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Abstract
Biokinetic models have been employed in internal dosimetry (ID) to model the human body’s
time-dependent retention and excretion of radionuclides. Consequently, biokinetic models have
become instrumental in modelling the body burden from biological processes from internalized
radionuclides for prospective and retrospective dose assessment. Solutions to biokinetic equations
have been modelled as a system of coupled ordinary differential equations (ODEs) representing the
time-dependent distribution of materials deposited within the body. In parallel, several
mathematical algorithms were developed for solving general kinetic problems, upon which
biokinetic solution tools were constructed. This paper provides a comprehensive review of
mathematical solving methods adopted by some known internal dose computer codes for
modelling the distribution and dosimetry for internal emitters, highlighting the mathematical
frameworks, capabilities, and limitations. Further discussion details the mathematical
underpinnings of biokinetic solutions in a unique approach paralleling advancements in ID. The
capabilities of available mathematical solvers in computational systems were also emphasized. A
survey of ODE forms, methods, and solvers was conducted to highlight capabilities for advancing
the utilization of modern toolkits in ID. This review is the first of its kind in framing the
development of biokinetic solving methods as the juxtaposition of mathematical solving schemes
and computational capabilities, highlighting the evolution in biokinetic solving for radiation dose
assessment.

1. Introduction

Internal dosimetry deals with the determination of radionuclide distribution in the tissues/organs within the
body (Zanzonico 2000). Radionuclides can be internalized through inhalation, ingestion, and wound
dosimetry pathways. Internal exposure through these pathways affects multiple systems, as illustrated in
figure 1, which include inhalation, where intake occurs through the respiratory tract and uptake systemically
occurs through the lungs; and ingestion, where intake occurs through the mouth, and where absorption and
systemic uptake occurs through the alimentary tract system.

Due to the inability to directly measure the radionuclide content in specific organs in the body, internal
dosimetry (ID) relies heavily on complex mathematical formalism coined as biokinetic models (Bertelli et al
1997) with three main objectives (Potter 2004): (1) to provide timely feedback on workplace control; (2) to
initiate medical intervention; and (3) to show compliance with regulations.

Fundamentally, the term biokinetic is derived from the Greek word bio (life) and kinetic (transport) (Li
2018). Thus, biokinetic models have evolved to represent the movement of radionuclides as a compartmental
representation of the human body by which retention and excretion are mathematically modelled as a system
of coupled ordinary differential equations (ODEs) for overall dose assessment. It is therefore critical to
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Figure 1. Primary internal exposure pathways. This figure has been created with BioRender.com. (BioRender 2020).

acknowledge that due to the complexity of the metabolic pathways, and differences in chemical and physical
properties of incorporated radionuclides, multiple biokinetic models must be constructed based on the
specific internal exposure pathways relevant to the incorporated element.

The biokinetic model, as a dynamic system, can be approached as a system of mass balance equations
describing the flow of materials in and out of the organs/tissues of the body. For modelling purposes, the
organs/tissues as single components may be characterized in terms of multiple compartments. For example,
the biokinetic model of the liver for a lanthanide element is divided into Liver 1 (short-term) and Liver 2
(long-term) compartments (ICRP 2019). The transfer of materials in and out of a compartment (including
recycling back into compartments) is represented by transfer coefficients, which quantify the fractional
transfer of contents in and out of an organ per unit time. It is worth noting that although transfers between
the compartments are often represented by first-order kinetics, it is not a one-size-fits-all approximation.
Studies have shown that with an increase in concentration of vinyl chloride above saturation, for example, its
clearance follows zero-order kinetics (Hefner et al 1975, World Health Organization 1999). In mathematical
terms, this system is framed as a series of ODEs. To the mathematician, any entity that changes is a variable,
and the rate of change of that variable is a derivative (Tenenbaum and Pollard 1985). Differential equations
model the variation of one parameter with respect to another. Such mathematical models containing only
ordinary derivatives of one or more unknown function(s) with respect to an independent variable are known
as ODEs (Zill 2018). ODEs provide a governing framework for how a given state variable changes over an
infinitesimal interval. Generally, the body’s dynamic material exchanges are governed by standard mass
balance equations, describing the inflow and outflow in/out of a designated compartment (Anderson 1983).
The standard mass balance, which models the rate of change of mass in/out of a compartment, conforms to
an ODE and thus warrants its applicability for modelling dynamic systems for various applications such as
analysis of the ecosystem, chemical reactions studies, drug kinetics in pharmacology, climate modelling, and
studies of metabolic systems including biokinetic modelling (Anderson 1983, Aro 1996, Postawa et al 2020).

An ODE can be categorized as non-stiff or stiff, whereby non-stiff ODE systems evolve simultaneously,
while stiff systems are considered to be systems for which the solutions include slowly and rapidly varying
components (Byrne and Hindmarsh 1987, Aro 1996). Due to the highly dynamic form and complexity of
biokinetic models, the problems posed by biokinetic models are mostly considered stiff and, as a result,
require a careful selection of solving methods, whether analytically or numerically. These methods are
scripted as solvers or algebraic algorithms, which are then packaged into computer codes for expedited
calculations. Biokinetic models are adopted to estimate the dose from internalized radionuclides for radiation
protection purposes, which are heavily reliant on mathematical frameworks, predominantly describing the
biodistribution of materials in the body. With this level of conformity, the computer codes and algorithms
are leveraged by ID experts for an expedited radiation dose assessment without sacrificing accuracy.

In this review, the mathematical conception of biokinetic models leading to the calculation of internal
dose is surveyed. A general overview of biokinetic models is first introduced, followed by a discussion of their
evolution and increasing complexity, mathematical solving frameworks, and their computational
implentation. Ultimately, several internal dose computer codes focusing on high-level scripted procedural
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solving methods are presented, and in an expanded discussion, the mathematical complexities and
formulations are discussed. Given the continuous updates and improvements of biokinetic models and
computational tools, this review uniquely provides a comprehensive analysis of biokinetic solving methods
and base knowledge for understanding the computational demands, schemes, and implementations for
biokinetic modelling.

2. Mathematical conception of biokinetic models

2.1. Biokinetic modelling in radiation protection
Prior to the mid-1960s, knowledge of the quantification of internally incorporated radionuclides was limited
(Stather 2004). However, the establishment of organizations, including the International Commission on
Radiological Protection (ICRP) and the National Council on Radiation Protection and Measurements
(NCRP), have advanced the knowledge of radiation protection through recommendations and guidance.
Notwithstanding the variety of organizations with an interest in this area, the ICRP continues to serve as the
preeminent authority in the recommendation of biokinetic models. These biokinetic models have been
widely adopted for prospective and retrospective radiological protection applications, relying on a multitude
of individual and element-specific studies (ICRP 1959, 1972, 1994, 2006, 2015, NCRP 1997, NCRP 2006,
Li 2018).

To quantitatively estimate internal dose, the knowledge of the biokinetics of the incorporated
radionuclide must be addressed first. Fundamentally, biokinetic models adopt a compartment-based
approach to reflect the physiology of the system under study and to represent the physical location of
substances within that system (Vicini et al 2008). This approach makes it suitable to mathematically
represent biokinetic models as a system of ODEs (Li 2018). According to ICRP Publication 30 (1979), the
loss of radionuclides from the compartments are described by first-order kinetics with constant coefficients
except for alkaline earth metals, for which the metabolic behaviour is not entirely governed by first order rate
constants. Thus, ICRP Publication 30 highlighted an alternative approach for modelling alkaline earth
metals. The challenges in framing the equations for any radionuclide chain member were later addressed
(Polig 2001, Fell et al 2007). The exact solution of the system of equations governing the metabolic models
(solved without feedback consideration) has been investigated in ICRP Publication 2 (figure 2 is a simple
linear compartment model of the respiratory tract) (ICRP 1979), thus building the ground-zero knowledge
and capabilities to solve for the radionuclide distribution under specific boundary conditions. Since then,
more complex biokinetic models have been developed, incorporating variable transfer rates and recycling of
materials between compartments (Leggett et al 1993). Consequently, the foundational system of equations
describing biodistribution, which is needed for internal dose estimation, remains the same. The general form
of the rate of exchange of the radionuclide activity is represented by a set of first-order linear differential
equation in equation (1) (ICRP 2015, Issa and Serge 2021):

dAi,j (t)

dt
=

M∑
k= 1
k ̸= j

Ai,kλi,k,j −Ai,j


M∑

k= 1
k ̸= j

λi,j,k +λP
i

+
i−1∑
k=1

Ak,jβk,iλ
P
i (1)

whereM is the number of compartments describing the kinetics; λi,j,k is the fractional transfer rate of chain
member i from compartment j (donor compartment) to compartment k (receiving compartment) in the
biokinetic model; λP

i is the physical decay constant of chain member i; and βk,i is the fraction of decays of
chain member k forming i.

2.2. Decorporationmodelling
Over the past decade, radiation countermeasures have become an essential focus for mitigating and treating
radiation injuries, forming the basis of decorporation therapy (Rosen et al 2015, Singh and Seed 2017).
Decorporation therapy utilizes chemical compounds (chelation agents) to accelerate the body’s clearance of
incorporated radionuclides/metals (Dumit et al 2019). For commercial applications of these chemicals,
industrial guidelines require that the efficacies of these drugs are demonstrated, which are usually
investigated through computational modeling (Miller et al 2012). The administration of decorporation
agents adds to the complexity of the mathematical representation of the biokinetic models described. In
contrast to equation (1), the mathematical description of the decorporation process must additionally
consider the chemistry of the incorporated radionuclide/metal under physiological conditions. Several
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Figure 2. An illustration of a simple linear compartmental model of the respiratory tract described by the ICRP Publication 2
(ICRP 1959).

mathematical approaches for modelling decorporation therapy have been discussed in the literature (Hall
et al 1978, LaBone 1994, Fritsch et al 2007, James et al 2007). To illustrate the basic idea of the mathematical
formalism, the coordinated network for radiation dosimetry (CONRAD) approach (Breustedt et al 2009) is
discussed in this review. The decorporation process is modelled as second-order kinetics to represent the
competing reactions of the incorporated metal and the chelation agent in the body (Miller et al 2018), thus,
introducing nonlinearity in the differential equations (DEs) to solve. According to the CONRAD approach,
the biokinetics of the incorporated metal (plutonium in the CONRAD study) and the injected decorporation
agent (diethylenetriamine pentaacetate [DTPA] in the CONRAD study) are treated as independent
compartmental models, which relate to an appropriate mathematical representation of the decorporation
process.

The mathematical system governing the biokinetic modelling of decorporation agents comprises three
matrices: x (compartments representing the biokinetics of the decorporation agent, as given in equation (2));
y (compartments representing the biokinetics of the incorporated metal only, as given in equation (3)); and z
(the compartments indicating the chemical complexes of the metal and the decorporation agent, as given in
equation (4)). The system of equations can be represented as follows (Breustedt et al 2009, 2010):

dxi
dt

=−
n∑

j=1

kijxi +
n∑

j=1

kjixj −CR.f(xi,yi) (2)

dyi
dt

=−
n∑

j=1

kijyi +
n∑

j=1

kjiyj −CR.f(xi,yi) (3)

dzi
dt

=−
n∑

j=1

kijzi +
n∑

j=1

kjizj +CR.f(xi,yi) (4)

where n is the number of compartments; i and j are the compartments indices; kij and kji describe the
biokinetic transport of materials from and to each compartment; CR is the chelation rate for the chelation
process; and f(xi,yi) is a function that describes the chelation process—thus, the function is normally
characterized by the product of x and y (Breustedt et al 2009). This model, however, is said to be not fully
realistic and did not fully incorporate chemical speciation. Although the CONRAD approach utilizes
second-order kinetics for the chelation process, a study conducted by Konzen and Brey (2015) revised the
radionuclide-chelation (specifically plutonium-DTPA) biokinetic model proposed by Breustedt et al (2009)
to include four transitional state compartments intended to describe the chelation process to utilize
first-order kinetics. According to Konzen and Brey (2015), the revised model is to provide additional insights
into the usage of DTPA and its therapeutic benefits.
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2.3. Translation to ID software
The complexities resulting from a system of hundreds of ODEs in some cases, including recycling, become
cumbersome when approached through manual solving or by some classical means. These complexities
motivated the development and introduction of internal dose programs/computer codes for mainly radiation
protection and medical applications for quick and easy calculation turnaround and reproducible results.
These programs solve the system of ODEs using appropriate mathematical functions or methods depending
on the difficulty of the problem sets. The approach was dictated by whether the biokinetic model is simple or
complex based on the number of parameters involved, whether it employs a recycling approach and whether
it accounts for chemical and biological transformations due to physiological processes. To this effort, several
computer programs were written to perform the task of complex ODE solving based on the existing
mathematical and computational capabilities representative of the era. Most of these computer codes are
usually coupled with a computational module for computing the mean absorbed dose received by the target
organ from an incorporated radionuclide for the purpose of internal dose assessment. The mean absorbed
dose module can be either an external computational module or as an inherent subroutine/function script in
the program. Table 1 outlines a list of documented internal dose codes and their respective ODE
solvers/methods, for which expanded discussions are carried out in the subsequent section.

Prior to 2005, most of the earlier solvers were developed based on simpler biokinetic models (in most
instances, complex biokinetic models were not yet available). As complex models became available and
desktop computers became widely accessible, updated versions of the computer codes or a completely new
code were developed to accommodate recent metabolic updates (Birchall et al 2005). For example, a
computer program for calculating cumulated radionuclide activity in organs of the human body at a given
time post deposition named TIMED was described by Watson et al (1976). According to Watson et al (1976),
TIMED as a dosimetry code is executable on the IBM System/360 or System/370 machines. Thus, it had
limited accessibility. Consequently, considering exposure scenarios and region-specific source terms
warranted the construction of new computer programs (Manabe et al 2019). Some of these internal dose
computer codes entailed more than one mathematical solving methodology scripted as solvers, each having
specific strengths and limitations for tackling specific subsets of metabolic systems. Also, different flavours of
the codes were written in different programming languages, such as Mathematica (Wolfram Research Inc
2022), FORTRAN (Kedward et al 2022), and Java (Arnold et al 2005), based on the needs of the developer,
such as but not limited to the following:

1. The need for the program to have the ability to execute on various computer platforms (Manabe et al
2019),

2. Computational speed, memory constraints (Richardson and Dunford 1998), and difficulties in migration
onto newer computer operating systems (Stabin et al 2005).

Kinetic models are an invaluable tool for understanding the dynamic response of biological systems.
However, large-scale applications of these models are largely limited by the availability and robustness of
computational tools (Weilandt et al 2023). In the remainder of this paper, the use of ODEs as a mathematical
solving tool will be discussed. A review of existing and evolving solvers and solving methods will be
conducted, with a specific focus on expanding discussions concerning the solution methods employed for
modelling the biodistribution of internal emitters.

3. Overview of forms of ODEs

The system of equations holds significance in ID, as it offers researchers and practitioners the flexibility to
decompose dynamic exchanges within the body into a finite number of components. This allows for a
mathematical representation of specific biochemical processes. The eventual implementation of this system
contributes to a more comprehensive understanding of ID. Once physiological processes are mathematically
represented, the framework becomes more clearly defined to follow material exchanges. This section first
provides the framework governing underlying mathematical models and outlines ODE forms and methods.
Overall, the section summarizes the foundational elements in the mathematical methodologies appropriate
for compartmental analysis by emphasizing their respective strengths and weaknesses.

3.1. ODE fundamentals
As a desirable approach, the behaviour of some real-life phenomena is primarily represented by
mathematical equations.

As mentioned prior, the dynamics that pertain to the turnover of specific particles/substances in a
biological system are termed kinetics (Anderson 1983). The mathematical models describing these dynamics
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Table 1. Survey of computational codes and programs for modelling the distribution of and dosimetry of internal emitters.

Internal dose code ODE solver/Methods Programming platform

INDOS (Killough and Rohwer
1974)

Exponential function, power
function or combination of both
methods

FORTRAN IV

TIMED
(Watson et al 1976)

The Gear package: Implicit
Adams method, and backward
differentiation formula (BDF)
methods

Available in either of the following:
IBM System/360, System/370 in
FORTRAN IV, Assembler language for
IBM System/360

INREM-II (Killough et al 1978) Linear combination of decaying
exponentials

FORTRAN IV for IBM-360 or 370

AGEDOS
(Leggett et al 1984)

Linear combination of decaying
exponentials

FORTRAN IV for IBM 3033

DIFSOL
(Killough and Eckerman 1984)

Eigenvalue method FORTRAN IV and translated into
BASIC

CINDY
(Strenge et al 1990)

ODEPACK solver: LSODES—a
backwards differentiation
formulation, based on the
multistep methods

Standard FORTRAN 77 with Lahey
compiler

GENMOD (Richardson and
Dunford 1998)

Numerical method: CVODE Mainframe written in FORTRAN,PC
version in C and FORTRAN and
updated version for ICRP 60/66
models was written in C++

IMBA
(Birchall et al 1998)

Analytical from Birchall (1985)
study

Subroutine-based algorithms/Visual
basic and inputs from ASCII data files

SAAM II
(Barrett et al 1998)

Rosenbrock integrator
(semi-implicit
method),Forward-integration
Runge–Kutta method, and Padé
integrator (Padé approximation)

C++

INDOSE (Silverman 2002) Numerically with solver LSODES
specifically adapted to sparse
matrices

FORTRAN90

MONDAL3 (Ishigure et al 2004) Numerical: Runge–Kutta method Microsoft visual basic for interface
program

OLINDA/EXM
(A rewritten version of
MIRDOSE)
(Stabin et al 2005)

Sum of exponentials Java (Sun microsystems)

BIOKMOD (Sanchez 2005) Analytical: matrix exponentials
Laplace transforms

MATHEMATICA

DCAL
(Eckerman et al 2006)

Approximated the first-order
kinetics in an isolated system
iteratively proposed by
Eckerman et al (1992)

FORTRAN with interactive interface
written in Professional BASIC

PLEIADES
(Fell et al 2007)

Eigenvalue method NAG Fortran library

IMIE
(Berkovski et al 2007)

Numerical: Runge–Kutta
Method

Unknown but distributed on
CD-ROM for installation

IMPDOS
(Miller et al 2008)

DLSODES: Livermore solver for
ODEs with general sparse
Jacobian matrix

FORTRAN 77

AIDE
(Bertelli et al 2008)

Eigenvalue method Routine-based: FORTRAN

IDode
(Miller et al 2012, 2019)

DLSODES: Livermore solver for
ODEs with general sparse
Jacobian matrix

Fortran. Graphical user interface
(GUI) for IDose was written in Visual
Basic 6 (VB6) by Luiz Bertelli.
Modifications were made by Guthrie
Miller to run IDode.exe—this has
been compiled using the Intel Fortran
compiler

(Continued.)
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Table 1. (Continued.)

J-LSODE
(Manabe et al 2019)

Numerical: LSODE solver Java

TAURUS
(UK Health Security Agency
2020)

Provides a graphical user
interface (GUI) for PLEIADES.
PLEIADES code implements
eigenvalue method

GUI was built using the Winteracter
Portable Fortran user interface. The
graphics toolset was built by
Interactive Software Services Ltd.

IDAC-Bio (Andersson et al 2022) Stepwise numerical integration MATLAB

NB: The table outlines internal dose computer programs with identified solvers for kinetics.

Figure 3.Modelling process with differential equations.

of biological systems are often formulated as a system of complex ODEs with constant and, in some cases,
varying coefficients (Eckerman et al 1992). Mathematical forms of ODEs, meaning the unknown function
for which a solution is required, depend only on a single independent variable. Thus, choosing the
appropriate solving methods and tools influences the accuracy and precision of the solution to the problem
and eventually affects calculation performance. Zill (2018) outlined the various steps in figure 3, which
depicts the modelling processes with DEs for developing an optimized model.

3.2. ODE stiffness
The ODEs mostly encountered can be categorized as either non-stiff or stiff. Non-stiff problems are problems
for which all of the components evolve simultaneously on comparable timescales, whereas stiff problems can
be defined as follows (Byrne and Hindmarsh 1987, Wanner and Hairer 1996, Omale et al 2014):

a. A problem for which no solution component is unstable (no eigenvalue of the Jacobian matrix has a real
part which is at all large and positive) and at least some component is very stable (at least one eigenvalue
has a real part which is large and negative). The Jacobian matrix is a matrix of first-order partial
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derivatives of the system’s equations with respect to its variables. The Jacobian matrix provides
information about the local dynamics near an equilibrium point—an important concept to improve the
stability of solving DEs.

b. A problem for which the solution being sought varies slowly; however, nearby solutions vary rapidly, so
the numerical method must take small steps to obtain satisfactory results. For example, for a nearby
system component, the component parameter as a constant coefficient-transfer rate may be extremely
large compared to the nearby system resulting in rapid variations.

c. A problem for which eigenvalues have negative real parts for a constant coefficient matrix.
d. A problem for which explicit methods do not work or work extremely slowly.

A quantitative measure of stiffness is usually the stiffness ratio—the ratio of the magnitude of the largest
to the smallest eigenvalues |λL|/ |λS| that should be greater or equal to the ratio of the maximum magnitude
to the minimum magnitude of the loss term maxi |Aii|/mini |Aii|in the transfer coefficient matrix
(Radhakrishnan and Hindmarsh 1993, Mate-Kole et al 2023). As stiff ODEs frequently arise in the study of
many problems, including but not limited to chemical kinetics, diffusion process, mathematical biology,
mechanics, electrical circuits, control systems, etc, they significantly impact science and engineering (Byrne
and Hindmarsh 1987, Nejad 2005, Omale et al 2014). Over the last decades, significant progress has been
made in developing numerical stiff ODE solvers in ODE solution algorithms and associated linear algebraic
methods (Nejad 2005). As a result, a wide range of reliable ODE solvers have been developed.

3.3. ODE forms
The subsection aims to briefly emphasize the standard forms of ODEs for completeness. For detailed
fundamental mathematical clarity, several textbooks and articles are available in the literature (Tenenbaum
and Pollard 1985, Byrne and Hindmarsh 1987, Zill 2018) with working examples of standard DEs for
consultation.

The nth-order ODE in one dependent variable is of the general form (Zill 2018):

F
(
t, y, y ′, . . . , y(n)

)
= 0 (5)

where F is a real-valued function of n+ 2 variables. The normal form of equation (5) can be represented as
the differential equation:

dny

dtn
= f

(
t,y,y ′, . . . ,y(n−1)

)
(6)

where f is a real-valued continuous function and represents the first order differential equation. Canonically,
the first order differential equation for initial value problem (IVP) can be illustrated. This is represented as
(Byrne and Hindmarsh 1987);

dy/dt= f(t,y) , to ⩽ t⩽ tfinal (7)

y(to) = yo, (8)

y=
[
y1,y2, . . . ,yN

]T
is a column N-vector of dependent variables, and the superscript T in y vector denotes

vector transpose, d/dt denotes differentiation of y with respect to t, f is an N-vector valued function of y
with respect to t, to is the initial value, tfinal is the final value of the interval of integration and yo is the initial
value (N-vector).

An ODE of the order n can be considered linear if it is in the form (Zill 2018):

an (x)y
(n) + an−1 (x)y

(n−1) + . . .a1 (x)y
′ + ao (x)y= Q(x) . (9)

Hence, equation (5) can be said to be linear if F is linear in y,y ′, . . . ,y(n). A special case where Q(x) = 0
results in a linear homogenous ODE. Nonlinear, on the other hand, is any ordinary equation that is not
linear. For example, F can be considered nonlinear if it is a function of the product of y ′and y ′ ′or y ′2—a
result of second-order kinetics. Several studies have illustrated, in rigorous detail, the many forms of ODEs
(Ince 1956, Wanner and Hairer 1996, Hartman 2002, Zill 2018).
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3.4. Survey of ODE solving methods
Having introduced the fundamental notation of an ODE, it is worth noting that these ODE forms are
customized to tackle real-world problems using well-developed solving algorithms. For ease in solving
complex ODE problems, these solving algorithms are then bundled into software tools. With the
advancement of ODE-based software, the baseline mathematics underlying the code is no longer readily
apparent. With simple guidance, users can input data into the solvers to carry out complex computations.
However, understanding these ODE methods is essential, especially when addressing ODEs with unique
features that could only be fitted into the existing solvers if they apply salient modifications or solve specific
problems. On that note, it is helpful to provide some resources regarding the ODE methods. Several
ODE-solving methods have been discussed in detail in the literature (Milne 1970, Byrne and Hindmarsh
1987, Jeffreys et al 1988, Butcher 1996, Nejad 2005, Hairer and Wanner 2015) and should be referred to for
in-depth mathematical consideration. Specifically, Milne (1970) and Jeffreys et al (1988) discussed the
general techniques for analytically solving systems of ODEs; however, they also emphasized the importance
of leveraging numerical methods for complex systems. According to Bertelli and Lipsztein (1987), an
efficient technique for solving linear DEs is an asymptotic analytical method such as the Laplace transform.
This method is known to be of great advantage for any time-dependent intake problem such as that
encountered in ID. When the Laplace method is used to solve time-dependent intake problems, it was
recorded that the form of equations describing the radionuclide accumulation in each compartment i in the
biokinetic model (compartmental-based model) as a function of time is always the same (see equation (10))
(Bertelli and Lipsztein 1987):

Qi (t) =
n∑
j

bije
−λjt.Fj (10)

where Qi (t) =
∑n

j bije
−λjt is a single instantaneous intake solution, bij is the coefficient, λj is the eigenvalue

and Fj is a factor that characterizes the kind of intake of the system. However, for a large number of
compartments, Bertelli and Lipsztein (1987) recommended eigenvalue and eigenvector technique as an
alternative analytical approach. Thus, for a system of n first-order DEs with constant coefficients, a matrix
notation can be implemented and then solved by eigenvalue and eigenvector decomposition (equations (11)
and (12)),

Ẋ= A.X(t) (11)


x1 (t)
. . .
. . .
xn (t)

=


b11 b12 . . . b1n
. . . . . . . . . . . .
. . . . . . . . . . . .
bn1 bn2 . . . bnn




eλ1t . . . . . . 0
. . . eλ2t . . . . . .
. . . . . . . . . . . .
0 . . . . . . eλnt

 (12)

where b11 . . . . . . bnn are the coefficients of the homogenous solution and λ1 . . .λn as the system’s eigenvalues.
Despite the method’s robustness, solution difficulties surface in biokinetic model algorithms that utilize the
eigenvalue and eigenvector approach where two subsequent compartments have the same rate constant
(Killough and Eckerman 1984, Birchall 1986, Bertelli and Lipsztein 1987). For example, let us consider a
two-compartmental model with a constant transfer rate of k. Equation (13) represents the matrix form of the
simple system,

ẋ=

[
−k 0
k −k

][
x1
x2

]
. (13)

Now, the characteristic equation can be given as det(A−λI) = 0, where A is the matrix of coefficients of
the two-compartment system, λ is the eigenvalue, and I is the identity matrix (Hirsch et al 2012). Therefore,
the characteristic equation results in equation (14),

det(A−λI) = (λ+ k)(λ+ k) = 0. (14)

Thus, equation (14) results in repeated roots which indicates degenerate eigenvalues. Consequently, the
system with degenerate eigenvalues becomes problematic and thus requires additional techniques to study
stability. Notwithstanding, Killough and Eckerman (1984), Birchall (1986), Bertelli and Lipsztein (1987)
proposed that one or more compartmental rates can be altered by a small fraction (about 5% differences)
which does not result in significant error in the solutions obtained.

9



J. Radiol. Prot. 44 (2024) 021001 E MMate-Kole and S A Dewji

In many realistic scenarios such as, but not limited to, drug metabolism, and nutrient uptake where
transfers are influenced by complex internal and external factors (transfer rates may be time dependent with
either a known cumbersome relation or unknown form), ODEs describing these phenomena may not have
analytical solutions (Sanchez 2005, Rodriguez-Diaz and Sánchez-León 2014). Also, if analytical solutions
exist, it may be very cumbersome to solve analytically. Consequently, numerical methods are employed to
find the approximate form of the solution. Butcher (1996), Nejad (2005), and Hairer and Wanner (2015)
further articulated the mathematical conception of numerical approximation from the simple Euler method
and provided the generalization, approximations, and justifications made over the years for good
computational resolution.

In general, the Euler method is one of the simplest numerical methods for solving the first-order IVP.
The numerical approximation is well-known to be in the form (Butcher 1996, Zill 2018):

yn+1 = yn + hf(tn,yn) (15)

where f is a function obtained from the differential equation (equation (7)), and h is the step size. In some
cases, the Euler estimator may overestimate or underestimate the solution value. For the purpose of accuracy,
the improved Euler method is mainly implemented to further reduce any error in the general Euler method.

k1 = f(tn,yn) (16)

k2 = f(tn + h,yn + hk1) (17)

yn+1 = f(tn + h,yn + h((k1 + k2)/2) . (18)

According to Butcher (1996), the work conducted by Runge, published in 1895, extended the
approximation method of Euler, for solving DEs for greater accuracy. A generalization of the basic Euler
method is classified as the Runge–Kutta (RK) Method (Zill 2018). The RK method has a wide range of classes
but is less often adopted in current ODE software systems for stiff problems (Byrne and Hindmarsh 1987).
RK methods belong to a class of one-step numerical integrators for ODEs with intermediate stages in the
steps. This method can be categorized as either an explicit or implicit method. Hairer and Wanner (2015)
stated that non-stiff problems can be efficiently solved with explicit RK methods, while stiff problems can be
solved with certain implicit RK methods. Meaning not all implicit methods are suitable for all types of stiff
problems. For illustration purposes, the classical RK method for a typical IVP in equation (7) is given by
(Hairer and Wanner 2015):

y(to + h) = yo +

to+hˆ

to

f(t,y(t))dt. (19)

Additionally, Hairer and Wanner (2015) expanded on the mathematical representation of explicit and
implicit RK methods and can be consulted for further insight. Over the years, a plurality of other methods
and associated families have been developed, including but not limited to multi-derivative methods, Implicit
Adams, backward differentiation formulas (BDF), and numerical differentiation formulas (NDF). These
methods are known to have significantly contributed to developing advanced ODE solvers (Byrne and
Hindmarsh 1987, Postawa et al 2020).

4. ODE solvers and solving methods

4.1. Conventional ODE solvers
This section focuses on a survey of several standard ODE solvers across programming languages. This is
foundational to understanding and exploring the extent to which these solvers have evolved and their
capabilities.

4.1.1. The GEAR flavour
According to Byrne and Hindmarsh (1987), GEAR pioneered a software package called DIFSUB in 1968,
based on the BDF method. This package was notably identified as the first routine base ODE solver, which
has since been widely used for all stiff IVPs (Nejad 2005). Subsequent revisions were conducted after
encountering computational difficulties for some kinetic models with DIFSUB (Byrne and Hindmarsh
1987). The revised software named STIFF later contributed to the development of GEAR as an ODE package.
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Several varieties of the GEAR package were further developed due to the different nature of IVPs
encountered, such as problems with sparse or dense Jacobian matrices and, as a result, a large number of
variants are available for use (Byrne and Hindmarsh 1987, Nejad 2005). Sparse matrices are mostly with zero
entries, while dense matrices are matrices with mostly non-zero entries. Exploiting the sparsity of Jacobian
matrices improves the computational efficiency of the numerical solvers. In some cases, a sparse matrix can
be classified as banded, where the non-zero entries are concentrated along the main diagonal and a few
adjacent diagonals. Specialized solvers with lower computational complexities are used to exploit the band
structure of such matrices for faster solutions. GEARB was designed with a GEAR flavour for banded
Jacobian matrices (Nejad 2005).

4.1.2. CVODE & PVODE
Furthermore, as computational demands increased, complex physics model problems could be divided into
small fractions, which could be solved simultaneously, stimulating the evolution of parallel computing. Most
of these physics model problems were solved as a system of ODEs; thus, the ODE solvers required
adaptability for parallelism. As a result, PVODE was developed as a general-purpose ODE solver for parallel
computers, which uses a message-passing interface (MPI) and a revised version of the vector module in
CVODE to achieve parallelism (Byrne and Hindmarsh 1999).

4.1.3. ODEPACK collection
Due to the large number of ODE solvers developed by Hindmarsh and collaborators at the Lawrence
Livermore National Laboratory (LLNL), concerns were raised by users and suppliers desiring standardization
(Hindmarsh 1983). A collection of families of ODE solvers was then developed and named ODEPACK.
Table 2 outlines some general-purpose ODE solvers available in the ODEPACK collection.

With a few exceptions, the ODEPACK solvers comprised standard FORTRAN 77 with minimal machine
dependencies (Hindmarsh 1983). Each ODEPACK solver came in a version of either single or double
precision. From Hindmarch (1983), numerous upgrades of the ODEPACK solvers were performed to
improve the quality, clarity, and efficiency of the solving methods. These were: renaming of routines and
common blocks to distinguish double and single precision versions; the use of generic intrinsic function
names; elimination of the block data subprogram; use of a portable routine to set the unit roundoff;
reformatting comments; and passing of quoted strings to the error message handler.

4.1.4. BzzOde
ODE solver performance relies heavily on efficiency and robustness. To enhance performance, a class of
C++ ODE solvers for stiff and non-stiff ODE systems was developed (Ferraris and Manca 1998) called
BzzOde. C++ was chosen as a platform for BzzOde to increase implementation efficiency and ease of use.
BzzOde was designed to solve stiff and non-stiff problems. The study aimed to solve stiff problems, which
were identified as the most challenging and frequently encountered issues in chemical kinetics. According to
Ferraris and Manca (1998), VODE and BzzOde have a significant advantage over LSODE and DASPK;
however, BzzOde is said to follow a different criterion with respect to VODE in determining when to update
the Jacobian matrix. Thus, BzzOde checks whether the stored Jacobian matrix is out of date, where the
Jacobian matrix is kept constant for a maximum of 50 steps, enhancing performance. The study (Ferraris and
Manca 1998) concluded that BzzOde’s performance is better than the standard FORTRAN ODE solver.
BzzOde’s ease of use was achieved through a globally revised object-oriented approach in C++.

4.1.5. SUNDIALS
SUNDIALS, which is the SUite of Nonlinear and Differential/Algebraic equation solvers, consists of CVODE
(ANSI Standard C of the VODE and VODPK combined solvers), KINSOL, and IDA (Hindmarsh et al 2005).
According to Hindmarsh et al (2005), the time integrators and nonlinear solvers within SUNDIALS have
been developed to take advantage of the long history of research and development of such codes at LLNL by
featuring state-of-the-art technology for BDF time integration, as well as for inexact Newton–Krylov
methods (Brown and Saad 1990). Moreover, the paper by Hindmarsh et al (2005) outlined several underway
updates, such as solvers with sensitivity analysis capabilities.

4.2. Historical studies comparing ODE solvers
The discussions earlier explicitly showed the extent to which ODE solvers have evolved, as well as some
strengths and weaknesses. Therefore, carefully selecting ODE-solving methods is crucial to creating a robust
and efficient toolkit (ODE solver) for research and industrial use. A detailed study compared ODE solvers for
biochemical processes (Postawa et al 2020). As different programming environments offer a wide selection of
ODE solvers, the study by Postawa et al (2020) tested a wide range of algorithms, starting from simple,
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Table 2. General purpose solving packages for solving system of ODEs (Nejad 2005).

Solver Features

GEAR (1974) GEARB GEARS Supersedes DIFSUB—Gear 1968
Banded Jacobian
Sparse Jacobian

LSODE (1982) LSODES Basic solver of the ODEPACK collection and combines the capabilities of GEAR and
GEARB.
Sparse Jacobian for stiff cases: treats the Jacobian matrix as a general sparse matrix.

LSODPK Implement preconditioned Krylov iteration methods for linear systems—For a linear
system like b= A x, Krylov iterative method (Hindmarsh and Petzold 1995) assumes
some initial approximation x0 and its residual r0 = b−Ax0. Using these starting
assumptions, the exact solution is computed iteratively.

VODE (1989) Variable-coefficient and fixed leading-coefficient form of BDF for stiff systems.
Supersedes EPISODE and EPISODEB—EPISODE is an ODE solver that uses implicit
multistep method designed for dense Jacobian matrices and EPISODEB for banded
matrices.

VODPK (1992) Implement preconditioned Krylov iteration methods for linear systems. Combination
of VODE solver and Krylov methods

CVODE Standard C: VODE and VODPK options written in C
PVODE (1995) Parallel VODE in ANSI standard C with preconditioned Krylov iteration methods.

Table 3. Programming environment with selected ODE solvers (Postawa et al 2020).

Problem type Method type Solver name Environment

Explicit Adams–Bashforth–Moulon ode113 MATLAB
Runge–Kutta ode23 MATLAB
Runge–Kutta ode45 MATLAB
Runge–Kutta RK547M C#
Runge–Kutta dopri5 Python
Runge–Kutta runge_kutta_dopri5 C++
Runge–Kutta dop853 Python
Bulirsch–Stoer bulirsch_stoer C++

Implicit Backward differentiation formulas GearBDF C#
Backward differentiation formulas for stiff problems vode_bdf Python
Numerical differentiation formulas ode15s MATLAB
Adams vode_adams Python
Adams/BDF Lsoda
Rosenbrock ode23s MATLAB

single-step explicit methods and ending with implicit multi-step techniques. The programming
environments chosen for their work were matrix laboratory (MATLAB), Python, C++, and C#, with the list
of solvers in table 3. According to Postawa et al (2020), most of the solving methods studied resulted in
correct and consistent results; however, GearBDF was unable to cope with the system of ODEs, resulting in
some negative solutions. Therefore, a preference for the use of implicit solution methods for stiff biological
problems was confirmed, whereby three ODE solvers stood apart. LSODA was identified as satisfactory for
solving simple biological systems as a handy open-source solver. However, LSODA struggles to cope with
very complex problems, as it requires more time steps to compute an accurate solution.

Ode15s was recommended for higher-order complex systems as it requires fewer steps to produce
solutions. Moreover, Ode23s was recommended if accuracy is required.

As many studies consolidated ODE solvers across programming platforms, selecting solvers specific to a
programming environment and application scope became relevant. A mathematical analysis of ODE’s stiff
and non-stiff IVPs using MATLAB was conducted (Omale et al 2014). MATLAB is a high-level language and
interactive computer environment developed by MathWorks for scientists and engineers to analyse and
design systems. According to Omale et al (2014), MATLAB’s tools and built-in math functions enable the
exploration of multiple approaches and reach a solution faster than with spreadsheets or traditional
programming languages, such as C/C++ or Java. In the study of Omale et al (2014), several ODE solvers in
MATLAB were studied by subjecting them to six IVPs (three of which were non-stiff problems and the other
three were stiff problems), for which the solvers tested are summarized in table 4. The methods of the
MATLAB solvers are not covered in this section because most are derived from the methods outlined in
previous sections.
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Table 4.MATLAB ODE solvers.

Solver Problem Algorithm

Ode45 Non-stiff differential equations Dormand–Prince pair: Runge–Kutta
Ode23 Non-stiff differential equations Bogacki–Shampine: Runge–Kutta
Ode113 Non-stiff differential equations Adams–Bashforth–Moulton predictor-corrector
Ode15s Stiff differential equations Numerical differentiation formulas along with Gear’s method
Ode23s Stiff differential equations Rosenbrock
Ode23t Moderate stiff problems Trapezoidal Rule with free interpolant
Ode23tb Stiff differential equations Trapezoidal—backward differentiation formulas
Ode15i Fully implicit differential equations Backward differentiation formulas (BDFs)

Although Ode23 and Ode113 failed when explicitly tested against the predator-prey (Lotka-Volterra)
model, a pair of first-order nonlinear DEs, the study (Omale et al 2014) demonstrated the effectiveness of
MATLAB ODE solvers for solving IVPs. Moreover, the study recommended that further studies on the
optional parameters (such as Jacobian Matrix, error control parameters, etc) of the various solvers are
required to enhance performance and perform specialized computation. Further analysis of the six sets of
IVPs is detailed in Omale et al (2014). While several methods to numerically solve ODEs and
differential–algebraic equations have been examined, most of these ODE solvers are available in different
programming languages.

Therefore, unified interfacing was deemed useful for the research and industrial sectors (Andersson et al
2015). A study conducted by Andersson et al (2015) resulted in the development of a unified high-level
interface to solvers of ODEs, as well as addressing the requirements for solving industrial models with
discontinuities and data handling. Their interface, which is coded in Python/Cython, combines original
classical and modern solvers independent of their programming language. Python is an object-oriented
interpreted programming language where an interpreter is needed to convert Python codes into machine
codes. This programming language has gained significant momentum in scientific computing (Oliphant
2007). Cython, on the other hand, is a superset of Python, a compiler programming language designed to
give C-like performance with code written primarily in Python with optional additional C-inspired syntax.
Assimulo has been formulated as an interface for integrating several problems with specified solvers, as
illustrated in figure 4 (Andersson et al 2015).

Andersson et al (2015) further demonstrated the implementation of the core of Assimulo, for which each
solver is organized into specific class structures for both implicit and explicit ODE problems in
Python/Cython. Most of these solvers are connected with external codes, which are compiled either from
FORTRAN or C. Following a detailed study of different problem classes with respective ODE solvers,
Andersson et al (2015) proposed to increase the variety of original codes and make them available through
the framework provided. Furthermore, a dedicated study on multiphysics pharmacokinetic models
demonstrated the need for ODE solvers in compartmental modelling (Glass et al 2022). The motivation for
this recent study was that physiologically-based pharmacokinetic (PBPK) models use an empirically derived
framework that cannot be universally applied to varying nanoparticle constructs and experimental settings.
Thus, the study was designed to develop a physics- based multiscale PBPK compartmental model to
determine the continuous biodistribution of nanoparticles.

According to Glass et al (2022), two versions of physics-based compartmental models were developed, for
which the stiff ODE solving methods used were from MATLAB and Julia (Rackauckas 2017, Bezanson et al
2017) and validated against experimental data. Julia was developed as an alternative to Python and MATLAB.
For a precise evaluation of the handling of ODE stiffness for both models, Glass et al (2022) used one stiff
MATLAB solver known as Ode15s and five other stiff solvers—such as QNDF, Rodas4, KenCarp4, TRBDF2,
and RadauIIA5 from the DifferentialEquations.jl package in Julia. Ode15s from MATLAB was used for
solving the system of large and stiff ODEs; however, this resulted in biodistribution solutions for a time
interval of 0–1 ms.

According to Glass et al (2022), this is due to the nature of the times (small) required for stability in the
solver, and thus MATLAB becomes unresponsive if the time steps are increased beyond 1 ns. Moreover, the
systems were solved successfully using the stiff packages in Julia for large time points. In that regard, the
study aimed not to compare ODE solvers in MATLAB and Julia but to use Julia where MATLAB fails to
produce results. A key takeaway note in this study was the demonstration that a neural network could learn
to solve a system of ODEs when the system can be made non-stiff (Glass et al 2022).

A study by Mate-Kole et al (2023) compared Python-based differential equation solvers and methods. In
addition to emphasizing the compartmental-based approach for biokinetic modelling, Mate-Kole et al
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Figure 4. Integration of problems with respective solvers in Assimulo.

(2023) mainly exploited the capabilities of SciPy explicit and implicit ODE solvers and a Python-based
matrix exponential method for evaluating the ODE systems corresponding to selected biokinetic models.
This study (Mate-Kole et al 2023) reaffirmed the general solution approach to biokinetic problems and
demonstrated using Python that implicit and algebraic solving methods are well-suited for the complex
systems of ODEs constituting biokinetic models.

Besides demonstrating the solving capabilities of SciPy ODE solvers (stiff and non-stiff problems), there
has been interest in improving the performance. One study (Hagen and Mayorov 2019) emphasized the need
to investigate if cythonizing (a superset of Python programming language with a C-inspired syntax) the
Python classes improves the performance of the new solvers without compromising effective solving
capabilities. In general, Python, as an interpreted and dynamic programming language, offers substantial
flexibility and supports an agile development process (Schmitt et al 2022). However, this may imply reduced
speed and higher memory consumption during run-time, which could cost some computational execution.
According to Schmitt et al (2022), to increase execution speed, most equations or algebraic computer systems
are designed in compiled programming languages.

Another study (Schmitt et al 2022) described a new Python package named sympy2c. The package
sympy2c was designed to bridge the gap between symbolic development and the numerical implementation
of a theoretical model. Thus, the study addressed translating symbolic equations implemented within the
Python CAS SymPy to a fast C/C++ code that can be used from Python as an extension module (Schmitt
et al 2022). In a new package, developers of sympy2c paid critical attention to some shortfalls regarding
existing ODE solvers by considering sparsity in the Jacobian matrix and implementing routines for
numerical integration and spline interpolation. Additionally, LSODA was enhanced in sympy2c for efficient
step-size control and for effective stiffness detection and control. According to the study (Schmitt et al 2022),
the overhead of code generation and compilation time limits the application scope of the ODE solver to
situations where the same ODE has to be solved many times with varying coefficients or initial conditions. In
order to improve efficiency, the developers intend to create smaller files that will support the optimization
process of the compiler. This will allow for parallel compilation of source codes.
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5. Solving methods for modelling the distribution and dosimetry of internal emitters

Compartmental analysis is a widely adopted methodology in the realm of ID and various other scientific
disciplines. This approach entails the discretization of the system into a finite number of components, called
compartments allowing them to interact by means of exchanging species such as radioactive materials,
chemical substances, and body fluids (Sanchez 2005). For instance, the systemic biokinetic model, as
delineated in ICRP Publication 141 (ICRP 2019), expounds on how an actinide element like americium is
absorbed into the bloodstream. This publication is among a series of reports on occupational intake of
radionuclides, with further elaboration on the actinide compartment model available in ICRP Publication
141 (ICRP 2019).

The estimation of radionuclide content in the human body is achieved through the utilization of a system
of DEs constituting the biokinetic model. The process can be performed through analytical or numerical
computational methods, detailed in the ODE solvers and methods section. Several solvers/methods exist for
solving the biokinetic problem and are embedded in various internal dose computer programs, as well as
other commercially available general-purpose modelling toolkits. Table 1 outlines an inventory of internal
dose codes alongside their corresponding ODE solvers/methods; the codes tabulated here represent only
those codes with identified and documented ODE/solving methods implemented. Further historical
background and methods employed of/by selected codes are presented in the forthcoming discussion. It
should be further noted that the codes tabulated or discussed herein do not represent any explicit
recommendation by the authors.

5.1. TIMED (1976)
Once a radionuclide is deposited in the human body, the cumulative activity in an organ can be estimated by
integrating the retention from an initial time time (t=0) to the desired time post-deposition. However, in
some instances, the transfer of radionuclides between organs/tissues can be complex. This may include
recycling, the presence of radionuclide’s progeny and subsequent chain radionuclides. To address these
difficulties, a computer program known as TIMED was developed (Watson et al 1976). TIMED was designed
to estimate the cumulative activity of radionuclides in the body with program routines written in FORTRAN
IV for either the IBM System/360 or IBM System/370 and Assembler language for the IBM System/360.
TIMED is designed to account for the delay of transfer of activity between compartments in the model and
generation of radioactive progeny. According to Watson et al (1976), the solutions of the ODEs are estimated
using a FORTRAN subroutine—the GEAR package which is known for its ability to solve stiff ODE
problems. The solution method implemented utilized an implicit linear multistep type categorized as the
implicit Adams method (maximum order of 12), and the BDF method (maximum order of 5) (Watson et al
1976). Watson et al (1976) noted that TIMED was designed to be executable on the IBM System/360 or
System/370 machines, and, hence, had the limited accessibility.

5.2. DIFSOL (1984)
Several studies have investigated approaches for solving complex biokinetic systems. In a study by Vicini et al
(2008), the origin of mathematical modelling methods with specific attention to radiotracers applications is
highlighted. This study describes compartmental models of increasing detail from the simplest possible
model (Oddie 1949) to the most complex. A prior study by Killough and Eckerman (1984) prompted the
development of a conversational code, called DIFSOL, for evaluating the solution of metabolic models
specific to health physics. This program was written in FORTRAN IV programming language and translated
into BASIC for the Radio Shack TRS-80 Model I/111 microcomputers. According to Killough and Eckerman
(1984), DIFSOL solves an IVP in the form:

dZ

dt
= AZ (20)

Z(0) = Z0 (21)

where is a vector of N functions; A is a constant N×Nmatrix coefficient; and Z0 is a vector of initial values
of Z.

The analytical approach employed in the study utilized matrix eigensystem techniques to express the
solution vector Z(t) in terms of exponential functions of the form: eat, eat cosbt, and eat sinbt. The solving
solution method of DIFSOL with example applications are detailed in the study by Killough and Eckerman
(1984). However, the assumption that the eigenvectors form a linearly independent set was violated in
certain cases, leading to program failure. To address this issue, a proposed solution involved introducing a
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small perturbation in the model parameters, ensuring that the perturbed system possessed linearly
independent eigenvectors and limited second-order error in its solution.

Consequently, DIFSOL was proven to be practical for small systems of less than 12 parameters. Using this
code outside these parameters resulted in meaningless solutions (Killough and Eckerman 1984). Five years
later, Birchall and James (1989) presented an algorithm for solving first-order compartmental models
involving recycling on a microcomputer. This algorithm approached solving the system analytically by
employing matrix algebra, which was evaluated by finding the exponential of the matrix of constant
coefficients. This is expressed as:

xi (t) = e[A]t.xi (0) (22)

where e[A] is the exponential of the matrix [A]. Several numerical methods and approximations were
investigated to evaluate e[A]t. However, Birchall and James identified that most methods required an intricate
computation of the eigenvalues and eigenvectors of the system, rendering them ill-suited for these systems.
Furthermore, the utilization of characteristic equations as a resolution had proven problematic to implement
and computationally burdensome. While Birchall and James employed a series expansion method, the
consequence of implementing this approach resulted in difficulty in evaluating e[A]t for large t values. Hence,
an optimized approach was implemented as:

e[A] =

[
e
[A]/x

]x
. (23)

For x ̸= 0 and letting x= 2n, for n as an integer, e[A] was evaluated as:

e[A] =

[
e
[A]/2n

]2n
. (24)

as an improved series expansion methodology. Birchall and James further compared the performance of the
series expansion of e[A]to the modified expansion as a function of time, t. The standard series expansion
proved ineffective at larger time points, while the modified series expansion proved to be a suitable option
when considering larger time points.

5.3. Integrated modules for bioassay analysis (IMBA) (1998)
Several computer codes such as GENMOD (Dunford and Johnson 1987), INDOS (French et al 1988,
Silverman 2002), REMEDY (Rich 1990), and CINDY (Strenge et al 1990) became commercially available in
the mid-1980s for evaluation of bioassay data and internal dose estimation.

These codes were based on methodologies of the ICRP Publications 26 and 30 series reports (ICRP 1977,
1979), and thus these computer codes were unable to use or upgrade to new and complex models like the
ICRP Publication 66 Human Respiratory Tract Model (ICRP 1994), associated systemic models updated by
that time (Birchall et al 1998). This motivated the development of IMBA to implement new models (Birchall
et al 1998, 2005). The IMBA code is a software module suite that implements the ICRP biokinetic,
dosimetric, and bioassay models (including the NCRP wound models) to estimate intakes and doses on a
Visual Basic platform compatible with Windows OS (Birchall et al 2005).

While mathematical algorithms were not explicitly detailed in the IMBA documentation, it was indicated
that the matrix exponential algorithm, an algorithm described by Birchall and James (1989), was utilized to
address the system of ODEs presented by the biokinetic models enabling the estimation of material retention
in organs. Subsequently, a sequence of exponentials was fitted to the contents in the compartments to achieve
retention functions. In accordance with the guidance on IMBA usage (U.S. Department of Energy 2006)
provided by the U.S. Department of Energy, a significant design limitation was identified with regard to the
improper evaluation of the system of ODEs of the biokinetic models in scenarios where there are identical
rate constants in a particular series of compartments, for which a workaround was implemented to address
this constraint. However, it is essential to note that the algorithm incorporated in IMBA has a notable
drawback involving difficulties associated with modifying already implemented biokinetic models or
introducing new models (U.S. Department of Energy 2006). The IMBA tool has undergone several quality
assurance processes for which further sponsored project led to the development of a user-friendly interface
module known as IMBA ExpertTM (Birchall et al 2007). According to Birchall et al (2007), the interface was
improved into a general ‘off-the-shelf ’ module (IMBA Professional) which had its new version named IMBA
Professional Plus. IMBA Professional Plus is reported to be faster than its predecessors with the ability to
conduct Bayesian analysis (Birchall et al 2007).
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5.4. GENMOD (1998)
In 1998, the developers of the GENMOD ID code resolved the issue of rigidity by introducing an enhanced
version that facilitated the integration of the new ICRP respiratory tract model into previous codes (ICRP
1994, Richardson and Dunford 1998). GENMOD was designed to calculate the retention, excretion, and
integrated retention for radionuclides of interest under a variety of exposure conditions. According to
Richardson and Dunford (1998), GENMOD utilizes CVODE (Cohen and Hindmarsh 1994) as a numerical
solver for the ODE, which was compared to a symbolic analytical method (algebraic) in Mathematica with
an absolute precision agreement of 10−8 or better. CVODE is a C-based ODE solver for stiff and non-stiff
problems which combines the capabilities of two FORTRAN-based solvers (VODE and its variant VODPK)
(Cohen and Hindmarsh 1994). It is important to state that the first version of GENMOD used as a dosimetry
code was reported to be developed in 1979 and utilized FORSIM as a solver (Dunford and Johnson 1987). In
light of the implementation of the ODEPACK solver package at ORNL, a decision was made to update
GENMOD from using the FORSIM solver to ODEPACK (Dunford and Johnson 1987). As described by
Dunford and Johnson in 1987, this update not only facilitated the inclusion of new models but also aimed to
improve the overall coding efficiency, clarity, and documentation, benefiting from the faster and more
user-friendly features of ODEPACK. Furthermore, with the presentation of new recommendations
incorporated in the ICRP Publication 60 and 66 and the memory constraints of MS-DOS systems, the
developers made significant efforts to translate the program into C++ programming language and as a
result, had a Windows-based GENMOD (Richardson and Dunford 1998).

5.5. Simulation, analysis, andmodelling software for tracer and pharmacokinetic studies (SAAM II)
(1998)
The scientific community has taken an interest in how kinetic analysis and integrated system modelling
impact the experimental design of drug delivery in humans and animals. To meet this need, Barrett et al
(1998) developed a software tool called SAAM II. This tool enables researchers to create linear or non–linear
models, design and simulate experiments, and analyse data efficiently. SAAM II also has a graphical
‘drag-and-drop’ method for constructing compartmental models. Users can specify models directly by
entering the governing algebraic equations or choosing from predefined numerical methods. The numerical
methods of SAAM II are based on three computational integration techniques, each with its specific
strengths and weaknesses, such as the Rosenbrock integrator, which makes use of the semi-implicit method,
the standard forward-integration RK method mostly for non-stiff problems, and the Padé integrator based
on the Padé approximation of the matrix exponential—only applicable in SAAM II when the model has
constant rates, bolus or constant-infusion inputs. SAAM II also implements other statistical methods,
including the objective function (Kamp et al 2023). This is an extended least-squares maximum likelihood
function that optimizes the parameters and variance of the data with respect to the available information
(Sanchez 2005, Kamp et al 2023).

5.6. INDOSE (2002)
In addition to existing ID codes, InDose was developed with the main purpose of estimating activity retained
in the tissues and excretion for a given intake (Silverman 2002). As of 2002, Silverman (2002) stated that,
although the main task of the code is to compute the activity retention and excretion in/out of the body, the
code would have the capability to perform optimizations for automatic estimates of intake and computation
of the dose from the predicted intake. The computer code is documented to be written in FORTRAN 90 and
employs LSODES as a stiff differential equation solver for the biokinetic models implemented (Silverman
2002). According to Silverman (2002), the version of LSODES used is specifically adapted to sparse matrices.

5.7. Monitoring to dose calculation (MONDAL) (2004)
In conjunction with the efforts to develop a more robust computer program to adapt the new models, the
National Institute of Radiological Sciences in Japan also developed a personal-computer-based software
called MONDAL with attention to a non-specialist user (Ansoborlo et al 2003, Ishigure et al 2004).
MONDAL implemented the ICRP Publication 66 models, the biokinetic models in the ICRP Publications 30,
56, 67, 69, and 71, and the gastrointestinal tract model in the ICRP Publication 30 (Ishigure et al 2004). To
solve the system of equations corresponding to these biokinetic models, MONDAL utilized the numerical RK
method, as detailed by Ishigure et al in 2004.

5.8. Organ level internal dose assessment/exponential modelling (OLINDA/EXM) (2005)
OLINDA version 1.0 is commercial software designed for internal dose assessment in nuclear medicine
(Stabin et al 2005, Li 2018). This code was designed for use on a personal computer and coded entirely in
Java, including a module for EXM. OLINDA/EXM was rewritten from a BASIC-based internal dose code,
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known as MIRDOSE, due to challenges associated with migration onto a new operating system. This
software was intended to be useful for calculating doses for clinical trials involving radiopharmaceuticals and
making theoretical calculations for existing pharmaceuticals. According to Stabin et al (2005), the EXM
capability of OLINDA/EXM allows for fitting kinetics data using the least-square method projected using the
sum of exponentials. The integral of the sum of exponentials results in the number of radionuclide
disintegrations in a designated source organ in the body (Stabin et al 2005).

5.9. BIOKMOD (2005)
Compartmental models become complex due to the presence of multiple exchange pathways. To handle this
complexity, models need to be decomposed into matrices that account for both gain and loss terms. In the
development of the BIOKMOD code in Mathematica, this approach was implemented by introducing a
specific function named CompartMatrix. This function is explicitly designed to generate a matrix of
coefficients for compartmental systems with n compartments. In some cases, the matrix function CoefMatrix
is used instead of the constant coefficients between compartments, primarily when coefficients are associated
with measured physiological parameters or functions, resulting in a physiological model instead of a
standard compartmental model (Sanchez 2005). A compartment can be represented as:

ẋ(t) = A.x(t)+ b(t) t⩾ 0 (25)

x(t) = xo (26)

where xo is a vector initial condition as defined in equation (21) and b is an input into the associated
compartments, which could be either constant or variable dependent. BIOKMOD solves the biokinetic
system analytically by using the function SystemDSolve. According to the developer, this Mathematica
function has the flexibility to either use the default evaluation method given in equation (27) or
equation (28) or specify the computational method from built-in Mathematica functions likeMatrixExp or
Laplacetransform given in equations (29) and (30). Equation (29) represents the Inverse Laplace transform,

x(t) = xoe
At +

tˆ

0

eA(t−τ)b(τ)dτ (27)

or equation (28) for constant b

x(t) = xoe
At + b

0
∫
t
eAτdτ (28)

x(t) = L−1
(
(sI−A)−1xo

)
+L−1

(
(sI−A)−1B(s)

)
(29)

X(s) = (−A)−1xo +(sI−A)−1B(s) (30)

where X(s) is the Laplace Transform of equation (25).
The functionality of BIOKMOD has been extended to incorporate bioassay data, where the intake is

estimated from bioassay measurements by performing maximum likelihood estimation. The goodness of fit
for a bioassay data fitting is evaluated using a chi-square test and p-value calculation (Sanchez 2005, Moraleda
et al 2020). Prior to the availability of the development of the Mathematica toolkit, Polig (2001) expounded
on the use of matrix methods for modelling the distribution and dosimetry of internal emitters for single
intake and more complex intake scenarios, such as chronic and exponential intake. Despite the limitations of
linear algebraic methods like matrix methods, Polig underscored the value of these methods in internal dose
estimation, emphasizing their suitability for biokinetic and dosimetry models regardless of complexity.

5.10. Dose and risk calculation (DCAL) (2006)
Age-dependent dose coefficients were developed utilizing biokinetic models from the ICRP, where the system
is solved using transfer coefficients that vary with age. Eckerman et al (1992) proposed a straightforward
approach for solving compartmental models with time-dependent coefficients. This method was an
extension of an earlier technique implemented in the INREM-II dosimetry code to compute the committed
dose equivalent to a reference adult from an intake of the radionuclide. The INREM-II internal dose code
utilizes a linear combination of decaying exponentials for solving the DEs, part of which is solved in (1) a
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closed form and (2) using a discrete approximation for some instances with continuous transfer of activity
(Killough et al 1978). In comparison with INREM-II, the AGEDOS code uses similar features for solving the
DEs of compartmental models specifically for organ dose rate as a function of age following internally
incorporated radionuclides (Leggett et al 1984).

The proposed approach had the advantage of not restricting the number of compartments comprising
the problem space. Eckerman et al (1992) considered first-order kinetics in an isolated compartment subject
to a constant inflow of substances at a rate of P and a constant clearance coefficient of R. By assuming an
initial value of Yo, the retention at later time point T was expressed as:

Y=
P

R

(
1− e−RT

)
+Yoe

−RT. (31)

For which the integrated retention from 0 to T was also expressed as:

YW=

(
Yo −

P

R

)
1− e−RT

R
+

P

R
T. (32)

While the relations in equations (31) and (32) applied to single compartments (isolated), their
applicability to multicompartmental models was demonstrated to be feasible using an iterative approach to
solve the model to the desired degree of accuracy. By employing the first-order kinetics solution approach
from Eckerman et al (1992) in an expanded form, the DCAL was developed (Eckerman et al 2006).

5.11. PLEIADES (2007)
A detailed method implemented in the ID code PLEIADES was adopted for solving the biokinetic model
problem for eventual use in dose coefficient generation by the ICRP (Fell et al 2007). This method
distinguished between shared kinetics, where progeny were assumed to share the parent’s biokinetic model,
and independent kinetics, where progeny were assumed to follow their own element-specific biokinetic
model independently. This method further emphasized the employment of the matrix form for a coupled
system of ODEs with the adopted solution method similar to that of equation (22) (Fell et al 2007). For
shared kinetics, Fell et al (2007) demonstrated how separating the biokinetic and radiological processes into
different square matrices B and R results in a rectangular matrix Q to represent the activity distribution
compared to the standard vector formulation in equation (20). This rectangular matrix is given as:

dQ

dt
= BQ+QR. (33)

With the solution:

Q(t) = eBtQ(0)eRt. (34)

According to Fell et al (2007), this factorization accelerates the calculations for long chains, and this result
contradicts the assertion made by Polig (2001) that there is no advantage in assuming that the biokinetic
behaviour of the decay products is the same as that of the parent. However, the vector formulation similar to
that of equation (20) was adapted to solve the independent kinetic problem but with an optimized
partitioning approach of the Amatrix (Fell et al 2007). For cases of age-dependencies of the biokinetic
models, intermediate rates are found by linear interpolation for which the shared kinetic solution from t to
t+ dt is given by (Fell et al 2007):

Q(t+ dt) = eB(t)dtQ(t)eRdt. (35)

Despite the detailed approaches established in the work by Fell et al (2007), they commended the
simplicity and effectiveness of the methodology implemented by Eckerman et al (1992) and iterated that the
focal point may be lost if advocating for a particular approach where each approach comes with its own
advantages and disadvantages. As emphasized by Fell et al (2007), further work to consider for an optimized
biokinetic computational scheme is the use of Schur decomposition, where the biokinetic model’s matrix B
is decomposed as Schur triangularization as:

B= UTU−1 (36)

where T is an upper triangular matrix with eigenvalues in the diagonal positions and U is a unitary matrix,
which in some cases where U is real, the inverse is equated to the transpose, instead of the eigenvector
approach as:

B= VDV−1 (37)
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where D is diagonal containing the eigenvalues of B and V is the eigenvectors.

5.12. Individual monitoring for internal exposure (IMIE) (2007)
In 2007, Berkovski et al simultaneously developed and published a computer code called IMIE (Berkovski
et al 2007). This code provides a set of interactive tools for the interpretation of bioassay data and assesses
personalized monitoring doses. Numerical deconvolution algorithms and a library of tabulated
bioassay/dose-response functions were utilized to assess an individual’s exposure to complex conditions and
arbitrary intake patterns.

5.13. Improved dosimetry and risk assessment for plutonium-induced diseases (IMPDOS) (2008)
For case-specific exposure scenarios, IMPDOS code was developed specifically for modelling, data analysis,
activity, and dose computations relying on bioassay and postmortem dataset from Mayak workers (Miller
et al 2008). IMPDOS implemented the DLSODES in FORTRAN 77 for ODE biokinetic solving.

5.14. Activity and internal dose estimate (AIDE) (2008)
AIDE software is also a known software in the ID community, which was initially meant to be used as a
training tool in ID. The software is programmed to estimate the activities in parts of the body classified as
compartments and committed doses due to occupational exposures and for performing intake and dose
estimates using bioassay data (Bertelli et al 2008). According to Bertelli et al (2008), the system of first-order
DEs with constant coefficients describing the activities in compartments is solved by using the analytical
computational approach of eigenvalues and eigenvectors (Bertelli and Lipsztein 1987), where the
routine-based programming solving method used in AIDE has shown to be reliable for dealing with large
matrices.

5.15. IDode (2012, 2019) and Los Alamos National Laboratory internal dose (LANL ID) (2015)
Comparable to SAAM II, IDode is an internal dose code that uses numerical solutions of ODEs defining
biokinetic/physiologically-based models to estimate radiation dose (Miller et al 2012, 2019, Dumit et al
2023). IDode evolved from the predecessor RATDOSE, which was designed to evaluate data from animal
experiments for investigating the efficacy of chelation agents (Miller et al 2012, Dumit et al 2020). IDode was
written in Fortran with a graphical user interface (GUI) designed in Visual Basic 6 (VB6) (Miller et al 2019).
This software utilized DLSOLDES, a Fortran differential equation solver that is proficient in solving linear
and nonlinear DEs (Miller et al 2019). Furthermore, IDode was designed to integrate numerically evaluated
forward solutions with measured data using the Bayesian method (Miller et al 2018, 2019) and other
probabilistic models explored by Miller (2013). In addition to solving ODEs for forward models, Poudel et al
(2018) described a discretized biokinetics method (a biokinetic model described as an interpolation table of
compartmental quantities per unit intake versus time post-intake) utilizing Bayesian analysis for
retrospective dosimetry. Based on the probabilistic methods described elsewhere (Miller et al 1999, 2000,
2001, 2002a, 2002b, 2003), a Bayesian Markov–Chain Monte Carlo ID code, also known as Los Alamos
National Laboratory internal dose (LANL ID) code was developed mainly for estimation of dose from
plutonium intakes (Poudel et al 2018). According to the study by Poudel et al (2018), LANL ID was revised in
2015 from FORTRAN 77 to FORTRAN 95, leveraging experience acquired at LANL.

5.16. J-LSODE (2019)
The ICRP has been publishing a series of recommendations for radiation protection, where the dose
coefficient is known to be a quantity of relevance over the years. While the recommendations provided are
comprehensive, it is relevant to note that they may not encompass all possible release or exposure scenarios
and source terms in certain global regions. One such example is the case of the Japanese regulatory standards
for radiation protection (Manabe et al 2019). The Japan Atomic Energy Agency (JAEA) was then inspired to
develop a computational code for internal dosimetry based on the 2007 Recommendations of ICRP (ICRP
2007). According to Manabe et al (2019), LSODE (Radhakrishnan and Hindmarsh 1993) was applied to
solve the ODEs for the biokinetics numerically and to compute the dose. The radiation-weighted S values
were computed using piecewise cubic hermite interpolation polynomial (PCHIP) (Fritsch 1982). According
to this study (Manabe et al 2019), no new solving methods were developed. However, to build a unified
platform, the solvers (PCHIP and LSODE) were then reconstructed into Java programming language as
J-LSODE and J-PCHIP, respectively, where JAEA selected Java as the programming platform due to the
executability on multiple operating systems.

5.17. TAURUS (2020)
TAURUS, a successor of IMBA, is a new internal dose calculation software of the UK Health Security Agency
(UKHSA) (Pettersson et al 2022). As detailed in the TAURUS information sheet from the UKHSA (UK
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Health Security Agency 2020), TAURUS features a GUI for the UKHSA’s internal dosimetry computer code
PLEIADES, written in Fortran (Fell et al 2007). The methodologies employed in PLEIADES are extensively
discussed in section 5.11. The TAURUS code implements the latest recommendations of the ICRP (ICRP
2007) and utilizes biokinetic and dosimetric models from the ICRP Occupational Intake of Radionuclide
series of publications for calculating effective dose coefficients (Lee et al 2022). TAURUS serves the purpose
of calculating radionuclide activity in organs and excreta of the body, as well as determining committed doses
resulting from occupational exposures. According to the TAURUS information sheet from the UKHSA (UK
Health Security Agency 2020), TAURUS is also capable of estimating radionuclide intakes from bioassay data
using the maximum-likelihood fitting method—a methodology previously implemented in IMBA. It is
important to emphasize that IMBA continues to be actively used by the internal dosimetry community.
However, the distinct contribution of the TAURUS code lies in its incorporation of more recent biokinetic
models for occupational intake of radionuclides.

5.18. IDAC-Bio (2022)
For flexibility to simulate specific exposure scenarios and intakes, a new computer code in MATLAB
(IDAC-Bio) for internal dosimetry based on the new ICRP biokinetic models and specific absorbed fractions
was developed (Andersson et al 2022). According to the developers (Andersson et al 2022), ICRP only
publishes dose coefficients for a single acute intake of a radionuclide and for an integration period of 50 years
for intake by adults and to age 70 years for intakes by pre-adults, hence, necessitating the development of the
new software. Although Andersson et al (2022) stated that the system of equations describing the biokinetics
was solved numerically, the rigor in the numerical evaluation in MATLAB was not detailed in the operational
report. However, several ODE solvers are available for numerically solving different forms of ODEs, most of
which have been discussed in this paper in the ODE solvers and solving method section, highlighting some
applicable regimes, strengths, and weaknesses.

5.19. Summary
Equally significant internal dose computer codes exist. However, the selected codes presented in the
discussion are based on sufficient information on ODE methods, historical usage, models implemented,
accessibility, and upgrades. Internal dose computer codes such as, but not limited to, INDOS, INREM-II, and
AGEDOS (Leggett et al 1984) were not discussed as separate subsections since many of these codes benefitted
from upgrades or utilization of methodologies in currently available codes (e.g. DCAL and PLEIADES).
Nonetheless, it is worth noting that these earlier codes (prior to 1998) were used for many years by the
internal dosimetry community and thus had made significant contributions to computational modules used
in the current era of internal dosimetry.

6. Conclusion

The mathematical formalisms describing biokinetic models have been introduced, underpinning a detailed
review of ODE solvers, solving methods, and computational tools mainly for modeling the distribution and
dosimetry of internal emitters. Additionally, the potentiality and reliability of solving the coupled system of
ODEs, as in the case of biokinetic modelling, were discussed. The analysis presented herein is the first of its
kind, thus providing a foundation for the comparative development of mathematical solvers and
computational capabilities in the development of biokinetic modelling solvers.

In general, significant improvements made over these years, driven by the specialized community of
computational dosimetry scientists focused on internal emitters for consistent optimization of
computational schemes in compartmental modelling, were guided by continuously advancing
methodologies for compartmental analysis with enhanced accuracy and reduced computational time. An
example is the exploitation of forward models through Bayesian analysis for retrospective dosimetry (Poudel
et al 2018). The computer codes explicitly discussed in this paper are not evidence of the authors’ approval/or
endorsement for any of the programs for internal dosimetry but instead highlight the choice of computer
codes and solvers applicable to fundamentally solving ODEs posed by biokinetic models/compartmental
models. Additionally, it is worthwhile to remind the reader that other equally significant internal dose
computer programs do exist. However, with limited available information regarding ODE solvers
implemented in these programs, they were not explicitly covered in this review.

Finally, in order to advance the capabilities and expand the scope of biokinetic modelling, it is necessary
to assess the appropriateness of various advanced ODE solvers and methodologies for enhancing dynamic
biokinetic development. Furthermore, future attention will be directed towards modelling second-order
systems in a modern programming language and refining the solving methods/solvers to effectively capture
the intricacies of biokinetic models with second-order components.
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