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Abstract

This letter gives results on improving protein-ligand binding affinity predictions based on 

molecular dynamics simulations using machine learning potentials with a hybrid neural network 

potential and molecular mechanics methodology (NNP/MM). We compute relative binding free 

energies (RBFE) with the Alchemical Transfer Method (ATM) and validate its performance 

against established benchmarks and find significant enhancements compared to conventional MM 

force fields like GAFF2.

1 Introduction

In modern drug discovery, alchemical free energy calculations have emerged as highly 

efficient tools. Relative binding free energy calculations are widely employed in hit-to-lead 

approaches, and several commercial and free tools with comparable performance have been 

developed over the years. However, the accuracy of binding free energy calculations is 

influenced by the choice of ligand force field. Most conventional force fields like GAFF1,2, 
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GenFF3,4, and OPLS5 often rely on fixed charge molecular mechanics (MM). This lack of 

important energetic contributions limits their chemical accuracy and leads to poor modeling 

of torsions.6–8

To address these limitations, one approach involves using quantum mechanical (QM) levels 

of theory to model the ligands while treating the remaining environment with an MM 

force field in a hybrid potential.9 However, QM/MM calculations are significantly more 

computationally expensive than MM calculations, posing challenges for drug discovery 

settings where RBFE calculations may be required for dozens or even hundreds of ligands. 

Recently, neural network potentials (NNPs) have shown success in predicting QM energies 

with significantly reduced computational cost compared to QM methods. Notably, the 

ANI-2x10 model supports molecular systems comprising elements H, C, N, O, S, F, and Cl. 

Moreover, a hybrid method that integrates NNPs and MM, known as NNP/MM11, has been 

developed, offering the potential to model ligands more accurately in RBFE calculations 

than traditional MM force fields. The Alchemical Transfer Method (ATM) is a recently 

developed methodology for alchemical free energy calculations that we recently validated 

that allows an easy implementation of NNPs12. In previous publications, this methodology 

with MM force fields on a robust dataset obtained similar results to other state-of-the-art 

methods such as FEP+.13,14. In this work, we exploit the capabilities of ATM to test the 

hybrid approach of using ANI-2x10 as the neural network potential. Rufa et al. previously 

managed to reduce the error of absolute binding free energies from 0.97 to 0.47 kcal/mol 

for a congeneric ligand series for tyrosine kinase TYK2 by correcting the conventional 

MM simulation with an NNP/MM approach.15ANI-2x has several limitations in terms of 

non-supporting charged molecules and certain elements but it is otherwise a useful test 

potential. Our main objective is to test the applicability of this methodology with different 

ligand force fields and to evaluate the feasibility of an NNP/MM approach in relative 

binding free energy calculations.

2 Methods

In this study, we evaluated a series of targets from both Wang’s et al.16 and Schindler’s 

datasets.17 Due to the limitations of ANI-2x,10 the NNP of our choice in this study, there 

is a series of targets from the aforementioned datasets that cannot be computed due to the 

properties of its ligands. Consequently, we evaluated the following targets: Cyclin-dependent 

kinase 2 (CDK2), c-Jun N-terminal kinase 1 (JNK1), tyrosine kinase 2 (TYK2), P38 MAP 

kinase (P38), hypoxia-inducible transcription factor 2 (HIF2A), PFKFB3, spleen tyrosine 

kinase (SYK) and tankyrase 2 (TNKS2), totaling 301 ligand pairs. For the selected targets 

most of the ligands are compatible with ANI-2x, the rest (and its corresponding lig- and 

pair calculations) were removed from the dataset. Due to the higher computational costs 

related to the integration of NNP into these calculations, a subset of all the possible lig- 

and pairs to be evaluated was selected at random. The workflow in this project is similar to 

our previous work13. Protein and ligand structures were readily available from Wang’s16 and 

Schindler’s17 datasets. Ligands were parameterized with GAFF 2.111,2. The topologies were 

generated using the parameterize18 tool. In contrast to our previous work, we now prepared 

complex systems using HTMD,19 which automated and streamlined the preparation of 

multiple ligand pairs, along with the automatic selection of binding site residues. However, 
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the manual selection of atom indexes for ligand alignment remained necessary. The energy 

minimization, thermalization, and equilibration steps followed the procedures described in 

our previous work.13 Additionally, the system was annealed to the symmetric alchemical 

intermediate (λ = 1/2) for 250 ps. The classical RBFE simulations (GAFF2) were run in 

triplicate for each ligand pair running an ensemble of 60 ns per replica. Concurrently, we 

performed the same calculations by using an NNP/MM approach.11 This hybrid method 

allowed us to simulate a portion of the molecular system (the small molecule) with an 

NNP, while the rest was simulated with MM, providing the ligands with optimized intra-

molecular interactions. For both approaches, we used the Amber ff14SB parameters20,21 

as well as the TIP3P water model. Classical RBFE simulations were run at a 4fs timestep 

while the NNP/MM runs were computed at 1fs timestep, both with the ATM integrator 

plugin22. Hamiltonian replica exchange along the λ space for each ATM leg was performed 

with the ASyncRE software23, specially customized for OpenMM and ATM.24 Consistent 

with our previous work, we computed the binding free energies and their corresponding 

uncertainties from the perturbation energy samples using the Unbinned Weighted Histogram 

Analysis Method (UWHAM).25 The resulting relative binding free energies (ΔΔG) were 

compared to experimental measurements in terms of mean absolute error (MAE), root mean 

square error (RMSE), and Kendall Tau correlation coefficient. For all the possible systems, 

absolute ΔG values were computed with cinnabar, an analysis tool to compute absolute 

binding free energies from ΔΔG values via a maximum likelihood estimator.26 Cinnabar also 

generates the correlation plots and calculates the error and correlation statistics necessary. 

We compared the obtained values from calculations and the works by Wang et al16 and 

Schindler et al17 with FEP+. To perform the calculations, we utilized the OpenMM-ML and 

NNPOps libraries on our in-house cluster comprising NVIDIA RTX 2080 Ti and NVIDIA 

RTX 4090 cards. Standard MM calculations were run on GPUGRID. The parallel replica 

exchange molecular dynamics simulations were conducted using the OpenMM 7.7 MD 

engine and the ATM Meta Force plugin, utilizing the CUDA platform.

3 Results

The results of our simulations are displayed in Table 1 and Figures 1 and 2 which highlight 

the relative (Kendall’s rank order correlation) and absolute performance (MAE and RMSE) 

of the evaluated methods. We do not report the Pearson correlation as well because the value 

is not significant for (ΔΔG) values as it varies with the choice of the pairs27. We cannot 

calculate ΔG for all pairs since we ran a subset of the original datasets. The computation of 

ΔG for all ligands was not possible due to a poor connection of the perturbation network. 

Figures S4–S8 displays the ΔG values and related statistics for the systems that were 

possible to compute. The NNP/MM method demonstrated superior performance over pure 

MM runs in both relative and absolute measures. We observe that NNP/MM shows a 

better correlation coefficient and MAE for all of the evaluated systems but PFKFB3 when 

compared to ATM with GAFF2 as a force field. In comparison to FEP+, NNP/MM has a 

lower correlation for two systems (P38 and PFKFB3) and higher MAE for four of them 

(P38, HIF2A, PFKFB3 and TNKS2). Furthermore, the amount of ligands that are more 

accurately predicted is increased. In comparison to our GAFF2 runs, MM/NNP predicts a 

higher percentage of ligands with a MAE lower than both 1 and 1.5 kcal/mol.(Table S1). 
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Additionally, there are no major differences between the conformers generated with GAFF2 

and ANI-2x as force-fields. (Figure S9) We observe for some specific cases how ligands 

that participated in poor predictions with GAFF2 (MAE > 2kcal/mol) are now predicted 

correctly (MAE < 1kcal/mol).(Table S2) However, this improvement comes at a cost, as 

NNP/MM calculations are slower than conventional MM calculations11. For instance, an 

RTX 4090 could yield up to 27 ns/day, whereas an ATM conventional run for a P38 system 

with 49k atoms is able to compute 211 ns/day (Figure S10). This decrease on speed mainly 

arises due to the limitation of a 1fs timestep with the current ATM integrator. While there 

is a considerable increase in computational cost for NNP/MM runs, both approaches could 

benefit from further optimizations. We also evaluate if different timesteps could influence 

the accuracy of RBFE calculations. We compared the results of the GAFF2 calculations 

performed in this work with a 4fs timestep with the calculated points from our previous 

benchmark, that were run at a 2fs timestep.(Figure S11) We do not observe any considerable 

accuracy difference between the calculations at both timesteps. In terms of convergence, we 

observed that 60 ns per calculation tends to be sufficient. Convergence analysis over time 

shows good convergence for most cases as illustrated in Figure S12.

4 Conclusion

We conducted relative binding free energy (RBFE) calculations using an innovative 

NNP/MM approach. Our findings demonstrate the substantial accuracy enhancement 

achieved by using an NNP/MM approach at the cost of increased computational time. 

Compared to conventional ligand forcefields like GAFF2, the NNP/MM approach exhibited 

reduced mean absolute errors, with most systems reaching below 1 kcal/mol. However, we 

acknowledge that the current NNP used in this study is limited to neutral molecules and a 

limited set of elements, posing a constraint on our exploration of the vast chemical space. 

Future endeavors should focus on expanding the applicability of NNPs to include charged 

ligands, thereby broadening the scope of our investigations. An increase in computing 

performance is also needed, probably with the inclusion of other integrators that allow for 

higher timesteps. Due to limited computational resources a random subset of all the possible 

calculations was computed. Although a potential bias could be included due to the nature of 

the subset we believe to have a sampled an extensive number of data points to understand the 

capabilities of RBFE along with the NNP/MM approach. Our work highlights the potential 

of NNP/MM for accurate RBFE calculations and underscores the importance of further 

advancing NNPs to encompass a broader range of molecular species, and further improve 

the accuracy of these calculations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(Top) Kendall Tau and (bottom) Mean Absolute Error (MAE) for the ΔΔGs of each protein-

ligand system calculated in combination with different force fields and reported estimates 

using FEP+16
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Figure 2: 
Performance in combination with the neural network potential (NNP) for each protein-

ligand system studied. The calculated ΔΔG estimates are plotted against their corresponding 

experimental values. MAE and RMSE are in kcal/mol and τ is Kendall correlation.
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