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Abstract

Per- and poly-fluoroalkyl substances (PFAS) are extensively used in commerce leading to their 

prevalence in the environment. Due to their chemical stability, PFAS are considered persistent 

and bioaccumulative; they are frequently detected in both the environment and humans. Because 

of this, PFAS as a class (composed of hundreds to thousands of chemicals) are contaminants of 

very high concern. Little information is available for the vast majority of PFAS, and regulatory 

agencies lack safety data to determine whether exposure limits or restrictions are needed. Cell-

based assays are a pragmatic approach to inform decision-makers on potential health hazards; 

therefore, we hypothesized that a targeted battery of human in vitro assays can be used to 

determine whether there are structure-bioactivity relationships for PFAS, and to characterize 

potential risks by comparing bioactivity (points of departure) to exposure estimates. We tested 56 

PFAS from 8 structure-based classes in concentration response (0.1–100 μM) using six human 

cell types selected from target organs with suggested adverse effects of PFAS – human induced 

pluripotent stem cell (iPSC)-derived hepatocytes, neurons, and cardiomyocytes, primary human 

hepatocytes, endothelial and HepG2 cells. While many compounds were without effect; certain 

PFAS demonstrated cell-specific activity highlighting the necessity of using a compendium of in 
vitro models to identify potential hazards. No class-specific groupings were evident except for 

some chain length- and structure-related trends. In addition, margins of exposure (MOE) were 

derived using empirical and predicted exposure data. Conservative MOE calculations showed 

that most tested PFAS had a MOE in the 1–100 range; ~20% of PFAS had MOE<1, providing 

tiered priorities for further studies. Overall, we show that a compendium of human cell-based 

models can be used to derive bioactivity estimates for a range of PFAS, enabling comparisons 

with human biomonitoring data. Furthermore, we emphasize that establishing structure-bioactivity 

relationships may be challenging for the tested PFAS.
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1. Introduction

Per- and poly-fluoroalkyl substances (PFAS) are used ubiquitously in commerce because 

of their water and oil repellant, temperature resistant, and other desired properties. Their 

uses range from consumer products such as food packaging, cookware, and clothing 

to industrial applications in semi-conductor manufacturing and fire suppression (e.g., in 

aqueous film forming foams). As a result of their ubiquitous use and releases into the 

environment through landfills and industrial discharges, PFAS have been detected in almost 

all tested environmental and human samples (National Academies of Sciences Engineering 

and Medicine 2022). Exposures to some PFAS have been linked to adverse effects in 

humans (Carlson et al. 2022; Radke et al. 2022; Zahm et al. 2023); however, there are 

little to no data on the potential health hazards for the vast majority of these chemicals 

(U.S. Environmental Protection Agency 2021a, b). Thus, to better understand PFAS as a 

class, governmental agencies are refining the inventories, improving exposure assessment 

approaches, and identifying data gaps pertaining to the risk assessment needs (European 

Commission 2020; U.S. Environmental Protection Agency 2021a; U.S. National Science 

and Technology Council 2023).

Based on the environmental and human health hazard data for a limited number of PFAS, 

including perflurooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), United 

States EPA and some state agencies have instituted health-based guidance values and 

restrictions (i.e., drinking water limits); further, efforts are underway to add a number of 

PFAS to the Superfund hazardous substances inventory (U.S. Environmental Protection 

Agency 2023). In the European Union (EU), acceptable food levels for four PFAS have been 

proposed in 2020 (Efsa Panel on Contaminants in the Food Chain et al. 2020). Recently, 

several EU member states submitted a proposal to implement a ban on the manufacturing 

and use of all PFAS as a class by 2030. The proposal is currently being evaluated by the 

European Chemicals Agency. (European Chemicals Agency 2023).

Despite the attention to PFAS by the general public and the regulatory agencies around 

the world, the vast majority of PFAS are very data-poor substances and active research 

efforts are underway to understand both exposure and the potential environmental and 

human health effects of a broader set of PFAS (Carlson et al. 2022; OECD 2022). The 

current approach to prioritize PFAS for additional toxicity testing largely relies on chemical 

structure-based groupings (Buck et al. 2011; Patlewicz et al. 2019; Patlewicz et al. 2022). 

In addition, grouping by mechanism of action, chain length, and other physicochemical 

descriptors have been proposed with the effort to prioritize PFAS for testing and the 

development of predictive in silico models (U.S. National Science and Technology Council 

2023). International efforts are underway to compile information on these subclasses (i.e., 

chemical properties, bioaccumulation, and transformation patterns, uses, regulatory status, 
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etc.), data that could be used, if groupings can be scientifically justified, for read-across to 

PFAS that lack data (OECD 2022).

There are thousands of PFAS in various chemical inventories and their hazard 

characterization by testing individual substances using traditional animal-based methods 

is not feasible (National Academies of Sciences Engineering and Medicine 2022; U.S. 

Environmental Protection Agency 2021a). Therefore, cell-based models are a sensible 

approach to evaluate a large number of PFAS in a time efficient manner in order to 

characterize their potential effects to human health and the environment (U.S. Environmental 

Protection Agency 2021a; U.S. National Science and Technology Council 2023). Indeed, 

several recent studies have applied a range of new approach methods (NAMs) to test a large 

(dozens to over a hundred) number of PFAS (Carstens et al. 2023; Houck et al. 2023; Houck 

et al. 2021; Reardon et al. 2021) using several human cell-based models. However, because 

many additional tissue/cell types have been shown (or suggested) to be potential targets 

for PFAS toxicity in humans (National Academies of Sciences Engineering and Medicine 

2022), additional studies are needed.

One approach to broaden biological coverage is to use a large compendium of tests and 

cell-based models, such as those in ToxCast/Tox21 testing programs (Harrill et al. 2021; 

Richard et al. 2021). An alternative is to use a targeted battery of human cell-based 

assays that has been shown to be informative for deriving protective points of departure 

(PODs), determining structure-bioactivity relationships, and characterizing potential risks by 

comparing bioactivity to exposure estimates (Chen et al. 2020; Chen et al. 2021; Cordova 

et al. 2023; House et al. 2021). The cell types in the latter approach include some of the 

organs that have been shown to be affected by PFAS – the liver, cardiovascular system, and 

the central nervous system. Therefore, this study tested a hypothesis that a targeted battery 

of human cell-based assays can be used to determine whether there are structure-bioactivity 

relationships for PFAS, and to characterize potential risks by comparing bioactivity (point of 

departure) to exposure estimates. We used a diverse set of 56 PFAS from 8 structure-based 

classes and collected data in concentration response (0.1 to 100 μM) in 6 human cell types – 

human induced pluripotent stem cell (iPSC)-derived hepatocytes, neurons, cardiomyocytes, 

as well as primary human hepatocytes, endothelial and HepG2 cells.

2. Experimental Methods

2.1. Chemicals

Test PFAS (n = 56, Table 1) were obtained from a chemical repository at MRIGlobal 

(Kansas City, MO) that was assembled from the following vendors: Matrix Scientific (Elgin, 

SC), SynQuest Laboratories (Alachua, FL), Apollo Scientific (Bredbury, UK), TCI America 

(Portland, OR), Oakwood Products (Estill, SC), Sigma-Aldrich (St. Louis, MO), MuseChem 

(Fairfield, NJ), or BOC Sciences (Shirley, NY). Purity of each compound was determined 

by MRIGlobal and substances were shipped in 1 mL vials, with Teflon-lined screw-cap vials 

under Argon gas headspace. The chemicals were selected to represent a broad spectrum 

of PFAS subclasses and chain lengths (Table S1 and Figure S1). PFAS were assigned 

into subclasses using side-chain/head group descriptors for the classification as previously 

suggested (Buck et al. 2011; Buck et al. 2021). Chemicals were randomized with respect 
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to the position on the test plates to avoid potential selection bias with respect to sub-class 

assignments. Upon receipt, chemical stocks were stored at −80○C until use. Tissue-culture 

grade dimethyl sulfoxide (DMSO, CAS# 67-68-5, sc-358801) was obtained from Santa Cruz 

Biotechnology (Dallas, TX). Assay-specific positive controls were obtained from various 

vendors (Table S2).

2.2. Cells and Biological Reagents

The human cell types for in vitro experiments were selected to represent various organ/

tissues that have been shown previously to demonstrate adverse effects of PFAS (Burnett 

et al. 2021; Liao et al. 2012; Marques et al. 2022; Ojo et al. 2020; Tukker et al. 

2020). Selected cell types included: (i) iCell hepatocytes 2.0 (iCell Heps, Cat# C1023, 

FujiFilm Cellular Dynamics, Madison, WI), (ii) iCell GABAneurons (iCell Neurons, Cat# 

C1012, FujiFilm Cellular Dynamics), (iii) iCell cardiomyocytes (iCell Cardios, Cat# C1006, 

FujiFilm Cellular Dynamics), (iv) human umbilical vein endothelial cells (HUVECs, Cat# 

C2517A, Lonza, Walkersville, MD), (v) primary human hepatocytes (PHHs, Cat# HMCPIS; 

Gibco, Waltham, MA), and (vi) HepG2 cells (HepG2s, Cat# HB-8065; ATCC, Manassas, 

VA). Formulations for both plating and maintenance media were cell-specific and are 

described in detail in Supplemental Text. Briefly, cell-specific media and supplements for 

iCells were obtained from FujiFilm Cellular Dynamics as part of the cell-specific kits or 

purchased as indicated in the protocol. HUVECs were cultured in EGM-2 medium (Cat# 

CC-3156, Lonza) supplemented with the EGM™−2 BulletKits™ (Cat# CC-4176, Lonza) 

were from Lonza (Walkersville, MD). PHHs were cultured in William’s E Medium, no 

phenol red (Cat# A1217601, Gibco) and HepG2s were cultured in DMEM (Cat# 11965–

092, Gibco). Additional reagents that were used for cell culture experiments included 

penicillin-streptomycin (Cat# 15140–122, Gibco), TrypLE Express Enzyme (1×)™ (Cat# 

12605–010, Gibco), B-27™ medium supplement (Cat# 17504–044, Gibco), and gentamicin 

(Cat# 157060, Gibco). Fetal bovine serum (FBS, Cat# 97068–085) was obtained from VWR 

(Radnor, PA). Tissue culture grade 384-well plates (Cat# 3764) were obtained from Corning 

(Kennebunk, ME). Gelatin (Cat# G1890–500G), Trypan Blue 0.4% solution (Cat# T8154–

100ML), and D-PBS (Cat# D8537) were obtained from Sigma-Aldrich (St. Louis, MO).

The justifications for the selected cell-specific phenotypes evaluated in this study have 

been previously detailed (Gerets et al. 2012; Grimm et al. 2015; Iwata et al. 2017; Kato 

et al. 2022; Sirenko et al. 2014). Details of cell type-specific phenotyping are included in 

Supplemental Text. Briefly, cells were cultured in 384-well plates and exposed to 56 PFAS 

in concentration response (0.1 to 100 μM); the chemicals were prepared originally in master 

plates in 100% cell-culture grade DMSO and diluted 100-fold to yield 2× working solutions 

in 1% DMSO. The final concentration in assay wells following addition of test chemicals 

was 0.1, 1, 10, and 100 μM in 0.5% DMSO (v/v). The amount of DMSO was consistent with 

previous studies that show no effects from DMSO across all cell type-specific phenotypes. 

Chemical exposure times were cell-specific and have been tested in previous studies (Chen 

et al. 2020). The 384-well plate design (Figure S2) included all 56 PFAS in concentration 

response ranging from 0.1 to 100 μM. The chemicals were assigned an ID and their location 

on the plate was randomized. Intra-plate replicate chemicals were included to evaluate 

reproducibility, as well as negative controls including media and vehicle-treated wells – 
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DMSO (0.5%), and cell-type specific positive controls (see Supplemental Text and Table S2 

for the list).

2.3. Cytotoxicity Assays

High-content live cell imaging was used to evaluate cytotoxicity in all cell types following 

the chemical exposures (specific for each in vitro model, see Supplemental Text for 

details) using an ImageXpress Micro Confocal High-Content Imaging System (Molecular 

Devices, San Jose, CA). The cells were stained with various fluorescent dyes as follows. 

Hoechst 33342 (Cat# H3570, Invitrogen, Carlsbad, CA) was used to stain nuclei, Calcein 

AM Green (Cat# C3100MP, Invitrogen) for cytoplasm. ATP production was evaluated 

in some cell types (iCell Neurons and HUVECs) using the CellTiter-Glo reagent (Cat# 

G9241, Promega, Madison, WI) and the FLIPR Tetra Imaging Device and Screenworks 4.0 

software (Molecular Devices). The high-content imaging was done using the DAPI, FITC, 

and TRITC filters at 10× and 20× magnifications. The embedded MultiWavelength Cell 

Scoring software was used as the imaging processing software to quantify the images for the 

various cytotoxic phenotypes of interest. The ATP production data were extracted using the 

FLIPR Tetra Screenworks 4.0 software. All data were then used for concentration response 

modeling to derive PODs (see below).

2.4. Functional Phenotypic Assays

Cell type-specific functional phenotypes were evaluated in each model as described in 

Table 2 and Table S2. Specific details for each cell type are listed in Supplemental Text 

and have been reported previously. Mitochondrial integrity and intensity (MitoTracker 

Orange, Cat# M7510, Invitrogen), and lipid accumulation (HCS LipidTOX Deep Red, 

Cat# H34477, Invitrogen) for the hepatocyte models (iCell Heps, PHHs, and HepG2s) 

and neurite outgrowth phenotypes for the iCell Neurons were evaluated using high-content 

imaging. Angiogenesis phenotypes for the HUVECs were evaluated by seeding the cells in 

an extracellular gel matrix, allowing for 3D tubule formation, this was then followed by 

chemical exposures and high-content imaging. The EarlyTox Cardiotoxicity Kit was used to 

look at the Ca2+ flux of the iCell Cardios which was measured using high-throughput kinetic 

imaging on the FLIPR Tetra (Molecular Devices). The embedded MultiWavelength Cell 

Scoring, Neurite Outgrowth, Granularity and Angiogenesis Tube Formation Modules were 

used as the imaging processing software to quantify the images for the various phenotypes 

of interest.

2.5. Assay Quality Control Evaluation

To evaluate experimental reproducibility, each cell type was seeded in multiple 384-well 

plates and each chemical was tested on each plate. Chemicals were added to plates with 

cells using the automated liquid handling of the FLIPR Tetra (Molecular Devices). After the 

culture period and assays, the raw phenotypic data was extracted from the various software 

types, including ImageXpress application modules (MultiWavelength Cell Scoring, Neurite 

Outgrowth, Angiogenesis Tube Formation, and Granularity) on the MetaXpress, as well 

as Screenworks 4.0 software (Molecular Devices) using pre-determined algorithms in each 

software package. All data were normalized to plate-specific vehicle controls (0.5% DMSO-

treated wells). The vehicle controls were screened for outliers, and values were removed if 
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any were identified outside of the inter-quartile range of the controls. Supplementary quality 

control accounted for the coefficient of variability (CV, %) of the vehicle control samples; if 

the CV% was above 20%, manual screening was done to identify any anomalies. Additional 

quality control was assessed for each phenotype by evaluating any differences between the 

negative controls (vehicle-control vs. media), cell-specific positive controls and looking at 

both the intra-plate and inter-plate reproducibility. First, quality control data (positive and 

negative controls) were evaluated for reproducibility and expected effects; only when the 

quality criteria were met (see above), analyses of PFAS effects were conducted.

2.6. Concentration-Response Modeling

Normalized data from each phenotype was used as the input for the concentration-response 

modeling to derive a POD for each chemical, cell type and phenotype. The normalized data 

for each treatment were fitted to a curve with a nonlinear logistic function using whole-batch 

data processing and a standardized dose-response modeling protocol as previously detailed 

(Sirenko et al. 2017). Generally, the POD for each phenotype was defined as the effective 

concentration at which the fitted curve exceeds a 10% relative change from vehicle-treated 

controls. The iCell Cardios functional phenotypes used a 5% relative increase or decrease 

from controls as the POD for positive/negative chronotrope and QT prolongation, and a 

95% relative decreasing change from controls as the POD for asystole based on the human 

relevance of these in vitro phenotypes as detailed elsewhere (Blanchette et al. 2020).

2.7. Data Integration Using Toxicological Priority Index (ToxPi) Approach

Toxicological Priority Index Graphical User Interface (ToxPi GUI, https://toxpi.org/, last 

accessed October 1, 2023) was used to integrate and visualize the phenotypic data (Marvel 

et al. 2018; Reif et al. 2013). The PODs from all 48 phenotypes from 6 in vitro models 

were used, and as instructed by the ToxPi protocol, the PODs were inversely scaled from 0 

– 1, with 0 representing the highest POD values (no effect) and 1 representing the lowest 

POD (highest observed bioactivity). The scores were weighted proportionately based on the 

number of phenotypes for each cell type (i.e. iCell Neurons – 10 phenotypes, iCell Cardios 

– 5 phenotypes). These scores were then used to determine an overall ranking across all cell 

types and on a cell-to-cell basis to determine what cells were the most bioactive.

2.8. Margin of Exposure Estimates

The ratio of the observed in vitro effects to the estimated human exposure predicted 

estimates were evaluated to calculate the margin of exposure (MOE) to determine the overall 

risk of the tested PFAS. The MOE was calculated using the most sensitive chemical-specific 

POD across all phenotypes and comparing it to the highest exposure value. Exposure 

data was taken from the CompTox Dashboard (https://comptox.epa.gov/dashboard/, Version 

2.2.1, last accessed on June 28, 2023) (Williams et al. 2017) using the predicted exposure 

levels or values detected in human biological matrices from published PFAS biomonitoring 

studies. Specifically, the exposure data were either (i) extracted from the EPA’s CompTox 

Dashboard predictions (based on the General-Exposure-Predictions-2022-05-16 dataset 

that was generated using the R package SEEM3) (Wambaugh et al. 2013), or (ii) 

obtained through a literature search of blood concentrations of the tested PFAS in 

humans (Table S3). For the latter, the full chemical name, CAS-RN, and abbreviated 
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names (Table 1) were searched in Google (https://www.google.com/) and PubMed (https://

pubmed.ncbi.nlm.nih.gov/). Resulting studies were evaluated for relevance (i.e., containing 

blood levels of PFAS of interest) to levels in human blood, serum, or plasma. Data from 

a total of 65 studies were deemed relevant and are listed in Table S3. From the available 

data across all studies, the 5th and 95th percentile values were calculated to generate a 

comparable range to that of the exposure predicted values (50th – 95th percentile) from 

the CompTox Dashboard. Then, if a chemical had multiple studies or both predicted 

and measured value, the highest exposure values were used as a conservative approach 

to calculate the MOE. Specifically, exposure estimates were first converted into human 

steady-state plasma concentrations (Css), assuming median toxicokinetic parameters using 

the function “calc_analytic_css” with the three-compartment steady state model in the httk R 

package (Pearce et al. 2017). If data was not available in httk, protein binding values were 

used as previously reported (Kreutz et al. 2023; Smeltz et al. 2023) under the assumptions 

of no hepatic clearance and renal clearance only via glomerular filtration. The MOE for 

each substance was calculated by dividing the POD from the most sensitive cell-specific 

phenotype by the most conservative (i.e., highest) Css estimate which is converted from the 

95th percentile of human exposure using equation:

MOE = POD μM
HumanExposure mg/kgbw/day ∙ Css μM

1mg/kgbw/day

2.9. Comparisons to Other In Vitro Studies

As a benchmark comparison to the in vitro PFAS bioactivity data collected herein, the most-

sensitive human, cell-based assay AC50 values were extracted from the Tox21 database, 

available through the CompTox Dashboard (last accessed on June 15, 2023 using version 

2.2.1) (Williams et al. 2017). If the lowest reported AC50 value was from a cell-free assay 

and other values were available from human cell-based assays, then the lowest cell-based 

assay AC50 value was used. Also, in the case that the lowest POD was from an animal-based 

in vitro assay, then the lowest human cell-based assay was used.

In addition to comparing the PFAS to other human in vitro studies, we also made 

comparisons to in vitro data on a diverse set (n=42) of industrial chemicals (Chen et 

al. 2020). Of the 6 cell types tested, 4 were used in both studies (iCell Neurons, iCell 

Cardios, iCell Heps, and HUVECs) and the phenotypic data were used as the input for the 

comparison. We utilized ToxPi (as previously described) to integrate and visualize the data 

across both chemical datasets. ToxPi ranks were assigned to each of the chemicals used in 

this analysis.

2.10. Correlation Analyses and Cross-Validated Predictions for Bioactivity using 
Chemical Descriptors and Physicochemical Properties of PFAS

In addition to the hierarchal clustering based on subclass and subgroup and phenotype 

attributes, we conducted correlation analyses and cross-validation predictions. Our primary 

objective was to thoroughly evaluate the efficacy of incorporating a diverse array of 

chemical molecular descriptors as a predictive tool to discern bioactivity patterns. For these 
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analyses, we used Saagar descriptors (Sedykh et al. 2021), a collection of diverse chemical 

sub-structures (i.e., local “motifs” that are searched and counted in each query molecule), 

and physicochemical properties predicted using the OPERA modeling suite (Mansouri et 

al. 2018). Saagar descriptors were derived from basic chemical functionalities, including 

metrics such as alkyl halogen counts, di-halogen atom pairs, etc. The overall hit-count 

matrix for Saagar (834) and physicochemical (9 OPERA, molecular weight and carbon 

chain-length) features for tested PFAS chemicals is provided in Table S4 and the bioactivity 

data matrix is provided in Table S5.

Saagar chemical descriptors and physicochemical properties were examined for associations 

with bioactivity phenotypes, using a combination of pairwise analyses and cross-validated 

predictions using an established penalized regression approach. As each set of descriptors 

is of independent interest, we performed analyses using the physicochemical descriptors, 

using the Saagar descriptors, and then using the combination of physicochemical and Saagar 

descriptors. Within each analysis set, p-value adjustment (Holm 1979) was performed for the 

corresponding number of tests. We considered an adjusted p<0.05 as statistically significant.

Among the original 48 bioactivity phenotypes, 7 did not vary (i.e., were not affected by 

PFAS) across the 56 PFAS and were removed. We then computed minimum PODs across 

the phenotypes (i) within phenotypes corresponding to each cell type, and (ii) overall 

(among all cell types), resulting in a final set of 48 bioactivity phenotypes for these analyses. 

Additional data reduction was performed for Saagar descriptors because the cross-validated 

prediction method requires at least two samples with a feature to differ from the remaining 

samples. After applying this filter, 123 Sagaar descriptors were retained for cross-validated 

analysis. We used this same set of descriptors for the pairwise association analysis, as 

descriptors failing the variation criterion have almost no power to detect associations.

For pairwise correlation analyses, we calculated Spearman rank correlations for each set of 

Saggar descriptors and physicochemical properties vs. the 48 bioactivity phenotypes, with 

two-sided p-values adjusted for the multiple testing (Benjamini and Hochberg 1995).

For cross-validated prediction analyses, we used an approach previously reported by (Chen 

et al., 2021) to determine if a diverse set of chemical features could be used predict 

bioactivity. The approach uses multivariate ridge regression-based prediction with a common 

penalty parameter across features to avoid overfitting, and n-fold cross-validation. As the 

procedure does not use nested tuning parameter selection, to guard against any subtle 

overfitting, 10,000 permutations of the procedure were performed for each set of descriptors, 

resulting in an empirical p-value for the correlation between the cross-validated predictions 

of each phenotype and the actual observed phenotype values. Multiple testing correction 

used Holm’s method (denoted padj) corrected for the 48 bioactivity phenotypes (Holm 

1979).
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3. Results

3.1. Phenotyping of the human cells treated with PFAS in dose-response.

Overall, this study used the PFAS bioactivity data to identify potential grouping strategies, 

and to understand the potential margins between exposure and effects to inform risk 

management. Specifically, we used a targeted battery of 6 human organotypic cell 

types to test 56 diverse PFAS from various subclasses (Figure 1). First, cell-specific 

phenotypes (Table 2) were collected to represent both functional cytotoxicity endpoints 

and concentration response modeling performed to calculate PODs. Second, the PODs were 

used to determine both overall and cell type-specific bioactivity of each PFAS, and to test 

if the bioactivity was structure-dependent. For the latter, we used unsupervised hierarchical 

clustering, as well as machine learning-based supervised analysis to predict bioactivity 

for each substance using chemical descriptors (Sedykh et al. 2021) and physicochemical 

properties (Mansouri et al. 2018). Finally, we calculated chemical-specific MOEs from in 
vitro PODs.

To ensure functionality and reproducibility, a rigorous quality control assessment was 

conducted prior to any concentration response modeling. Cell-specific positive control 

treatments were used for each cell type (see Supplemental Text), and compared to the 

negative controls, both vehicle (DMSO 0.5%) and media. As demonstrated in Figure 2, the 

vehicle control and media samples had no effect across all cells. Conversely, the cell-specific 

positive controls exhibited a concentration dependent effect on the respective model. All 

phenotypic quality control data can be found in Figures S3–S5 and Table S6.

Concentration response analyses were conducted across six cell types with a total of 48 

phenotypes (Table 2). When no effect of a chemical was observed, the highest tested 

concentration (100 μM) was designated as the POD. Figure 3A shows the PODs for 

each tested PFAS grouped by structure-based class. Within each class a wide range of 

bioactivity was observed as demonstrated by the range of PODs. For example, within 

the class of perfluorocarboxylic acids (PFCA), some substances were bioactive (i.e., 

perfluoroundecanoic acid (PFUnDA)) and others had no effect in any of the tested cell types 

(i.e., perfluorobutanoic acid (PFBA)). The bioactivity also varied by cell type, as indicated in 

Figure 3B and Figure S6. To illustrate which cell types were contributing to the bioactivity 

in Figure 3A, the active phenotypes (i.e., PODs <100 μM) were assembled as a stacked bar 

by cell type. Of all possible phenotype/chemical combinations (n=2,688), only 230 (8.6%) 

were active.

Figure 4 shows what cell types were most sensitive to tested PFAS. Among 56 tested 

compounds, 51 were bioactive in at least one cell type (Figure 4A). PFAS were active most 

often in PHHs, iCell Heps, HepG2, HUVECs, and iCell Cardios (23 to 28 PFAS per cell 

type). In iCell Neurons, 9 PFAS exhibited bioactivity. Figure 4B shows that with respect to 

the potency in bioactivity (judged by the POD being less than the top concentration tested), 

the median for each PFAS was equal to the highest concentration tested; however, in all cell 

types there was a wide range of bioactivity across PFAS. Overall, iCell Heps were the most 

sensitive cell type as indicated by the interquartile range in bioactivity.
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3.2. Comparison of the PFAS effects in a targeted battery of 6 human organotypic cell 
types to those from the CompTox Dashboard.

We also examined how the data from this study compared to the bioactivity of the 

same PFAS in a larger in vitro test battery available on the CompTox Dashboard (https://

comptox.epa.gov/dashboard/) (21 human cell types and 55 phenotypes). For this analysis we 

selected the lowest bioactive PODs for each PFAS across 6 cell types and 48 phenotypes 

in this study. For the EPA CompTox Dashboard data, we selected the lowest AC50 values 

for the same 56 PFAS from all available human cell-based assays. Figure 4C shows the box-

and-whiskers plot of the PODs from this study and those from the dashboard. Overall, the 

targeted battery of 6 cell types yielded more protective (i.e., lower) PODs when comparing 

the mean values between datasets; however, this comparison should be interpreted with 

caution because the testing ranges and POD types were different among datasets.

To rank PFAS based on their overall bioactivity, we integrated the PODs across 6 cell types 

and all phenotypes using a ToxPi approach (Marvel et al. 2018; Reif et al. 2013). Figure 5 

shows the overall ranking of PFAS using ToxPi where each sector in the pie chart represents 

a cell type and was weighted proportional to the number of phenotypes in that cell type 

(iCell Heps (n=8), PHHs (n=8), HepG2s (n=8), iCell Neurons (n=10), iCell Cardios (n=5), 

HUVECs (n=9)). The stacked bars show a cumulative ToxPi score for each PFAS and the 

contribution from each cell type. The chemicals were then ranked based on the ToxPi score; 

a wide range of cumulative bioactivity was observed. The most potent PFAS in this analysis 

had a score of less than 0.5 on a 0 to 1 scale, so it is noteworthy that no substance was 

consistently bioactive across all cell types, further indicating cell-specific effects of PFAS. 

The corresponding chemical subclass for each PFAS is shown by a colored square to the 

left of the substance’s abbreviation; it is evident that the ToxPi rankings did not show trends 

consistent with structure-based subclasses, as shown by the interspersed order of subclasses. 

The ToxPi scores and the contributions from each cell type are provided in Table S7.

3.3. Comparison of the similarity in PFAS effects based on structural and 
physicochemical properties

A leading current approach to group PFAS is based on their structure and properties (Buck 

et al. 2011; OECD 2022). To further test if bioactivity was chemical subclass-specific, we 

used unsupervised clustering analysis. Figure 6 shows no clear groupings in unsupervised 

hierarchal clustering of both phenotypes and chemicals based on the PODs. This result may 

be driven by the fact that for most chemical/phenotype pairings, no effects were observed 

(see Figure 3). Some of the tested PFAS exhibited similar effects across different liver cell 

models (PHHs, iCell Heps and HepG2s) supporting previous observations that the liver is a 

target organ for PFAS (Fenton et al. 2021).

In addition, because unsupervised clustering analysis with all bioactivity data was 

unsuccessful in demonstrating PFAS subclass groupings, we investigated whether PFAS 

structural descriptors or physicochemical properties are correlated with, or could be used to 

predict, bioactivity. First, we used physicochemical properties of PFAS calculated from the 

OPERA suite (Mansouri et al. 2018) because some previous studies showed that carbon 

chain length, molecular weight and other properties may be associated with trends in 
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observed in vitro bioactivity (Amstutz et al. 2022; Feng et al. 2023; Goodrum et al. 2021; 

Houck et al. 2023; Houck et al. 2021; Zhang et al. 2014). Upon calculating all pair-wise 

correlations (Spearman rank) among all in vitro phenotypes and physicochemical properties 

and adjusting for multiple comparisons, we found that only the minimum PODs from all 

iCell Cardios-derived phenotypes were significantly negatively correlated (ρ = −0.54 to 

−0.57; padj<0.05) with molecular weight, carbon chain length and octanol-water partition 

coefficient, with the latter three being highly correlated with each other (ρ = 0.84 to 0.92). 

For pairwise correlations with Saagar descriptors, 11 phenotype-descriptor combinations 

were significant (Table 3 and Table S8). While some of the Saagar descriptors that were 

significantly negatively correlated (presence of the feature in a molecule indicated greater 

effect, i.e. lower POD) with the phenotypes represented chemical structural features, others 

code for the features indicative of the carbon chain length. Finally, using the combined 

physicochemical properties and Saagar descriptors, 13 phenotype-descriptor combinations 

were significant – the same 11 Saagar descriptors (Table 3 and Table S9), as well as 

molecular weight and carbon chain length. All details and statistical results of these analyses 

can be found in Tables S8–S13 and Figures S7–S9.

For the cross-validated prediction analyses, only the cardiomyocyte minimum POD could 

be significantly predicted from either the physicochemical properties (ρ = 0.57 between 

observed and predicted values, padj = 0.007), or the combination of Saagar descriptors 

and physicochemical properties (ρ = 0.51, padj = 0.049). For the Saagar descriptors alone, 

no phenotype associations were significant, which we attribute to the implicit need to 

correct for choice of tuning parameter, as well as the inclusion of numerous potentially 

uninformative descriptors in the prediction model.

3.4. Risk characterization of PFAS using data from a targeted battery of 6 human 
organotypic cell types

Because bioactivity was observed for several PFAS, we reasoned that the in vitro PODs 

could be used as a conservative quantitative estimate of hazard and thus, used to estimate 

risk. Therefore, to put the observed bioactivity data into the context of risk assessment, 

the PODs were compared to human exposure levels using predicted and measured PFAS 

blood levels to calculate the MOE. Figure 7 (left) shows (i) predicted (density plots) 

and (ii) reported (whiskers plot) blood levels with the highest (95th percentile) exposure 

indicated as a triangle, and (iii) the lowest POD (filled circles, colored by the cell type) for 

each of the tested PFAS. Except for several PFAS, exposure ranges extend several orders 

of magnitude for both predicted and reported measured data; the latter was available for 

only one half of tested PFAS. Unfortunately, some tested PFAS had neither exposure data 

type available, preventing risk characterization analysis. Next, the ratios between the most 

sensitive chemical-specific POD and the most conservative exposure value are plotted as the 

MOE. Using the most conservative assumptions, we found that 12 of 56 tested compounds 

had an MOE<1 indicating potential human health concern at current exposure levels, albeit 

not all of these have actual measured blood levels. The majority of tested PFAS had MOEs 

between 1 and 100; 16 of 56 had MOEs above 100. All values used to derive the MOE and 

the MOEs are reported in Table S14.
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Finally, to place the PFAS bioactivity as reported in our study in context with in vitro effects 

of other industrial chemicals, we compared our results to those previously reported using 

a similar targeted battery (Chen et al. 2020). Specifically, the observed PFAS bioactivity 

was compared to in vitro data from the previous study of 42 chemicals (polycyclic aromatic 

hydrocarbons (PAHs), heavy metals, high production volume chemicals (HPV), pesticides, 

and phthalates) in 4 of the 6 cell types that overlapped with our study (Chen et al. 2020). 

Figure 8 illustrates these comparisons using both ToxPi and MOE approaches. An overall 

ToxPi integrating POD data for PFAS and the 42 industrial chemicals using matching 

cell types and phenotypes shows the cumulative rank and potency for both chemical sets 

combined (Figure 8A and Table S15). The top 9 chemicals with the highest ranking in this 

analysis were industrial chemicals (Table S15). The top-ranked PFAS in this comparison 

was perfluorooctanamidine (PFOAMD); which had the 2nd highest ranking in the analysis 

that included all 6 cell types (Figure 5). Furthermore, of the top 30 chemicals with the 

highest ToxPi scores, only 4 were PFAS, with each being from different subclasses. Overall, 

the vast majority of PFAS were in the bottom two thirds of all compounds indicating 

relatively low bioactivity in terms of in vitro (nominal) concentration as compared to 

other industrial chemicals. In addition to integrating the POD datasets using ToxPi, MOEs 

were derived when exposure data were available using similarly conservative approaches as 

detailed for Figure 7. Even though PFAS were relatively low-ranked for the bioactivity, a 

larger fraction of them had MOEs<1 (Figure 8B) indicating that their potential risk is driven 

by higher estimates of exposure and/or bioaccumulation, as compared to the industrial 

chemicals. The bioactivity (removing HepG2s and PHHs) and exposure data used to derive 

the MOE and the corresponding MOEs are provided in Table S16 and S17.

4. Discussion

We hypothesized that bioactivity measured in a targeted battery of human cell-based assays 

can be used not only to determine whether there are structure-bioactivity-based relationships 

for PFAS, but also to characterize and prioritize the potential risks of these chemicals by 

comparing the bioactivity to exposure estimates. We tested 56 PFAS from 8 structure-based 

subclasses in concentration-response across 6 human cell types. The bioactivity data was 

used to derive PODs which were subsequently applied to group and rank PFAS. Also, the 

in vitro data was compared to (i) in vitro data on PFAS from other studies, (ii) in vitro 
data on other chemicals, and (iii) predicted exposure data to derive chemical-specific MOEs. 

Overall, our study aimed to address several over-arching challenges in the safety evaluation 

of PFAS – we tested a compendium of cell types to determine potential effects across 

multiple tissues, evaluated similarity of the effects within and across chemical subclasses, 

determined whether effects can be correlated with structural features, and used in vitro 
PODs and exposure estimates to perform risk characterization.

Many in vitro studies with PFAS focused on a limited number of compounds and specific 

cell types; more recently, the potential adverse effects of PFAS have been tested using larger 

(dozens to hundreds) number of compounds but still focused on particular tissue or cell type 

(Carlson et al. 2022; Carstens et al. 2023; Houck et al. 2021; Patlewicz et al. 2019). While 

targeted assays are informative for identifying potential organ-specific and mechanistic 

events, many PFAS are known to operate by multiple mechanisms or their targets are yet to 
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be identified (Goodrum et al. 2021). Therefore, to gain a more comprehensive understanding 

of the potential adverse effects across multiple tissues it is crucial to not only broaden the 

spectrum of tested PFAS but also to incorporate organotypic in vitro assays from different 

tissues. Our study showed that effects of PFAS are highly cell type-specific and future in 
vitro testing should include different cell-based models. It is challenging, however, to decide 

a priori what cell-based models should be used. One approach is to have as broad coverage 

as possible using the ToxCast approach (Richard et al. 2021; Richard et al. 2016). Another 

approach is to rely on smaller in vitro test batteries that use fewer cell types but still assess 

a wide range of relevant phenotypic endpoints and have comparable performance to that of 

ToxCast (Chen et al. 2020). Our study applied the latter approach and showed that many 

compounds had tissue-specific effects and thus future studies should include broad-coverage 

assays.

To enable studies of potential adverse effects across various tissues and organs, it is crucial 

to prioritize and group PFAS for future testing. Indeed, approaches for PFAS grouping have 

received heightened attention in the past decade and it is generally agreed that a better 

understanding of the relationships between physical and chemical properties and potential 

adverse effects is needed (ETH Zurich Safety and Environmental Technology Group 2017; 

Ritscher et al. 2018). For example, it was suggested that both elemental composition and 

molecular structure of PFAS can be used for grouping to inform chemical risk assessment 

(Anderson et al. 2022; Buck et al. 2011; Buck et al. 2021; Cousins et al. 2020). Additional 

suggested strategies include grouping by structural subclass, carbon chain length, and mode 

of action (Gaballah et al. 2020; Health Canada 2022; U.S. Environmental Protection Agency 

2021a; U.S. National Science and Technology Council 2023). Overall, while a consensus 

is yet to emerge on what approach is most scientifically justifiable, there are many who 

strongly argue that all PFAS should not be grouped together as an entire chemical class 

(Anderson et al. 2022), even though such an approach is being advocated by a number of 

Member States in Europe (European Chemicals Agency 2023).

In this study, we tested 56 PFAS that were representative of a broad range of structural 

subclasses (Buck et al. 2011; Buck et al. 2021; OECD 2018). We used the chemical-

specific PODs from various in vitro assays to identify structure-based similarities in effects. 

While we found that across the 6 cell types some PFAS had cell- and phenotype-specific 

effects, our data revealed no overall structure-related trends as demonstrated by hierarchal 

clustering. We also found that the majority chemical-assay test combinations (nearly two-

thirds) were inactive at the concentrations tested herein (up to 100 μM). Additionally, no 

specific subclass exhibited consistently “high” or “low” bioactivity or ToxPi scores. We did 

find that some bioactivity was correlated with carbon chain length and molecular weight – 

the larger the number of carbons in a PFAS, the more likely it would have an effect in human 

iPSC-derived cardiomyocytes.

Other studies reported associations between structural features of PFAS and in vitro effects. 

In a study of 15 PFAS in HepG2s cells (Zhang et al. 2014) it was shown that the binding 

affinity of peroxisome proliferator-activated receptor gamma (PPARG) was also concordant 

with PFAS chain length. A study of 142 PFAS in HepG2 cells also reported that PPAR 

activation potency correlated with some physicochemical properties such as presence of the 
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negatively charged structures and acidic hydrogen atoms, and that retinoid X receptor beta 

(RXRβ) activation potency correlated with molecular shape and presence of carboxylate 

groups (Houck et al. 2021). Shorter-chain PFAS (C4–C6) have lower binding affinity to 

various human nuclear receptors (i.e. PPAR-α), constitutive activated/androstane receptor, 

liver fatty acid binding protein, pregnane X receptor, and thyroid receptor) than the long-

chain PFAS (>C6) (Goodrum et al. 2021). A study of 13 PFAS in HepG2s found that 

longer-chain compounds were more cytotoxic than the short-chain ones (Amstutz et al. 

2022). Long-chain PFAS were also more cytotoxic and reduced the rate of maturation in a 

mouse oocyte in vitro model (Feng et al. 2023). In addition, a study of 147 PFAS identified 

a trend between molecular weight and bioactivity related to in vitro immunosuppression 

(Houck et al. 2023). A study of 160 PFAS reported that compounds with long carbon chains 

(C8 or greater), high carbon to fluorine ratio, or containing a carboxylic acid moiety were 

more likely to exhibit developmental neurotoxicity in vitro (Carstens et al. 2023).

While individual studies mentioned above reported associations, they were not entirely 

consistent in terms of which physicochemical properties of PFAS were informative, except 

for the carbon chain length that was identified by several reports. Our study found a similar 

significant trend for molecular weight and carbon chain length, including Saagar descriptors 

that indicate the number of carbons and heteroatoms (e.g., F) in each molecule. It is well 

established that individual PFAS have major differences in half-lives, persistence, as well 

as chemical properties that add complexity when attempting to group them using structure-

based considerations (Fenton et al. 2021; Goodrum et al. 2021). Indeed, our attempt to 

use an unbiased approach to discover structure-bioactivity associations through a set of 

molecular substructures that have been used for read-across predictions (Sedykh et al. 

2021) resulted in few significant associations. For example, presence of N-attached double 

bonded heteroatoms, sulfonamide moiety, heteroatom-nitrogen bond, heteroatom-bonded 

methyl group, two oxygens that were 5 bonds apart, a primary amine, or polyether moiety 

were significant indicators of higher effects (lower POD) for several liver and endothelial 

phenotypes. While the library of PFAS tested in this study may have been insufficient to 

discover associations that are generalizable to other PFAS, our results demonstrate that it 

may be challenging to establish a robust set of physicochemical and/or structural features of 

PFAS that would broadly predict their bioactivity across different cell types and molecular 

events. Even though larger datasets may enhance the strength of yet to be identified 

associations, confidence in the widespread applicability of the potential structure-bioactivity 

relations for grouping and read-across may still be uncertain due to potential for high 

residual variability.

Although our study did not find many structure-bioactivity relationships among tested PFAS, 

our data does show that in vitro bioactivity data can be used to rank and prioritize PFAS for 

additional studies. We found that most tested compounds had no effects across any of the 

tested cell types. We also found that in comparison to other chemicals, the majority of PFAS 

were low ranked in terms of their bioactivity. These findings indicate that testing all PFAS 

of concern may be needed to identify the few that may have potentially adverse effects. 

Such testing would likely need be done in a limited, but diverse set of cell-based models 

because the number of chemicals to be tested will be in the hundreds, if not thousands. A 

targeted battery of broad coverage assays in six human cell types that was used herein could 
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be one approach, especially because it has been used in studies of other chemicals (Chen et 

al. 2020), mixtures (Hsieh et al. 2021), and complex substances (House et al. 2021). It is also 

similar to the focused approaches proposed by others (Carmichael et al. 2022; Daston et al. 

2022).

In addition, the in vitro concentration-response data could be used to derive candidate 

PODs and perform risk characterization of PFAS. Indeed, the number of studies reporting 

levels of PFAS in human (i.e. blood) and environmental samples (i.e. water, soil) is rapidly 

increasing which creates a need to address both hazard and risk of those exposures (National 

Academies of Sciences Engineering and Medicine 2022). To address these data gaps, we 

used the bioactivity data collected herein together with available exposure data to calculate 

the MOEs and inform risk-based decision-making. We found that most tested PFAS for 

which exposure estimates were also available have MOEs between 1 and 100, with ~20% 

that exhibited bioactivity below the estimated or measured blood concentrations. While 

these findings represent the most conservative estimates of risk because we used most 

sensitive indicators of bioactivity, lowest PODs from nominal PFAS concentrations (i.e. 

assuming that all compounds were 100% free in both blood and in vitro), and high-end 

estimates of exposures, they could nonetheless be used to prioritize PFAS for further 

testing or for regulatory action. Also, despite our efforts to integrate exposure and in vitro 
bioactivity, only 20 of the 56 tested PFAS had reported blood levels in humans, which 

provide more reliable MOE estimates. For other chemicals we had to rely on predicted 

exposures to derive PFAS-specific MOEs. Notably, about two-thirds of cases where both 

blood levels and exposure predictions were available, the upper 95th percentile blood level 

was above the upper 95th percentile prediction, sometimes by a factor > 1000. Thus, 

although predicted exposure data is a useful tool to estimate MOEs, measured human 

blood levels for a wide variety of PFAS are imperative to understand the MOE and reduce 

uncertainty, which spans many orders of magnitude for exposure predictions. Recently 

published expanded systematic evidence map for hundreds of PFAS may be an additional 

source of human exposure data (Shirke et al. 2024).

Furthermore, in order to use in vitro data for risk characterization, specifically, to inform the 

risk assessment of PFAS, additional studies are needed to provide sufficient data to inform 

quantitative in vitro to in vivo extrapolations (QIVIVE) for these chemicals. The need for 

additional data arises due to the variability in their affinity to proteins and large differences 

in protein contents between human blood and bioassays, as highlighted by (Qin et al. 2023). 

Additionally, it is evident that in vivo clearance, and thus the relationship between external 

and internal dose, varies greatly across PFAS. Thus, there is not only the need for more 

exposure data (DeLuca et al. 2022), but also for better characterization of their protein 

binding (Kreutz et al. 2023; Smeltz et al. 2023) as well as more importantly their overall 

clearance.

Our study has several additional limitations that must be acknowledged. Although we used 

broad coverage assays by incorporating 6 cell types and various phenotypic endpoints, 

there were some biological pathways and target organs for PFAS that were not included, 

specifically, the immune system and kidneys. Recent epidemiological, animal, and in 
vitro studies have shown that exposure to certain PFAS can result in adverse effects on 
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the immune system while other PFAS exhibited no immunotoxic effects (Corsini et al. 

2011; Ehrlich et al. 2023; National Toxicology Program 2016; Steenland et al. 2010). 

Epidemiological studies have reported that exposure to PFAS [mainly PFOS, PFOA, and 

perfluorohexanesulfonic acid (PFHxS)] affects the immune system, specifically causing 

immunosuppression in children (von Holst et al. 2021). Potential for immunotoxicity of 

PFAS has also been reported with various in vitro models (Gimenez-Bastida et al. 2015; 

Houck et al. 2023; Zhou et al. 2017).

Finally, it is known that there are many PFAS in the environment, thus humans are exposed 

to many PFAS, likely at low doses, rather than a single chemical throughout day-to-day 

activities (Kumar et al. 2020). In addition, accounting for vulnerable populations and 

sensitive populations is often overlooked but is critical to ensure public health protection 

(Zeise et al. 2013). Testing environmentally-relevant mixtures, using concentrations that are 

relevant to human exposures, repeat doses to recapitulate chronic exposures, and addressing 

inter-individual variability are all scenarios that present in vitro study challenges. Recent 

studies of PFAS mixtures provide important initial clues that effects may be additive 

(Addicks et al. 2023; Maddalon et al. 2023); therefore, additional studies of PFAS effects 

on other cell types are needed. Finally, although the MOE was applied to put the testing 

concentrations into perspective with the exposure levels, the in vitro chemical exposures 

were delivered as a single-dose and tested chemical-by-chemical. Therefore, future studies 

can incorporate these challenges to better capture real-world exposure scenarios to PFAS.

In summary, our data demonstrates that structure-based groupings could not be supported 

with the in vitro bioactivity data obtained in this study. However, our study shows the 

feasibility and utility of an approach using bioactivity measured in a targeted compendium 

of human in vitro models to (i) rank and prioritize chemicals for additional testing, as 

well as (ii) compare or integrate with other environmental chemicals, and (iii) characterize 

potential risk by comparison with predicted and measured exposure data. Overall, this study 

demonstrates that a targeted battery of broad coverage assays in six human cell types is a 

sensible approach to inform risk-based decision making and identify potential target organs 

for PFAS.
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PFAS Per- and polyfluoroalkyl substances

Ford et al. Page 16

Toxicology. Author manuscript; available in PMC 2024 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MOE Margin(s) of exposure

PFOA Perfluorooctanoic acid

PFOS Perfluorooctane sulfonic acid

EU European Union

NAMs New Approach Methodologies

iPSC induced pluripotent stem cells

DMSO Dimethyl sulfoxide

iCell Heps human iPSC-derived hepatocytes

iCell Neurons human iPSC-derived neurons

iCell Cardios human iPSC-derived cardiomyocytes

HUVECs Human umbilical vein endothelial cells

PHHs Primary human hepatocytes

FBS Fetal bovine serum

CV Coefficient of variability

POD Point(s) of departure

ToxPi Toxicological Priority Index

ToxPi GUI Toxicological Priority Index Graphical User Interface

Css Steady-state plasma concentration(s)

AC50 Active concentration at 50% of maximal activity

OPERA Open (quantitative) structure-activity/property relationship 

app

PFCA Perfluorocarboxylic acids

PFUnDA Perfluoroundecanoic acid

PFBA Perfluorobutanoic acid

PFOAMD Perfluorooctanamidine

PPARG Peroxisome proliferator-activated receptor gamma

RXRβ Retinoid X receptor beta

PPAR-α Peroxisome proliferator-activated receptor alpha

QIVIVE Quantitative in vitro to in vivo extrapolations
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PFHxS Perfluorohexanesulfonic acid
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Figure 1. Overall study outline.
A total of 6 in vitro models were used as a representative battery to assess the effects of 

56 PFAS. All cell types were exposed to PFAS, and cell-specific phenotypic endpoints were 

assessed and used for concentration-response modeling to derive PODs. The PODs were 

subsequently used to evaluate structure-bioactivity relationships and to determine chemical-

specific MOE.
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Figure 2. Cell-specific reproducibility of the phenotypic assays in each tested cell type.
Quality control assessments for a representative phenotype from each in vitro model. Cell-

specific positive controls were screened in concentration-response and compared to the 

negative controls; media and DMSO (0.5%). Cell type specific quality control distribution is 

represented by box-and-whisker plots with the interquartile range (boxes) and the 10th and 

90th percentiles (whiskers). Dotted lines indicate the mean of DMSO controls.

Ford et al. Page 24

Toxicology. Author manuscript; available in PMC 2024 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Overall bioactivity across all in vitro models.
(A) Phenotypic PODs (n = 48) from all cell types are shown for all 56 PFAS tested 

(chemicals are arranged by sub-class (indicated by a color bar), and within each sub-class 

by decreasing median POD). (B) Stacked bar plots represent the number of cell-specific 

“active” (i.e. lower than the highest tested concentration) phenotypes for each PFAS. The 

colors indicate cell types (see legend).

Ford et al. Page 25

Toxicology. Author manuscript; available in PMC 2024 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. POD comparisons across different in vitro datasets.
(A) Number of PFAS (out of 56 total) that were active for at least one of the phenotypes 

(in each cell type as indicated by colors). (B) Cell-type specific POD distributions for all 56 

tested PFAS are shown as box and whisker plots (individual values are shown as dots, boxes 

are inter-quartile range and whiskers are min-max values). (C) Comparison of the lowest 

PODs from this study (in any cell type) for all 56 tested PFAS to the PODs (i.e. AC50) for 

the same PFAS from all human cell-based assays available from the CompTox Dashboard as 

of November 1, 2023.
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Figure 5. ToxPi Ranking by individual cell type and overall score.
Chemical-specific ToxPi scores for all 56 tested PFAS (their chemical sub-class is indicated 

by a colored square (see legend) were arranged from the highest to lowest bioactivity. 

Stacked bars show the contribution of cell-specific (cell types are indicated by colors as 

indicated in the legend) weighted ToxPi scores. A pie chart in the bottom right indicates the 

number of phenotypes included in ToxPi calculation for each cell type (colors).
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Figure 6. Hierarchal clustering bioactivity heatmap.
A heatmap shows the PODs (colored by a gradient as indicated in a color bar, with 

lighter colors representing higher PODs (lower bioactivity/less bioactive), and darker colors, 

representing lower (more bioactive) PODs). Both chemicals (rows, PFAS subclasses are 

indicated by colors as indicated in the legend) and phenotypes (columns, cell types are 

indicated by colors as indicated in the legend) were clustered (average linkage method).
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Figure 7. Risk characterization of PFAS.
Margin of Exposure (MOE) for each PFAS was calculated by combining all phenotypic 

PODs and using the most sensitive POD (most bioactive POD) and dividing it by chemical-

specific exposure data (using exposure predicted data or human blood levels). The grey 

density plots represent the uncertainty distribution for the modeled population median 

exposure reported on the CompTox Dashboard, with diamonds representing the predicted 

95th upper percentile; black lines/error bars represent the 5th to 95th percentiles for measured 

blood levels in humans reported in the literature. Colored dots represent the cell type (see 

legend) from which the most sensitive phenotypic POD was derived, black dots denote 

chemicals that were without effect across all models, and vertical black lines indicate the 

median POD across all PODs. The ratio between exposure and bioactivity is demonstrated 

as the MOE (on a log10 scale, open circles), the vertical red dashed line represents a margin 

of 100 and the vertical solid line represents a margin of 1.
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Figure 8. Potency comparison using ToxPi to rank PFAS with other industrial chemicals.
(A) In vitro bioactivity data from 4 overlapping/common cell types (see ToxPi legend in 

the top left) were used to compare bioactivity of PFAS (colored circles by sub-class) and 

42 diverse environmental chemicals (open circles). An overall ToxPi score integrating both 

datasets was used as the means to compare bioactivity among different chemical classes. 

Representative ToxPi plots are shown for top-3 overall bioactive compounds and top-5 

bioactive PFAS. (B) Margins of exposure (MOEs) for the chemicals in panel (A) were 

calculated using the lowest POD across all overlapping cell types. PFAS chemicals are 

colored, and other chemicals are shown as open circles. Horizontal lines (red dashed and 

black solid) represent MOEs of 100 and 1, respectively.
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Table 1.

PFAS substances used in these studies. Additional chemicals details can be found in Table S1.

PFAS Category Chemical Name (Abbreviated Name) CAS No. Supplier Lot No. Purity*(%)

Alcohol
1-Pentafluoroethylethanol (PFBOH) 374-40-3 Matrix 

Scientific S20E 99.0

Alcohol
3-(Perfluoro-2-butyl)propane-1,2-diol 
(PFHp2OH) 125070-38-4 SynQuest 

Laboratories 00006922 99.7

PFECA
Perfluoro-3,6-dioxaoctane-1,8-dioic acid 
(PFHx2Et2OA) 55621-21-1 SynQuest 

Laboratories Q15B-10 N/A

PFAN
Nonafluoropentanamide (PFNAM) 13485-61-5 SynQuest 

Laboratories 00004660 100

PFCA
3-(Perfluoroisopropyl)-2-propenoic acid 
(PFIpOA) 243139-64-2 Apollo 

Scientific AS483671 96.9

PFAN
Octafluoroadipamide (PFO2AM) 355-66-8 SynQuest 

Laboratories Q18A-83 98.1

Alcohol Dodecafluoroheptanol (7H 6:1 FTOH) 335-99-9 TCI America WLPPG 98.1

PFCA
3,3-Bis(trifluoromethyl)-2-propenoic acid 
(TFPrOA) 1763-28-6 SynQuest 

Laboratories 00000111 97.1

PFECA
Perfluoro(4-methoxybutanoic) acid (PFMBA) 863090-89-5 SynQuest 

Laboratories Q10A-107 97.9

PFSA Perfluorobutanesulfonic acid (PFBS) 375-73-5 TCI America B36UC 95.8

PFECA
Perfluoro-3,6-dioxaheptanoic acid (NFDHA) 151772-58-6 SynQuest 

Laboratories Q162-70 97.4

Alcohol Heptafluorobutanol (HpFBOH) 375-01-9 TCI America WN7ZI 98.6

PFSA
4:2 Fluorotelomer sulfonic acid (4:2 FTS) 757124-72-4 SynQuest 

Laboratories 237800 95.6

Alcohol Hexafluoroamylene glycol (CFHx2OH) 376-90-9 TCI America M52SK 100

PFAN
Heptafluorobutyramide (PFHpAM) 662-50-0 SynQuest 

Laboratories 00016753 100

PFAN
Perfluoropentanamide (PFPAM) 355-81-7 Apollo 

Scientific AS483010 99.4

PFCA
2,2,3,3,4,4-Hexafluorobutanoic acid (4H-PFBA) 679-12-9 SynQuest 

Laboratories 00017311 97.5

PFCA
Ammonium perfluorooctanoate (NH4PFOA) 3825-26-1 SynQuest 

Laboratories 425300 97.3

PFCA
Perfluorononanoic acid (PFNA) 375-95-1 Oakwood 

Products G30K 95.1

Alcohol
2-Aminohexafluoropropan-2-ol (AmFPrOH) 31253-34-6 SynQuest 

Laboratories Q192-57 98.1

n:2 FTOH
4:2 Fluorotelomer alcohol (4:2 FTOH) 2043-47-2 SynQuest 

Laboratories Q154-127 100

PFECA
Perfluoro-3,6,9-trioxatridecanoic acid (PFPE-6) 330562-41-9 SynQuest 

Laboratories 00001078 98.2

Alcohol 1H,1H,5H-Perfluoropentanol (PFPOH) 355-80-6 Sigma-Aldrich MKCD4243 99.5

n:2 FTOH 8:2 Fluorotelomer alcohol (8:2 FTOH) 678-39-7 Sigma-Aldrich MKBL4812V 99.4

PFCA Perfluorohexanoic acid (PFHxA) 307-24-4 TCI America TKU3I 97.1

n:2 FTOH 6:2 Fluorotelomer alcohol (6:2 FTOH) 647-42-7 Sigma-Aldrich MKCD3356 99.7
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PFAS Category Chemical Name (Abbreviated Name) CAS No. Supplier Lot No. Purity*(%)

PFCA
Perfluorobutanoic acid (PFBA) 375-22-4 Apollo 

Scientific AS475966 97.4 
(isomers)

PFCA Perfluorooctanoic acid (PFOA) 335-67-1 TCI America F7P2F 99.7

PFSA Potassium perfluorobutanesulfonate (PFBS-K) 29420-49-3 Sigma-Aldrich S87103 100

PFCA
2H,2H,3H,3H-Perfluorooctanoic acid (5:3 
FTCA) 914637-49-3 SynQuest 

Laboratories 00010397 95.4

PFAN
Perfluorohexanesulfonamide (PFHxSA) 41997-13-1 SynQuest 

Laboratories Q156-19 97.6 (sum of 
isomers)

n:2 FTSA
6:2 Fluorotelomer sulfonic acid (6:2 FTS) 27619-97-2 SynQuest 

Laboratories 512700 97.8

n:2 FTSA
8:2 Fluorotelomer sulfonic acid (8:2 FTS) 39108-34-4 SynQuest 

Laboratories 523500 95.5

PFCA
9-Chloro-perfluorononanoic acid (Cl-PFNA) 865-79-2 SynQuest 

Laboratories 00008888 97.8

PFCA
Perfluoroundecanoic acid (PFUnDA) 2058-94-8 Oakwood 

Products 002265L20H 99.6

PFECA
Perfluoro-4-isopropoxybutanoic acid (PFPE-1) 801212-59-9 SynQuest 

Laboratories 279800 99.3

PFSA
Perfluorooctanesulfonic acid (PFOS) 1763-23-1 SynQuest 

Laboratories 375600 98.8

PFSA
2,2,2-Trifluoroethyl perfluorobutanesulfonate 
(ET-PFBS) 79963-95-4 SynQuest 

Laboratories Q11A-55 98.7

PFECA
Methyl perfluoro(3-(1-ethenyloxypropan-2-
yloxy)propanoate) (MePF2ETOA) 63863-43-4 Apollo 

Scientific AS437089 100

Alcohol
1-(Perfluorofluorooctyl)propane-2,3-diol 
(PFUd2OH) 94159-84-9 SynQuest 

Laboratories 320700 99.9

Other (FTCA)
3:3 Fluorotelomer carboxylic acid (3:3 FTCA) 356-02-5 SynQuest 

Laboratories Q18B-51 100

PFCA
3-Perfluoroheptylpropanoic acid (7:3 FTCA) 812-70-4 SynQuest 

Laboratories 563200 96.0

PFAN

N-Methyl-N-(2-
hydroxyethyl)perfluorooctanesulfonamide 
(MeFOSE)

24448-09-7 MuseChem M19J05027 94.6

PFCA
Perfluoroheptanoic acid (PFHpA) 375-85-9 Apollo 

Scientific AS480225 99.5

PFCA
Perfluoropropanoic acid (PFPrA) 422-64-0 Apollo 

Scientific AS468359 98.7

PFCA
Perfluoropentanoic acid (PFPeA) 2706-90-3 SynQuest 

Laboratories 00015707 99.7

n:2 FTOH
6:1 Fluorotelomer alcohol (6:1 FTOH) 375-82-6 SynQuest 

Laboratories 00012609 100

PFAN Perfluorooctanamidine (PFOAMD) 307-31-3 BOC Sciences BS19S10081 98.1

PFECA
Perfluoro-3-methoxypropanoic acid (PFMPA) 377-73-1 Apollo 

Scientific AS473550 99.3

PFAN
Perfluorooctanamide (PFOAM) 423-54-1 SynQuest 

Laboratories Q4A-24 99.2

PFSA
Perfluorohexanesulfonic acid (PFHxS) 355-46-4 SynQuest 

Laboratories 334800 95.3

Other (PFPA)
((Perfluorooctyl)ethyl)phosphonic acid (8:2 
FTPA) 80220-63-9 SynQuest 

Laboratories 00017193 97.3
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PFAS Category Chemical Name (Abbreviated Name) CAS No. Supplier Lot No. Purity*(%)

Other (non-PFAA 
perfluoroalkyls)

3H,3H-Perfluoro-2,4-hexanedione (PFHx2ON) 20825-07-4 SynQuest 
Laboratories 00017405 96.2

PFCA Octafluoroadipic acid (PFHx2OA) 336-08-3 TCI America 5AGFD 99.9

PFCA Perfluorodecanoic acid (PFDA) 335-76-2 Sigma-Aldrich MKCF2877 96.4

Alcohol
Fluorinated triethylene glycol monomethyl ether 
(C7F3ETOH) 147492-57-7 Apollo 

Scientific AS463658 98.2

*
Purity as determined by MRIGlobal (Kansas City, MO).
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Table 2.

Cell types and cell type-specific phenotypes evaluated in this study. See Supplemental Text for experimental 

details and culture conditions.

Cell type Exposure duration Functional Phenotypes (and abbreviations) Cytotoxic Phenotypes (and abbreviations)

iCell Neurons 72 h

Total Outgrowth (TotOut)
Mean Outgrowth (MeanOut)
Total Processes (TotProc)
Total Branches (TotBranch)
Cells with Significant Growth (CWG)

Cell Number (TotCell)
Mitochondrial Integrity (MitoInteg)
Cytoplasmic Integrity (CytoInteg)
Total Cell Body Area (CBA)
ATP Production (ATP)

iCell Cardios 90 min

QT Prolongation (QT Prol)
Positive Chronotrope (NegChron)
Negative Chronotrope (PosChron)
Asystole (Asys)

Cell Number (TotCell)

HUVECs 18 or 24h

Mean Tube Length (MTL)
Total Tube Length (TTL)
Total Tube Area (TTA)

Cell Number (TotCell)
Mitochondrial Integrity (MitoInteg)
Mitochondrial Intensity (MitoIntens)
Cytoplasmic Integrity (CytoInteg)
Nuclei Mean Area (NMA)
ATP Production (ATP)

iCell Heps

48 h

Mitochondrial Integrity (MitoInteg)
Mitochondrial Intensity (MitoIntens)
Granularity (Gran)
Total Granule Area (TGA)

Cell Number (TotCell)
Nuclei Intensity (NucInt)
All Cell Mean Area (CMA)
Cytoplasmic Integrity (CytoInteg)

PHHs

HepG2s
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Table 3.

Chemical structure descriptors that were significantly correlated with bioactivity.

Descriptora Structureb Descriptor 
Meaning ρc P adj 

d Chemicals with 
Descriptor Cell Type (Phenotype)

SGR10703 N-attached double 
bonded heteroatoms

−0.70 1.08E-05 MeFOSE PFHxSA

PHHs (Mitochondrial 
Intensity)

SGR10587 Sulfonamide

SGR10099 Heteroatom-nitrogen 
bond

SGR10668 Heteroatom-bonded 
methyl group −0.70 1.08E-05 MeFOSE MePF2EtOA

SGR10199 Two oxygens, 5 
bonds apart −0.57 3.11E-02 MeFOSE PFBOH 

MePF2EtOA

SGR10032 Methyl group −0.57 3.11E-02 MeFOSE, PFPE-1, 
PFMBA

SGR10343 Any primary amine −0.56 4.17E-02 AmFPrOH, PFHxSA, 
PFOAMD

iCell Heps (Cytoplasmic 
Integrity)

SGR10704 Polyethers −0.69 2.84E-05 PFPE-6, C7F3ETOH HUVECs (All Nuclei 
Mean Area)

SGR10013 Any carbon −0.57 2.46E-02 All tested PFAS (C # 
varies)

iCell Cardio (Min POD)SGR10029 Any heteroatom −0.57 2.79E-02 All tested PFAS 
(heteroatom # varies)

SGR10308 H-bond acceptors −0.57 3.18E-02
All tested PFAS (# 

of H-bond acceptors 
varies)

a,
Saagar descriptors can be found in Table S4.

b,
Combined (top) or individual Saagar descriptor structures are shown, where applicable. Individual Saagar descriptors listed herein can be 

visualized using the hyperlinks in Table S8.

c,
Spearman (ρ) correlation coefficients are shown.

d,
Multiple comparison adjustment was done using Holm–Bonferroni method (see Methods section).
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