides a definitive view of how
certain microbial functions and pathways are evenly distributed in healthy
subjects. As previously reported14,24, themost represented proteins are those
involved in carbohydrate metabolism, energy production and translation.
Other highly abundant functions are proteins typical of the predominant
phyla Bacillota and Bacteroidota. Hence, their abundance also depends on
the Bacillota/Bacteroidota ratio. Strikingly, these top functions represent
GM elemental roles that are equivalent in the two phyla: uptake of carbo-
hydrates and other energy sources (Bacillota phosphotransferase system
andABC transporters vs Bacteroidota Susmembers), proper oxidation state
of thiols (Bacillota sulfur relay system vs Bacteroidota glutathione meta-
bolism) and production of active mucosal immunomodulators (Bacillota
flagellin vs Bacteroidota LPS). These two last molecular classes represent
Bacteroidota- and Bacillota-specific highly abundant functions/pathways
due to obvious structural reasons. Flagellin and LPS are supramolecular
structureswith totally different functionson thebacterial surfaces.However,
they are both also key for the dynamic relationship between the gut colo-
nizing bacteria and the host immune response. Recent studies provided
compelling evidence that most of the GM LPS, once considered among the
main pro-inflammatorymicrobial associatedmolecular patterns (MAMPs)

Fig. 5 | Functional featureswith significantly differential abundance betweenBacillota andBacteroidota.KO functions (a) andKEGGpathways (b) with the highest (top
10) and lowest (top 10) Bacillota/Bacteroidota abundance log ratios are shown. TS transport system, S-BP substrate-binding protein, OMP outer membrane protein.
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in the gut lumen, shows taxon-dependent effects on TLR4 signaling to
cytokine expression and secretion. Specifically, TLR4 recognition of LPS
encoded by Pseudomonadota members Escherichia coli and Pseudomonas
spp., as described for many pathogenic bacteria, triggers intense
inflammation25. On the contrary, Bacteroidota LPS has an immunoinhibi-
tory activity, derived from an underacylated structural feature, silencing the
TLR4 signaling by the other members of the GM26. Similarly, flagellin is a
potent pro-inflammatory MAMP that binds to TLR5, contributing to the
inflammation triggered by diverse bacterial pathogens belonging to Pseu-
domonadota. Here, we reported that this antigen is mostly encoded by
Lachnospiraceae (Roseburia) in all healthy individuals of the 10 datasets. As
for Bacteroidota LPS, Roseburia (and other Lachnospiraceae members

including Lachnospira) produces an anti-inflammatory flagellin that does
not activate TLR5 signaling27,28. Hence, despite their structural differences
and taxonomic distributions, both Bacteroidota LPS and Bacillota flagellin
appeared to be converging in their role of preserving from mucosal
inflammation. Factors supporting the abundance of “silent” flagellinsmight
be also relevant to sustain Faecalibacterium abundance and production of
anti-inflammatory butyrate, since the strongest positive correlation that we
observed at genus level was the one between Faecalibacterium and Lach-
nospira. The consistently high abundance of Bacteroidota and Bacillota,
regardless their ratio, with their load of LPS and flagellins might then
represent a key outcome of the GM-host co-evolution, ensuring steady
protection from mucosal inflammation in a densely colonized gut.

Fig. 6 | Taxon-specific distribution of enzymes involved in short-chain fatty acid
(SCFA) biosynthesis. KO functions detected in more than 6 datasets, with a mean
abundance higher than 0.001% and mapping to KEGG pathways named carbon
fixation pathways in prokaryotes (Wood-Ljungdahl pathway part), propanoate
metabolism and butanoatemetabolism are reported. Enzymes are listed based on the
sequential order of the reactions within the pathways; each sub-pathway is preceded
by a subtitle in italic. The color of each square corresponds to the mean percentage
abundance between the 10 datasets (see color legend). Phyla are in bold, genera and
species in italic, while higher taxa useful for classification but unassigned to any of
the listed enzymes are into square brackets. The column “total” corresponds to the

summed abundance of all taxon-specific assignments (including “Bacteria/unas-
signed”) for a given enzyme. THF, tetrahydrofolate. Enzymes from other butyro-
genic pathways (glutarate pathway, lysine pathway, 4-aminobutyrate/succinate
pathway) were detected in a small number of datasets and therefore the only acetyl-
CoA pathway was selected for butyrogenesis. Acetyl-CoA C-acetyltransferase,
although highly expressed in all the datasets, was not specifically included within
butyrogenesis as it participates in many other diverse pathways. * Butyryl-CoA
dehydrogenase (K00248) can also catalyze propionyl-CoA biosynthesis from
acryloyl-CoA (last step of “lactate to propanoyl-CoA” part of propionogenesis).
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As observed at the taxonomic level, several KO functions could be
stably detected in all individuals of the cohorts analyzed with a low coeffi-
cient of variation. Ubiquitous distribution in healthy individuals and con-
stitutive expressionwouldbe the ideal characteristicsof “housekeeping”GM
proteins. However, most of the ubiquitous functionsmeasured in this study
showed direct or inverse correlation with at least one another ubiquitous
metabolic function, highlighting the specific connection with the microbial
community biology and, therefore, disallowing their use as housekeeping
proteins. Interestingly, GAPDH appeared consistently present in all indi-
viduals, at high abundance and low variation, and with no correlation with
other – variable – GM metabolic functions. GAPDH is a moonlighting
protein that functions as glycolytic enzymeaswell as uracilDNAglycosylase
and has been used for decades as a housekeeping protein in proteomic
studies on eukaryotic cell and tissues, although its use as internal standard
should be examined carefully in relation to the experimental conditions and
disease state29. The relative abundance of the diverse GAPDH specifically
encoded by the members of the human GM showed significant correlation
with the respective taxon (data not shown). These data suggest the use of
GAPDH as an internal reference for the abundance of its specific taxon.
Further analyses are required to validate the human GM encoded GAPDH
as a housekeeping protein to normalize variation of other functions in
comparative case-control studies based on metaproteomic data and/or
immunological assays.

In addition to the functions that are detected as stably present in all
individuals, also those that are measured only in a small fraction of indi-
viduals and/or with an uneven distribution between individuals are of great
interest. Within this category, we found enzymes that react with harmful
oxidants and functions involved in bacterial cell adhesion and motility.
Superoxide reductase and dismutase were already found among the most
variable proteins in our previous study14. Other functions of interest are
starvation inducible DNA binding protein, trimeric autotransporter adhe-
sin, and chemotaxis protein MotB, the latter showing a strong pH-
dependent expression, being affected by stress factors acting on the bacterial
proton motive force30. These functions might then represent “accessory”
proteins and pathways, responding to less common triggers, including
transientnutritional factors, pHvariations, oxidative andnitrosative stress31.
Given their involvement in bacterial response to environmental stress, these
moieties might then be monitored as signatures of subclinical events under
healthy clinical conditions.

Another key driver of GM evolution is diet. Acetate, propionate, and
butyrate are among themost abundant endproducts ofGMfermentationof
non-digestible carbohydrates, also representing the major flow of carbon
from the GM to the host32. Our data provide direct evidence of the major
contribution of Negativicutes (Phascolarctobacterium and Dialister) and
Bacteroidales (Bacteroides and Prevotella) to propionate production via
succinate. Succinate can be produced by the reversal of partial TCA cycle
reactions, from fumarate reduction, as a primary cross-feeding metabolite
betweenBacteroidesproducers andPhascolarctobacteriumutilizers33.While
succinate production by Bacteroides and Prevotella is key for propionate
production (via reductive TCA cycle), our taxon-specificity analysis of TCA
cycle functions confirmed that most commensals, as obligate anaerobes, do
not express (or express only partially) the enzymes of this pathway. An
incomplete TCA cycle was clearly observed for Eubacteriales, including
Faecalibacterium. Notably, this strictly anaerobe is associated both to the
luminal and the mucosal GM, the latter location being exposed to relatively
highoxygen tensions. LackofTCAcycle functions in thepresence of oxygen
has been explained by the ability of Faecalibacterium to use an extracellular
electron shuttle of flavins and thiols, normally present in the healthy human
gut, to transfer electrons to oxygen34. Further, our data confirm the major
contribution of Faecalibacterium to butyrate production. GM-produced
butyrate is beneficial for the gut epithelia as energy substrate, promotes
mucous, antimicrobial peptides, and other components of the colonic
defense barrier, modulates the host immune response, acting via receptor
mediated or epigenetic mechanisms, stimulates secretion of gut hormones
or directly targets organs and tissues, playing a role as signalingmolecule in

the human host, regulating hepatic and intestinal gluconeogenesis, and
hepatic and fat tissues lipogenesis/lipolysis35–38. Instead, butyrate is not used
as an energy sourcebygut bacteria.However, this specialized functionof few
Eubacteriales, mainly Faecalibacterium, might play a role also directly
affecting the GM metabolism and composition. As reported recently,
butyrate can cause cellular stress, membrane damage, and cell death in
Bacteroides, effects that are species-dependent and conditional on which
sugar is being utilized39. Hence, Faecalibacterium can be regarded as key-
stone taxon also for its direct effect on the GM, in addition to acting
indirectly, as described above, by promoting a healthy mucosa.

Analysis of GM metabolic pathways was also focused on the relative
contribution of GM members to benzoate metabolism. Benzoate is a
metabolic endproduct of polyphenols, largely present in food. Furthermore,
with the industrialization of food production, sodium benzoate is also lar-
gely used as a food preservative. Its antimicrobial activity on the GM has
been shown to be negligible40. Accordingly, recentmetagenomic analyses of
human GMs from Europe, Asia and North America have highlighted the
enrichment of benzoate catabolic features, associated with anaerobic
(benzoyl-CoA degradation pathway) and aerobic (oxygenase-coupled
central aromatic intermediate metabolic pathway) pathways, suggesting
that its catabolism is a significant energy source for those bacteria which are
equipped with the genes for benzoate degradation. However, functional
assays with human fecal microbiota demonstrated that benzoate catabolites
mapped only onto the aerobic oxygenase-coupled metabolism, showing
lack of anaerobic degradation pathways41. Here, we provide direct evidence
of the real abundance of benzoate catabolic functions expressed by the GM,
as detectable in all datasets here evaluated. In contrast with the study of
Yadav et al., metaproteomic data demonstrated that Bacillota provide the
most relevant contribution to benzoate catabolism, including functions
(benzoyl-CoA reductase and cyclohexanecarboxylate-CoA ligase)mapping
into the anaerobic catabolic pathwayof benzoate,while only aerobic features
of the benzoate catabolism are assigned to Bacteroidota.

GM functions are of great interest also for investigating variations that
might occur in aging. In this analysis, we did not observe correlations with
age at any taxonomic or functional level (at least considering the most
abundant features present in all datasets). Future studies with larger cohorts
will be needed to further investigate the potential of metaproteomics in
disentangling the link between GM and age.

This studyhas some relevant limitations that need tobepointed out.As
mentioned above, the 10 datasets re-analyzed here were extremely hetero-
geneous in terms of sample preparation and analytical methods. This
introduces relevant sources of non-biological variability, making it difficult
to perform a robust and reliable comparison. Accordingly, we normalized
abundance data and only considered mean values among all datasets, also
providing rank-based results, with the aim of minimizing the influence of
technical biases and batch effects and identifying the strongest trends (i.e.,
those consistently present in all datasets). Future multicentric studies ana-
lyzing samples from different cohorts worldwide (including developing
countries) with standardized sample preparation and analytical protocols
will be needed to confirm the findings of this study and to properly inves-
tigate differences between populations. Furthermore, state-of-the-art
metaproteomics presents intrinsic limitations concerning data annotation
in taxonomic and functional terms. Currently, lower taxonomic levels (i.e.,
genusor even species) canonlybe reached for aquite small percentage of the
identified peptides (36% and 19% on average for genus and species levels,
respectively, in this study), due to the presence of highly conserved
sequences. In addition, although the percentage of functionally annotated
peptides was rather high (around 75% on average in this study), some
relevant functions could not be mapped to a KEGG pathway. This was the
case of several (very abundant) proteins expressed by members of Bacter-
oidota and involved in polysaccharide transport and degradation, possibly
explaining the unexpectedly low abundance of Bacteroidota starch meta-
bolism within phylum-specific pathways. More generally, GM data are still
strongly dependent on the databases used (and their update level) for
taxonomic and functional annotation.Manynewtaxahavebeen introduced
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in the last years, making it challenging to compare data obtained even a few
years ago with more recent results. Furthermore, KEGG functional anno-
tation achieved using eggNOG-mapper ensures good annotation yields and
interoperability betweendifferent levels, but shortcomings and issues clearly
exist. In other words, a complete and unambiguous annotation is still a goal
to be achieved. Finally, this study was focused on the bacterial and archaeal
fractions of the fecal metaproteome, as the sample preparation protocols
used to generatemost of the datasets reanalyzed here (aswell as to obtain the
widely employed collection of human gut metagenomes used as sequence
database for peptide identification) were not suited for the characterization
of the less abundant fungal and viral fractions. Future investigations spe-
cifically aimed at analyzing the human fecal mycobiome and virome
through metaproteomics will contribute to a deeper understanding of the
complex interkingdom interactions occurring in the human colonic
environment. At this regard, the information depth reached by metapro-
teomics is expected to increase considerably in the next years thanks to the
latest advancements in mass spectrometry, enabling the detection of
thousands of low-abundance proteins even in rather complex biological
samples such as stool42–44.

In conclusion, this study allowed us to identify taxonomic and func-
tional features consistently present with high abundance and frequency in
the GM of healthy individuals from different countries, to detect co-
occurrence and mutual exclusion dynamics involving bacterial taxa and
functions, and to dissect the taxon-specific contribution to molecular
functions, biological processes and metabolic pathways actively expressed
by the healthy humanGM,with a focus on SCFA biosynthesis, citrate cycle,
flagellar assembly and quorum sensing. Our data provide a valuable con-
tribution to the definition of the functional mechanisms regulating the
relationship between the GM and the human physiology. These results
encourage the use of fecal metaproteomics to investigate GM activity,
opening the way to future multicentric studies with larger population
cohorts and standardized analytical approaches.

Methods
Datasets
The datasets were selected based on the following inclusion criteria: human
cohort including at least 5 healthy (clearly not labeled as diseased) adult
( > 18 years old) individuals; data derived from liquid chromatography
(LC)-tandemmass spectrometry (MS) data-dependent label-free analysis of
fecal samples (with neither subcellular fractionation of microbial cells nor
offline fractionation of peptides); availability of raw MS data on public
repositories. Eight publisheddatasets fulfilled the inclusion criteria andwere
therefore included in the study.

Furthermore, we made available two unpublished datasets, also
matching the inclusion criteria. The two datasets (labeled D08 and D09 in
this study) were obtained from 12 and 10 healthy Sardinian subjects,
respectively.All subjects gave their informedconsent for using the biological
material for research purposes and the studies were approved by the Ethics
Committee of the University of Sassari, Italy (authorization no. 2023). In
both cases, stool samples were stored at −80 °C within one hour after
collection and then processed according to an established protocol,
including bead beating in SDS-based buffer for protein extraction and a
modified filter-aided sample preparation (FASP) for protein digestion45.
LC-MS/MS analyses of the peptide mixtures were performed according to
previous reports (ref. 46 for D08 and ref. 47 for D09), except for LC run
duration (180min for D08 and 310min for D09).

As described in Table 1, the ten datasets re-analyzed in this study
comprised a total of 134 MS raw files (each one coming from a different
healthy human subject) and were highly heterogeneous in terms of sample
preparation and mass spectrometry methods, as well as of geographic
distribution.

Bioinformatic analysis
Peptide identification was carried out using Proteome Discoverer™ (v.2.5;
Thermo Fisher Scientific), with Sequest-HT as the search engine and

Percolator for peptide validation, setting the false-discovery rate (FDR)
threshold to 1%. The raw files of each dataset were re-analyzed in a separate
batch. Search parameters were as follows: precursor mass range
350–5000 Da; minimum peak count 5; S/N Threshold 1.5, enzyme trypsin
(full); maximum missed cleavage sites 2; peptide length range 6-50 amino
acids; precursor mass tolerance 10 ppm; fragment mass tolerance 0.02 Da
(0.5 Da for D04 and D05); static modification cysteine carbamidomethy-
lation; dynamic modification methionine oxidation. Searches were con-
ducted in parallel against two sequence databases, namely a collection of
human gut metagenomes (available at https://ftp.cngb.org/pub/SciRAID/
Microbiome/humanGut_9.9M/GeneCatalog/IGC.pep.gz)3 and the Homo
sapiens protein sequences retrieved from Swiss-Prot (release 2019_08)48.
Peptideswere categorized as “microbial” or “human”when belonging to the
first or second database, respectively.

Offline mass recalibration and label-free MS1 quantitation were per-
formed using Spectrum Files RC and Minora Feature Detector nodes,
respectively. Optimal settings for retention time and mass tolerance win-
dows were calculated using the Minora algorithm based on the mass
accuracy and retention time variance distribution. A consensus feature list
was defined based on the outputs of Feature Mapper and Precursor Ions
Quantifier nodes. The MS1 signals of all peptides significantly matching
with at least one MS2 spectrum from at least one sample were mapped
across runs and quantified by calculating the integrated area of the chro-
matographic peak49. The quantification pipeline was carried out separately
for each dataset.

Unipept Desktop (v.2.0.0) was used to carry out peptide taxonomic
annotation50, selecting the three available options (“equate I and L”, “filter
duplicate peptides” and “advanced missed cleavage handling”). Protein
sequences were subjected to functional annotation using the eggNOG-
mapper web application (v.2.1.9, available at http://eggnog-mapper.embl.
de/)51 keeping default parameters and then choosing KEGG (Kyoto Ency-
clopedia of Genes and Genomes) orthology (KO) information as the main
functional classification52. Meta4P (v.1.4.4)53 was used to parse identifica-
tion, quantification and annotation data and generate aggregated abun-
dance tables for each dataset; only “microbial” peptides were selected for
further analyses and their abundance datawere re-normalized afterfiltering.
The abundance of a taxon, a function, or a taxon-specific function was
estimated by summing the abundance values associated with all peptides
having that feature among their annotations. Features not assigned to
bacterial or archaeal taxa were filtered out manually. The “map pathway”
function on the KEGG website (http://www.kegg.jp) was used to map KO
numbers on KEGG pathways.

Statistical analysis and graph generation
Percentage mean abundance and coefficient of variation between subjects
were calculated for each feature (taxa, functions and taxon-specific func-
tions) in the single datasets; then, the values computed in the 10 datasets
were averaged to obtain a global measure of abundance and variation for
each feature. In parallel, all features were ranked based on their abundance
in the metaproteome of each subject analyzed; then, median rank, inter-
quartile range (IQR) and IQR/median ratio were calculated between the
134 subjects analyzed in the study.

Spearman’s correlation analysis was performed using two R packages:
mycor for correlation between taxa (or functions) and subjects’ age, and
Hmisc for correlation between taxa and taxa and between functions and
functions. We calculated the Spearman’s coefficient of correlation (rho)
between themost abundant features, considering the abundancesmeasured
for each dataset (separately). Then, we performed a random effect max-
imum likelihood (REML) meta-analysis (R package metafor) to obtain a
combined estimate for each feature pair. Spearman’s correlation coefficients
were Z-transformed before the meta-analysis using the Fischer Z trans-
formation and then inverse-transformed after the meta-analysis, to avoid
bias based on the expected non-normal distribution of Spearman’s esti-
mates. The same approach was used for investigating the correlation
between GM features and chronological age. Finally, we performed FDR
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correction for multiple testing on the nominal p-values according to the
Benjamini-Hochberg (BH) method (significance threshold 0.05). The R
package corrplot was to perform hierarchical clustering on correlation data
and generate heatmaps.

For each microbial functional feature (KOs and pathways), the
abundance values assigned the twomain phyla (Bacillota and Bacteroidota)
were subjected to logarithmic transformation and compared in all the
subjects using a two-sided paired t test, followed by BH correction for
multiple testing (significance threshold 0.05).

Histograms, violin plots, aligned dot plots and bar graphs were created
with GraphPad Prism 9.

Data availability
Mass spectrometry proteomics data have been deposited to the Proteo-
meXchangeConsortiumvia thePRIDE54 partner repositorywith thedataset
identifiers PXD046818.

Received: 12 February 2024; Accepted: 11 June 2024;

References
1. Neu, A. T., Allen, E. E. & Roy, K. Defining and quantifying the core

microbiome: Challenges and prospects. Proc. Natl Acad. Sci. USA.
118, e2104429118 (2021).

2. Qin, J. et al. A human gut microbial gene catalogue established by
metagenomic sequencing. Nature 464, 59–65 (2010).

3. Li, J. et al. An integrated catalog of reference genes in the human gut
microbiome. Nat. Biotechnol. 32, 834–841 (2014).

4. Almeida,A. et al. A unifiedcatalogof 204,938 referencegenomes from
the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

5. Huttenhower, C. et al. Structure, function and diversity of the healthy
human microbiome. Nature 486, 207–214 (2012).

6. Falony, G. et al. Population-level analysis of gutmicrobiome variation.
Science 352, 560–564 (2016).

7. Franzosa, E. A. et al. Relating the metatranscriptome and
metagenome of the human gut. Proc. Natl Acad. Sci. USA. 111,
E2329–E2338 (2014).

8. Abu-Ali, G. S. et al. Metatranscriptome of human faecal microbial
communities in a cohort of adult men. Nat. Microbiol. 3, 356–366
(2018).

9. Heintz-Buschart, A. & Wilmes, P. Human Gut Microbiome: Function
Matters. Trends Microbiol. 26, 563–574 (2018).

10. Pan, S. & Chen, R. Metaproteomic analysis of human gut microbiome
in digestive andmetabolic diseases, InAdvances inClinical Chemistry
(ed. Makowski, G. S.) 97, 1–12 (Elsevier, 2020).

11. Sauceda, C. et al. Stool multi-omics for the study of host–microbe
interactions in inflammatory bowel disease. Gut Microbes 14, 2154092
(2022).

12. Miura, N. & Okuda, S. Current progress and critical challenges to
overcome in the bioinformatics of mass spectrometry-based
metaproteomics.Comput.Struct. Biotechnol. J.21, 1140–1150 (2023).

13. Agus, A., Clément, K. & Sokol, H. Gut microbiota-derivedmetabolites
as central regulators in metabolic disorders. Gut 70,
1174–1182 (2021).

14. Tanca, A. et al. Potential and active functions in the gutmicrobiota of a
healthy human cohort.Microbiome 5, 79 (2017).

15. Ragsdale, S. W. & Pierce, E. Acetogenesis and the Wood-Ljungdahl
pathway of CO2 fixation. Biochim. Biophys. Acta - Proteins Proteom.
1784, 1873–1898 (2008).

16. Reichardt, N. et al. Phylogenetic distribution of three pathways for
propionate production within the human gut microbiota. ISME J. 8,
1323–1335 (2014).

17. Vital, M., Howe, A. C. & Tiedje, J. M. Revealing the bacterial butyrate
synthesis pathways by analyzing (meta)genomic data.mBio 5, e00889
(2014).

18. Effendi, R. M. R. A. et al. Akkermansia muciniphila and Faecalibacterium
prausnitzii in Immune-RelatedDiseases.Microorganisms10,2382 (2022).

19. Martín, R. et al. Functional characterization of novel Faecalibacterium
prausnitzii strains isolated from healthy volunteers: A step forward in
the use of F. prausnitzii as a next-generation probiotic. Front.
Microbiol. 8, 1226 (2017).

20. Arumugam, M. et al. Enterotypes of the human gut microbiome.
Nature 473, 174–180 (2011).

21. Tett, A., Pasolli, E., Masetti, G., Ercolini, D. & Segata, N. Prevotella
diversity, niches and interactions with the human host. Nat. Rev.
Microbiol. 19, 585–599 (2021).

22. De Filippis, F. et al. Distinct Genetic and Functional Traits of Human
Intestinal Prevotella copri Strains Are Associated with Different
Habitual Diets. Cell Host Microbe 25, 444–453.e3 (2019).

23. Luo, Y. et al. Rational consideration of Akkermansia muciniphila
targeting intestinal health: advantages and challenges. npj Biofilms
Microbiomes 8, 81 (2022).

24. Verberkmoes, N. C. et al. Shotgun metaproteomics of the human
distal gut microbiota. ISME J. 3, 179–189 (2009).

25. Vatanen, T. et al. Variation in Microbiome LPS Immunogenicity
Contributes to Autoimmunity in Humans. Cell 165, 842–853 (2016).

26. d’Hennezel, E., Abubucker, S., Murphy, L. O. & Cullen, T. W. Total
Lipopolysaccharide from the Human Gut Microbiome Silences Toll-
Like Receptor Signaling.mSystems 2, e00046–17 (2017).

27. Clasen, S. J. et al. Silent recognition of flagellins from human gut
commensal bacteria by Toll-like receptor 5. Sci. Immunol. 8, eabq7001
(2023).

28. Wu, X. et al. Roseburia intestinalis-derived flagellin ameliorates colitis
by targeting miR-223-3p-mediated activation of NLRP3
inflammasome andpyroptosis.Mol.Med. Rep.22, 2695–2704 (2020).

29. Li, R. & Shen, Y. An old method facing a new challenge: Re-visiting
housekeeping proteins as internal reference control for neuroscience
research. Life Sci. 92, 747–751 (2013).

30. Maurer, L. M., Yohannes, E., Bondurant, S. S., Radmacher, M. &
Slonczewski, J. L. pH regulates genes for flagellar motility,
catabolism, and oxidative stress in Escherichia coliK-12. J. Bacteriol.
187, 304–319 (2005).

31. Fang, F. C. Antimicrobial reactive oxygen and nitrogen species:
Concepts and controversies. Nat. Rev. Microbiol. 2, 820–832 (2004).

32. Morrison,D. J. &Preston, T. Formationof short chain fatty acidsby the
gut microbiota and their impact on humanmetabolism.Gut Microbes
7, 189–200 (2016).

33. Wei, Y. H., Ma, X., Zhao, J. C., Wang, X. Q. & Gao, C. Q. Succinate
metabolism and its regulation of host-microbe interactions. Gut
Microbes 15, 2190300 (2023).

34. Khan, M. T. et al. The gut anaerobe Faecalibacterium prausnitzii uses
an extracellular electron shuttle to grow at oxic-anoxic interphases.
ISME J. 6, 1578–1585 (2012).

35. den Besten, G. et al. Gut-derived short-chain fatty acids are vividly
assimilated into host carbohydrates and lipids. Am. J. Physiol. -
Gastrointest. Liver Physiol. 305, G900–G910 (2013).

36. Kong, D., Schipper, L. & van Dijk, G. Distinct Effects of Short Chain
Fatty Acids on Host Energy Balance and Fuel Homeostasis With
Focus on Route of Administration and Host Species. Front. Neurosci.
15, 755845 (2021).

37. Plöger, S. et al.Microbial butyrate and its role for barrier function in the
gastrointestinal tract. Ann. N. Y. Acad. Sci. 1258, 52–59 (2012).

38. Hamer, H. M. et al. Review article: The role of butyrate on colonic
function. Aliment. Pharmacol. Ther. 27, 104–119 (2008).

39. Park, S. Y. et al. Strain-level fitness in the gut microbiome is an
emergent property of glycans and a single metabolite. Cell 185,
513–529.e21 (2022).

40. Hrncirova, L. et al. Human gut microbes are susceptible to
antimicrobial food additives in vitro. Folia Microbiol. (Praha). 64,
497–508 (2019).

https://doi.org/10.1038/s41522-024-00526-4 Article

npj Biofilms and Microbiomes |           (2024) 10:54 11



41. Yadav, M., Lomash, A., Kapoor, S., Pandey, R. & Chauhan, N. S.
Mapping of the benzoate metabolism by human gut microbiome
indicates food-derived metagenome evolution. Sci. Rep. 11,
5561 (2021).

42. Zhao, J. et al. Data-independent acquisition boosts quantitative
metaproteomics for deep characterization of gut microbiota. npj
Biofilms Microbiomes 9, 4 (2023).

43. Gómez-Varela, D. et al. Increasing taxonomic and functional
characterization of host-microbiome interactions by DIA-PASEF
metaproteomics. Front. Microbiol. 14, 1258703 (2023).

44. Dumas, T. et al. The astounding exhaustiveness and speed of the
Astral mass analyzer for highly complex samples is a quantum leap in
the functional analysis of microbiomes.Microbiome 12, 46 (2024).

45. Tanca, A. et al. A straightforward and efficient analytical pipeline for
metaproteome characterization.Microbiome 2, 49 (2014).

46. Addis,M. F. et al. Comparative secretomeanalysis ofStaphylococcus
aureus strains with different within-herd intramammary infection
prevalence. Virulence 13, 174–190 (2022).

47. Palomba, A. et al. On the Compatibility of Fish Meal Replacements in
Aquafeeds for Rainbow Trout. A Combined Metabolomic, Proteomic
and Histological Study. Front. Physiol. 13, 920289 (2022).

48. Bateman, A. et al. UniProt: the Universal Protein Knowledgebase in
2023. Nucleic Acids Res. 51, D523–D531 (2023).

49. Palomba, A. et al. Comparative Evaluation of MaxQuant and
Proteome Discoverer MS1-Based Protein Quantification Tools. J.
Proteome Res. 20, 3497–3507 (2021).

50. Verschaffelt, P. et al. Unipept Desktop 2.0: Construction of Targeted
Reference Protein Databases for Metaproteogenomics Analyses. J.
Proteome Res. 22, 2620–2628 (2023).

51. Cantalapiedra, C. P., Hern̗andez-Plaza, A., Letunic, I., Bork, P. &
Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation,
Orthology Assignments, and Domain Prediction at the Metagenomic
Scale.Mol. Biol. Evol. 38, 5825–5829 (2021).

52. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-
Watanabe, M. KEGG for taxonomy-based analysis of pathways and
genomes. Nucleic Acids Res. 51, D587–D592 (2023).

53. Porcheddu, M., Abbondio, M., De Diego, L., Uzzau, S. & Tanca, A.
Meta4P: A User-Friendly Tool to Parse Label-Free Quantitative
Metaproteomic Data and Taxonomic/Functional Annotations. J.
Proteome Res. 22, 2109–2113 (2023).

54. Perez-Riverol, Y. et al. The PRIDE database resources in 2022: A hub
for mass spectrometry-based proteomics evidences. Nucleic Acids
Res. 50, D543–D552 (2022).

55. Van Den Bossche, T. et al. The Metaproteomics Initiative: a
coordinated approach for propelling the functional characterization of
microbiomes.Microbiome 9, 243 (2021).

Acknowledgements
This study was funded by Fondazione di Sardegna (Progetti di Ricerca di
Base Dipartimentali, D.R. 2397/2021 to SU) and Sardegna Ricerche (grant
programart. 9 LR20/2015 toPortoConteRicerche). Thisworkhasbenefited
from collaborations facilitated by the Metaproteomics Initiative (https://
metaproteomics.org/)whosegoalsare topromote, improveandstandardize
metaproteomics55.

Author contributions
S.U. and A.T. conceived the study. A.P. performed sample preparation and
mass spectrometry analysis. D.P. supervised mass spectrometry analysis.
A.T. and G.F. performed data analysis. A.T. and S.U. wrote the manuscript.
A.P., G.F., and M.A. contributed to critically revise the manuscript. All
authors read and approved the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41522-024-00526-4.

Correspondence and requests for materials should be addressed to
Sergio Uzzau.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41522-024-00526-4 Article

npj Biofilms and Microbiomes |           (2024) 10:54 12

https://metaproteomics.org/
https://metaproteomics.org/
https://doi.org/10.1038/s41522-024-00526-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Metaproteomic portrait of the healthy human gut microbiota
	Results
	Datasets and general metrics
	Abundance and variability of gut metaproteomic features
	Correlation trends between taxa, functions and metadata
	Taxon-specific contribution to functions
	Role of gut microbiota members in SCFA biosynthesis, TCA cycle and quorum sensing

	Discussion
	Methods
	Datasets
	Bioinformatic analysis
	Statistical analysis and graph generation

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




