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Global wheat planting
suitability under the 1.5°C
and 2°C warming targets
Xi Guo, Puying Zhang and Yaojie Yue*

Key Laboratory of Environmental Change and Natural Disaster of Chinese Ministry of Education,
Faculty of Geographical Science, Beijing Normal University, Beijing, China
The potential distribution of crops will be impacted by climate change, but there

is limited research on potential wheat distributions under specific global warming

targets. This study employed the Maxent model to predict the potential

distribution of wheat under the 1.5°C and 2°C warming targets based on data

from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP)

multimodel ensemble, and the effect of global warming on wheat planting

suitability was analyzed. Our results indicated global warming would

significantly change wheat planting suitability. Over half of the areas

experienced changes in wheat planting suitability under two warming targets,

and the effect became more pronounced with increasing temperatures.

Additionally, global warming might promote wheat planting in more regions.

The area with an increase in wheat planting suitability was observed to be 9%

higher than those experiencing a decrease on average. Moreover, global

warming could exacerbate the disparity between global wheat supply and

demand in countries/regions. Traditional wheat-producing countries/regions

are poised to benefit from the warming effects of climate change, while less

developed and wheat import-dependent countries/regions may face greater

challenges in achieving wheat self-sufficiency. To address this potential

challenge, the promotion and inter-regional exchange of agronomic

technologies, and the development of more rational trade standards are

urgently needed. Since socioeconomic factors have a significant impact on

wheat cultivation, further investigation is required to determine how the wheat

planting distribution may change in the future under the combined impact of

climate change, supply-demand relationship, and policy.
KEYWORDS

climate change, 1.5°C and 2°C warming targets, global wheat planting suitability,
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1 Introduction

As the most ambitious effort to reduce the risks and impacts

caused by climate change thus far, the United Nations Framework

Convention on Climate Change (UNFCCC) Paris Agreement

proposed the aim of “holding the increase in global average

temperature to well below 2°C above preindustrial levels and

pursuing efforts to limit the temperature increase to 1.5°C” in

2015 (UNFCCC, 2015). This has raised a crucial research task to

improve understanding of the difference in risk between the 1.5°C

target and the 2°C target (Klutse et al., 2018). For example, the

effects of this difference on crop yield have been examined, which

suggests that a 2°C target increase would have more detrimental

impacts on global food production and security (Liu et al., 2019).

However, most of the existing studies on the impact of agricultural

sectors under the climate change scenarios, including 1.5°C and 2°C

warming targets seldom consider the dynamic change of crop

distribution. Though researchers have also demonstrated that

climate change will affect crop areas and, consequently, impact

food production (Yue et al., 2019; Su et al., 2021, 2023). This

ignoring of crop area offers an incomplete picture of crop

production because of the potential for compensation or

compounding of yield impacted by changes in harvested area

(Lesk et al., 2016). Therefore, it is very necessary to investigate

disparities in wheat distribution quantitatively under the 1.5°C and

2°C targets, because of the scarcity of such studies.

There are currently four main methods for obtaining crop areas.

Administrative statistics are a traditional way to derive information

on crop areas. It obtains information on crop distributions by

collecting crop statistical information reported from subordinate

administrative units (Liu and Li, 2006; Tan et al., 2014). For

example, Liu and Li (2006) extracted information from the cost-

income data of farm produce and the China Agricultural Yearbook

and then studied the regional differences in the changes in

agricultural land use in China during the period 1980–2002.

However, due to the limitations of unit size and shape,

administrative statistics cannot be directly applied to crop spatial

and temporal dynamics analysis, let alone analyse the impact of

climate change on crop area (Liu et al., 2013; Tan et al., 2014).

The development of satellite remote sensing provides a new

technical method for analysing the temporal and spatial variations

in crop area (Xiao et al., 2005; Zhang et al., 2017). This method

often calculates indices and then uses an algorithm to classify the

indices to extract crop area information (Teluguntla et al., 2015;

Han et al., 2021, 2022). For instance, Han et al. (2021) generated the

spatiotemporal trends in annual paddy rice planting areas and

cropping intensity in Asia from 2000 to 2020 based on remote

sensing data frommultiple sources. Although remote sensing can be

used to extract information with high accuracy, crop information at

the pixel level is still difficult to obtain over large scales (Verburg

et al., 2011; Tan et al., 2014). Moreover, these studies are often more

concerned with spatial and temporal variations in crop area,

considering climate change as a given condition rather than a

driving force (Liu et al., 2015). Consequently, the crop area under

future climate change has been relatively unexplored.
Frontiers in Plant Science 02
The third type of method analyses the shifting of potential crop

boundaries using environmental constraints on growing crops (Sun

et al., 2015; Liu et al., 2021; Su et al., 2023). For example, Yang et al.

(2015) analysed the impacts of climate change on the northern

limits and crop planting areas of multiple cropping systems in

China, in which the northern limits for different cropping systems

were distinguished by defining a certain threshold of annual

accumulated temperature above 0°C. Directly constraining the

distribution of crops with environmental factors is conducive to

analysing the impact of climate change on crop area. However, most

of the studies considered only the constraints of meteorological

factors on crop growth, ignoring the influence of soil, even though it

plays an important role in crop planting (Mohammed et al., 2016).

The prediction based on the planting boundary did not achieve

satisfactory accuracy, the spatial heterogeneity inside the cropland

was ignored, and climate change consequences for agriculture

differed depending on geography (Piao et al., 2010; Tchebakova

et al., 2011). Moreover, it is difficult to perform accuracy tests

because there are no crop samples to provide a priori information.

Species distribution models (SDMs) constitute the fourth

methodological approach utilized for predicting potential crop

distributions, assessing the potential distribution of a species

through analysis of its presence samples and the environmental

variables influencing its distribution (Phillips and Dudıḱ, 2008;

Elith et al., 2011). The Maxent model is particularly noteworthy

among various SDMs due to its ability to achieve favorable results

using limited species samples and corresponding environmental

variables (Kramer Schadt et al., 2013; Yackulic et al., 2013). The

outputs of the Maxent model, which indicate the probability of crop

presence, effectively capture spatial heterogeneity in crop suitability

(Yue et al., 2019; Guo et al., 2024), making it widely applicable at

various scales for obtaining the probability of species presence in

different regions (Boria et al., 2014; Angelieri et al., 2016; Khan et al.,

2022; Yang et al., 2022).

However, there are still some problems to be solved when

predicting crop area using SDMs, including the Maxent model.

Most studies focused on specific time periods under particular

emission scenarios, e.g., Representative Concentration Pathway

(RCPs) (Liu et al., 2016; Shabani and Kotey, 2016), while studies

that assessed the impacts of specific targets, such as 1.5°C and 2°C,

on crop distribution were rarely explored. In addition, datasets

estimated by global climate models have been widely used when

assessing the impact of climate change. However, studies have

shown that the uncertainty in climate projections should be

considered when using General Circulation Models (GCMs)

(Smith et al., 2009), and a multimodel ensemble is more

reasonable than individual model results (Tebaldi and Knutti,

2007; Xu and Xu, 2012). Therefore, regarding potential

distribution as an important indicator to measure crop area and

wheat as the object, and motivated by the need for a better

understanding of the difference in future global wheat distribution

between 1.5°C and 2°C target, the objectives of this study are to (1)

employ the Maxent model to estimate global wheat distribution

under 1.5°C and 2°C target; (2) quantify the difference in potential

global wheat planting arrangements under 1.5°C and 2°C target;
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and (3) assess the reliability of wheat planting suitability predicted

under different climate models and RCP scenarios.
2 Materials and methods

2.1 Research framework

We structured the current study as follows: (1) First, we defined

time periods for reaching various global warming targets (Section

2.2); (2) Second, we selected environmental factors that impact

wheat cultivation and representative occurrence points for global

wheat distribution (Supplementary Methods); (3) Third, we trained

the Maxent model and predicted the potential distribution of global

wheat under 1.5°C and 2°C warming targets (Section 2.3); (4)

Finally, we evaluated the reliability of changes in wheat planting

suitability under different RCPs scenarios (Section 2.4).
2.2 Definition of global warming targets

Global warming targets can be defined as the average global

warming level compared to a specific baseline period (Klutse et al.,

2018). Different definitions and terms for targets appear in the

literature. However, all are compared with a preindustrial baseline

(Nikulin et al., 2018) and often use an averaged window period with

varying window sizes, e.g., 15, 20 or 30 years (Vautard et al., 2014;

Mitchell et al., 2016; Roudier et al., 2016; Donnelly et al., 2017;

Karmalkar and Bradley, 2017; King et al., 2017; Mba et al., 2018;

Nikulin et al., 2018).

In the present study, we selected 1986–2005 as the baseline

period, which has been widely used in assessing the impact of 1.5°C

and 2°C global warming (Mohammed et al., 2016; Schleussner et al.,

2016; Chen et al., 2017; Liu et al., 2018). This period was 0.6°C

warmer than the preindustrial period (1850–1900) (Alexander et al.,

2013). Therefore, warming of 0.9°C and 1.4°C above 1986–2005

corresponds to the internationally accepted thresholds of 1.5°C and

2°C above preindustrial levels. The timing of targets was defined as

the first time the 30-year moving averages of global temperature

were above 1.5°C or 2°C compared to preindustrial temperatures.

Such 30-year periods are commonly used to represent the climate at

the respective time (Vautard et al., 2014; Roudier et al., 2016;

Donnelly et al., 2017; Mba et al., 2018; Nikulin et al., 2018), as

they can limit the small trends within the period and catch the

interannual and decadal variability simultaneously (Pfeifer

et al., 2015).

We used data from the ISI-MIP multimodel ensemble to assess

the impacts of climate change on the distribution and planting

suitability of wheat. The ISI-MIP GCM outputs have been bias-

corrected through a trend-preserving bias-correction method

(Hempel et al., 2013), which has been widely applied to drive

global impact models for assessing risks under climate change at

global and regional scales (Chen et al., 2017; Dottori et al., 2018; Liu

and Sun, 2019). The ensemble comprises five GCMs, namely,

GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-
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CHEM, and NorESM1-M (abbreviated as GFDL, HAD, IPSL,

MIR, and NOR, respectively).

There are 4 RCPs, among which RCP2.6 represents a stringent

mitigation scenario. The RCP4.5 and RCP6.0 scenarios represent

two intermediate scenarios, and RCP8.5 represents a scenario with

very high GHG emissions (IPCC, 2014). The four RCPs span the

range of radiative forcing scenarios in the published literature

(Moss et al., 2010). However, many of the simulations do not

reach the 2°C level under the RCP2.6 scenario (Vautard et al., 2014;

Liu et al., 2018; Nikulin et al., 2018; Ruane et al., 2018), and

transient simulations from multiple GCMs at higher greenhouse

emissions could be analysed. Moreover, RCP4.5 contains the vast

majority of the scenarios assessed in AR4, while the number of

studies corresponding to RCP6.0 is relatively low (Vuuren et al.,

2011). Based on the above, these studies chosen the RCP4.5 and

RCP8.5 scenarios (Schleussner et al., 2016; King and Karoly, 2017;

Liu et al., 2019).
2.3 Maxent model application
and validation

Estimating potential wheat distribution using the Maxent

model entails three essential steps: the identification of key

environmental variables influencing wheat distribution, the

selection of sample points representing wheat presence for

training the Maxent model from a known database, and the

training and validation of the Maxent model to ensure accuracy.

Finally, the validated Maxent model was utilized to project wheat

distribution under 1.5°C and 2°C targets.

Initially, a comprehensive wheat planting suitability estimation

index system including climate and soil factors was established (Yue

et al., 2019; Guo et al., 2024). Environmental variables such as

temperature, precipitation, pH, drainage, soil texture, depth, and

slope were used to assess wheat growth. Subsequently, we selected the

wheat-harvested area fractions (Monfreda et al., 2008) as the primary

source for determining the occurrence points of wheat distribution.

The wheat-harvested area fractions are part of the global acreage and

yield database for 175 different crops, which was compiled by

collecting agricultural census data and survey information from

various political units in 206 countries. Finally, we randomly

selected a total of 15,500 samples representing approximately 5% of

all wheat presence grids, to train the Maxent model. The selection

process of environmental variables and training samples is described

in detail in the Supplementary Methods.

We utilized baseline samples and environmental variables to

train the Maxent model. In this procedure, parameters were set as

follows: the training set consisted of 75% of these samples and the

test set was the remaining 25%; the logistic output format (between

0–1) was chosen to represent the probability of species presence; the

jackknife analysis, which created a model with the remaining

variables after excluding variables in turn, was chosen to measure

variable relative importance; and we retained defaults for all

other parameters.

The Maxent model was verified by the receiver operating

characteristic (ROC) curve and our sampling method was
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employed to validate the reliability of the prediction accuracy

through fivefold cross-validation (Phillips and Dudıḱ, 2008).

Moreover, a scatter plot compared the Maxent predictions with

FWHA results to assess the precision of our wheat distribution

prediction. Finally, we evaluated spatial congruity and rationality by

superimposing Maxent predictions with the FWHA, and the

integrated map of FWHA and Wheat harvested area established

using Spatial Production Allocation Model (SPAM) (You et al.,

2014). We argue that the performance of the Maxent outputs can be

proven successfully using these approaches. Then, we employed

Maxent model to predict wheat planting suitability under different

targets. With the climate variables under the 1.5°C and 2°C targets,

10 sets of potential planting distribution data (2RCPs×5GCMs)

were obtained for each warming target, and we averaged these data

to obtain the potential suitability of wheat at the particular warming

target. Based on the definition of uncertainty in IPCC, four

suitability levels (Supplementary Table S2.1) are established for

wheat habitat (Yue et al., 2019).

Pairwise comparisons were used to calculate the predicted

changes in wheat distribution due to different targets and the

comparison among baseline, 2°C and 1.5°C. The spatial maps are

generated based on the suitability change values, which range from -1

to 1. Also, the examination of the remainder value distribution,

accomplished by plotting a probability density function curve, and

categorizing the changes of wheat suitability into three levels

(Supplementary Table S2.2).
2.4 Assessing the reliability of the wheat
planting suitability prediction

To characterize how the global projections of wheat planting

suitability behave under different GCMs and RCP scenarios, we

assessed the reliability of the dynamic changes in wheat cultivation

from multiple models. We obtained dynamic changes through

pairwise comparisons, comparing the predicted distribution of

wheat for different GCMs and RCP scenarios under two targets

with the reference data and then assessed reliability using the

following indicators.

First, we assessed the robustness of the dynamic changes. When

evaluating the robustness of a certain change, there are many

definitions in previous studies (Dosio and Fischer, 2018). Here,

we estimate whether the change in wheat planting suitability is

robust through the model agreement and the signal-to-noise ratio

(SNR, i.e., the ratio of the mean to the standard deviation of the

ensemble of climate change signals), which is the same as in Klutse

et al. (2018); Nikulin et al. (2018) and Maúre et al. (2018). In the

present study, the changes were regarded as consistent only when

more than 80% of the model simulations agree on the sign, and an

SNR equal to or larger than one represents the strength of the

change signal.

Second, we quantified the change in wheat planting suitability

by using probability density functions (PDFs) and cumulative

distribution functions (CDFs), which could also reflect the

impacts and uncertainties of different models on outcomes. The

value of y corresponding to x represents the cumulative grid
Frontiers in Plant Science 04
number fraction exhibiting a certain x change in suitability in the

PDFs or CDFs.

Finally, a separate set of significance tests was performed across

all the GCMs and RCPs using the Friedman test. The Friedman test

is a nonparametric counterpart and does not assume a normal

distribution for the samples. It possesses modest statistical power of

the sign test for nonnormal distributions (Zimmerman and

Zumbo, 1993).
2.5 Data source

The data employed are shown in Supplementary Table S2.3. To

match the resolution of the ISI-MIP data (0.5°×0.5°), all data has

been converted or resampled. The world maps were created using

the Robinson projection, and when it was necessary to calculate the

area, we used the cylindrical equal area as the projection.
3 Results

3.1 Timing of 1.5°C and 2°C global
warming targets

The median year for reaching 1.5°C lies between 2020 and 2027

and is estimated to be approximately 2021, while the corresponding

median time for reaching 2°C is 10–15 years later and centred at

approximately 2032 (Table 1). There is a significant difference in the

projected time period for 2°C compared to the 1.5°C target,

regardless of whether one compares between the two RCPs or

among the five GCMs. The projected gap between 1.5°C and 2°C is

at a maximum of 7 years and 33 years, respectively. Similarly, the

variance in the centre years that reached 1.5°C was 7.61, whereas it

was 78.67 for 2°C. Such a difference could result from the very

similar emission trajectories and radiative forcing to the 2030s

among RCP scenarios (Nikulin et al., 2018). In contrast, the gap
TABLE 1 The time periods for reaching 1.5°C and 2°C warming targets
above preindustrial levels.

Climate
models

RCP
scenarios

1.5°C 2°C

GFDL-ESM2M
RCP4.5 2013–2042 2041–2070

RCP8.5 2012–2041 2025–2054

HadGEM2-ES
RCP4.5 2006–2035 2014–2043

RCP8.5 2006–2035 2008–2037

IPSL-CM5A-LR
RCP4.5 2008–2037 2021–2050

RCP8.5 2006–2035 2016–2045

MIROC-
ESM-CHEM

RCP4.5 2006–2035 2015–2044

RCP8.5 2006–2035 2011–2040

NorESM1-M
RCP4.5 2012–2041 2028–2057

RCP8.5 2008–2037 2020–2049
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between the two temperature thresholds is smaller under the

RCP8.5 scenario when compared to the RCP4.5 scenario. This

points to an increased accumulation of greenhouse gases under the

RCP8.5 scenario. It should be noted that the results from GFDL

showed a later threshold, which indicated lower climate sensitivity

than other climate models (Ruane et al., 2018).
3.2 The global distribution and dynamic of
wheat at the 1.5°C and 2°C targets

3.2.1 Calculation of the preallocated shares of
wheat cultivation area

The performance of different models in predicting the potential

wheat planting distribution resulted in very little difference

(maximum 0.002), with all predictions were above 0.75

(Figure 1). Moreover, the mean AUC value of the fivefold cross-

validation was larger than 0.755, and the standard deviation was

smaller than 0.004 (Figure 1), demonstrating the model’s robustness

in the face of sample variations. Therefore, we argue that the

predictions obtained by the Maxent model in different models
Frontiers in Plant Science 05
have high accuracy and can predict the distribution of potential

planting suitability of wheat.

The correlation between the Maxent model’s predicted

suitability across different GCMs and the validation data (FWHA)

was assessed through scatter plots (Supplementary Figure S1.1). The

result indicated that the Maxent model’s forecasted land suitability

for wheat cultivation was in agreement with the validation data, as

the majority of the points are located near the intersection between

the two median lines. Also, there is a strong alignment between the

Maxent model’s projected wheat cultivation suitability and the

validation data, as most estimated result points cluster close to

the intersection of the two median lines.

In the overlaid map depicting projected land suitability for

wheat cultivation and FWHA (Figure 2), approximately 76% of

FWHA was associated with the region where wheat was both

harvested and accurately predicted (Zone A). Another 24% of

FWHA fell into the category of the region where wheat was

harvested but not anticipated (Zone C). The wheat harvest

proportions within Zone C were notably low, suggesting these

areas aren’t primary wheat production regions. Moreover, nearly

42% of the predicted land suitability for cultivating wheat was found
A B

D

E

C

FIGURE 1

Receiver operating characteristic (ROC) curve of fivefold cross-validation for different climate models [(A) GFDL-ESM2M, (B) HadGEM2-EM, (C) IPSL-
CM5A-LR, (D) MIROC-ESM-CHEM, (E) NorESM1-M].
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in the region where minimal or no wheat harvesting was observed

(Zone B). The validity of the results for Zone B was further

examined by SPAM (Supplementary Figure S1.2) and the

integrated (FWHA and SPAM) wheat distribution map

(Supplementary Figure S1.3). This examination indicated Zone B

was mainly located in countries or areas that are not suitable for

wheat cultivation or where wheat is not a major food crop. Given

that the Maxent model’s results represent potential wheat planting

areas, they were expected to encompass a larger area than the actual

harvested region. Therefore, the extent of the predicted land

suitability for planting wheat can be considered reasonable.

3.2.2 Potential wheat distribution under 1.5°C
and 2°C warming targets

Figures 3A–C show the spatial distribution of potential land

suitability levels for wheat cultivation under the baseline period,

1.5°C and 2°C targets, respectively. Compared with baseline period,

the spatial pattern and potential distribution of wheat planting

suitability under different targets showed an almost equivalent

pattern (Figure 3). Highly suitable areas were found mainly in

Pakistan and India. Regions displaying moderate suitability were

predominantly found in central India, China, south-central Canada,

central United States, southeastern Australia, Argentina, Turkey,

and Europe. The marginally eligible areas were mainly in southern

India, east-central Africa, and southern Mexico. The areas with

marginal suitability were primarily located in southern India, east-

central Africa, southern Mexico, and southern Brazil. Areas

unsuitable for wheat cultivation were predominantly situated in

central Africa, Indonesia and Malaysia.

Supplementary Table S2.4 shows the proportions of area in

different potential wheat suitability levels for the baseline period

and for targets of 1.5°C and 2°C. The moderately suitable level

occupies the largest portion of the area, approximately 65% of the

total area, while the area in the highly suitable level is less than 1.5%.

Compared with the baseline period, the proportion of area in the
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unsuitable and highly suitable levels increases, and the proportion

of area in the marginally level and moderately suitable level

decreases under future warming targets. Under the 1.5°C and 2°C

warming targets, the area in the highly suitable level increases by

72% and 95%, respectively, compared to the baseline. Conversely,

there is only a marginal expansion of areas in the unsuitable,

averaging around 6% in comparison to the baseline area. Overall,

no substantial evidence suggests that temperature rise significantly

diminishes the suitability of wheat cultivation. On the contrary,

global warming will likely enhance the wheat planting suitability in

more regions. Those regions are primarily situated in frigid high

latitudes, whereas wheat cultivation in warmer areas will be

adversely impacted by the consequences of climate warming.

These notable trends were discussed in Section 4.1 in detail.

3.2.3 Effects of warming on the potential planting
suitability of wheat

According to Supplementary Table S2.5, over half of the area

with change in wheat planting suitability under two warming

targets, and this change becomes more pronounced with

increasing temperature. Specifically, the area where wheat

planting suitability has changed under 2°C warming target was

11% higher than in the 1.5°C warming target. In two warming

targets, the area with an increase in wheat planting suitability is

greater than those with a decrease. Specifically, under 1.5°C and 2°C

warming targets, the area where wheat planting suitability increase

is 9% and 10% higher than those witnessing a decrease, respectively

(Supplementary Table S2.5). This indicated that global warming

would significantly change wheat planting suitability, and rather

than wheat planting suitability decrease, future warming would

favour growing wheat in more areas.

Specifically, over 85% of the suitability increase occurred within

areas that are highly suitable or moderately suitable for wheat

cultivation, while more than 41% of the decrease in suitability is

observed in regions that are initially classified as marginally suitable
FIGURE 2

Spatial consistency between the predicted wheat planting suitability and the FWHA [(A) the region where wheat was both harvested and accurately
predicted; (B) the zone showed minimal or no wheat harvesting but was expected to be suitable for wheat planting; (C) the region where wheat was
harvested but not anticipated].
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or unsuitable for wheat cultivation (Supplementary Figure S1.4).

According to Figure 4, the region where suitability increase is

mainly located in the colder regions of the major wheat-growing

countries/regions, such as Russia, Canada, northeastern Western

Europe, north-western China, northern India, Pakistan, and Iran.

The negative effects of warmer temperatures on wheat cultivation will

predominantly be experienced at low latitudes. Specifically, Africa,

southern Australia, southern Brazil, northern Argentina, southern
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China and the southern United States will witness a decline in wheat

planting suitability (Figure 4). The aforementioned trends imply that

the polarization of wheat planting suitability may be exacerbated by

climate change. The major regions for wheat production will become

more suitable for wheat planting under global warming. In contrast,

achieving self-sufficiency in wheat is increasingly challenging for less-

developed and low-latitude regions. We further discussed these

notable findings in Section 4.2 with support of additional meterials.
A

B

C

FIGURE 3

Distribution of suitability levels of wheat for different climate warming targets [(A) baseline period, (B) 1.5°C warming target, (C) 2°C warming target].
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3.3 The reliability of the wheat planting
suitability prediction

Figure 5 shows the robustness of the potential wheat planting

suitability under the multimodal ensemble. The percentages of areas

with consistent signals of wheat potential planting suitability were

70% and 77% at targets of 1.5°C and 2°C, respectively. These

proportions were significantly greater than those with inconsistent

signals. Therefore, it can be concluded that most regions of the world

experienced consistent changes in wheat potential planting suitability

under the multimodal ensemble. For the 1.5°C and 2°C targets, the

proportions of areas with a signal-to-noise ratio (SNR) greater than 1

were 58% and 68%, respectively. The potential planting suitability of

wheat changed significantly under each model, with considerable

variation and some uncertainty. Furthermore, the proportions of

areas meeting the two indicators, i.e., the robustness of the change in

wheat planting suitability, were 58% and 68% under the 1.5°C and 2°

C targets, respectively.

The regions showing variations in consistency and SNR

robustness of changes in potential wheat planting suitability at

the two targets were primarily the east-central United States,

western Europe, central Africa, south-central India, east-central
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United States, Australia, Brazil and Argentina. Wheat cropping

suitability in these regions was found to be stable only at the 2°C

target. This suggests that the potential for wheat cropping suitability

in these regions will be further enhanced by climate change at the

1.5°C to 2°C target. However, further research is needed to assess

the impact of global warming on wheat planting suitability in these

regions, as the change in wheat suitability for these regions at the

1.5°C target is more uncertain among models.

Supplementary Figures S1.5, S1.6 show the probability density

and cumulative probability distribution of potential wheat

suitability changes. Potential wheat suitability changes followed a

normal distribution, with peak values of approximately 0, implying

small suitability changes in most regions. At the 1.5°C target, the

peaks were larger, indicating greater suitability changes than those

at the 2°C target. At the 2°C target, the differences between the

models were smaller than those at the 1.5°C target, with the largest

changes in potential wheat suitability in the HADmodel. Overall, at

the 2°C target, the HAD model data showed the greatest changes in

global wheat potential suitability, creating uncertainty.

The Friedman test revealed that the models differed in potential

wheat planting suitability changes at the same warming target.

Based on the robustness analyses, this difference may stem from the
A

B

FIGURE 4

Changes in suitability for wheat planting [(A) difference in suitability between the 1.5°C warming target and baseline, (B) difference in suitability
between the 2°C warming target and baseline].
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large SNR variations in individual wheat planting suitability

changes under each climate model. The MIR model showed a

larger difference from the others, with a smaller suitability change,

possibly due to its lower sensitivity to climate warming. Notably,

SNR is significantly correlated with the resilience of changes in

potential wheat suitability, which was discussed in detail in

Section 4.3.
4 Discussion

4.1 Global warming would favour wheat
planting in more regions

Contrary to initial expectations, no substantial evidence is

found indicating that further climate warming would significantly

diminish global wheat suitability. When global temperatures

increase to 2°C, 10% of the global area will become more suitable

for wheat cultivation compared to the 1.5°C warming target, while

only 6% of the area will experience a decrease in wheat cultivation

suitability (Supplementary Table S2.5). Overall, the areas of change

are mainly located at the edges of the global wheat-growing region

(Figure 6). Wheat planting suitability rise in the region is mainly
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concentrated in major wheat-producing countries in the northern

hemisphere, and showed a tendency to spread to the Arctic region.

Conversely, regions near the equator and the southern hemisphere

countries face significant challenges due to rising temperatures

impacting wheat cultivation. This suggests that a change in global

warming from 1.5°C to 2°C will promote wheat cultivation in cold

regions while amplify the adverse effects of temperature raising on

wheat cultivation in warming area.

Furthermore, with a rise in temperatures from 1.5°C to 2°C

global warming targets, planting suitability will increase even more

significantly in the northern regions of major wheat producing

nations such as Russia, China (Figure 6A) and Canada (Figure 6B)

compared to a 1.5°C warming target. This presents promising

implications for global wheat supplies in the future. The raising

temperatures leads to a reduction in the duration of the

overwintering period, while simultaneously extending the effective

growth phase of wheat and enhancing bioaccumulation (Du et al.,

2021; He et al., 2020). These changes are expected to promote

enhanced growth and resilience. For main wheat-producing

countries in the mid-latitudes, the impact of rising temperatures

on the wheat planting suitability cannot be generalised. In India and

Pakistan, the trend is basically a decline in the suitability of planting

in the south and an increase in the suitability of planting in the
A B

D

E F

C

FIGURE 5

The robustness of the change in suitability for wheat planting under climate change [(A) the model agreement for the change in suitability under the
1.5°C target compared to the baseline period, (B) the same as (A) but for the 2°C target.(C, D) The same as (A, B) but for the SNR. (E, F) the same as
(A, B) but for the total robustness[.
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north (Figure 6D). The situation is reversed for countries in the

southern hemisphere, such as Australia (Figure 6C). However, in

the low-latitudes regions that are less-developed and heavily rely on

imported wheat, higher temperatures appear to pose challenges for

wheat cultivation. For instance, essential wheat producing countries

in Africa (e.g., Ethiopia) will become less suitable for this

crop (Figure 6E).

Our result aligns with prior researches. For instance, Yue et al.

(2019) indicated that climate change is likely to have a positive

influence on wheat cultivation in mid-high latitudes. Similarly,

Ortiz et al. (2008) suggested that climate change might lead to

wheat cultivation zones in Europe and North America expanding

up to 65°N. Sun et al. (2015) presented winter wheat producing

region of China is also expected to move northward. However, our

findings contradict the study by Guo et al. (2024), which suggests

that wheat-producing countries such as Western Europe, Canada,

and the United States may experience a decrease in future wheat

demand due to population decline. As a result of supply and

demand considerations, local farmers might reduce the

cultivation area for wheat by the end of this century.

It is important to emphasize that our analysis only addresses

climate change impacts on wheat planting suitability. In fact, global

climate change can also impact the global security of wheat

production in various ways. For instance, high temperature will

be detrimental to the photosynthesis, growth and development and

pollen fertility of wheat (Grant et al., 2011; Eyshi Rezaei et al., 2015).

At the same time, due to the reduced transpiration efficiency of

vegetation by high temperature (Lobell et al., 2015), surface
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evaporation is significantly increased, thereby exacerbating the

severity of drought (Dai, 2013; He and Zhou, 2016) and causing

more severe compound dry hot extremes. Therefore, in addition to

investigating the suitability of wheat cultivation, future research is

needed to study the impact of high temperatures and compound

dry-hot events on wheat production.
4.2 Global warming exacerbates the
imbalance between wheat supply and
demand regions

Based on Food and Agriculture Organization (FAO) data, the

wheat yield of China, the United States, Russia, Ukraine, Canada,

Australia, India, Pakistan, Turkey, and Western Europe collectively

represents more than 80% of the world’s wheat production (FAO,

2021). Hence, we chose these nations to investigate the

consequences of different targets on future wheat cultivation.

The study unveiled that global warming exerted positive

influences on wheat cultivation in elevated latitudes regions.

Under 1.5°C warming target, the suitability of wheat in West

Europe, Pakistan, Northern India, Russia, Canada and northern

China improved compared with baseline (Figure 4A). Moreover,

the 2°C warming target was more favourable for wheat cultivation

in Russia, Canada and northern China (Figure 4B). Specifically, in

Canada, the 2°C warming led to a significant increase in the

suitability for wheat cultivation across almost all northern regions

that were previously characterized as marginally suitable for wheat
(A)

(B)

(C)(D)(E)

(C)

(B)
(A)

(D)(E)

FIGURE 6

Change in the wheat cultivation suitability between 1.5°C and 2°C global warming target. (A) China and Russia, (B) Canada, (C) Australia, (D) India and
Pakistan, (E) Essential wheat-producing countries in Africa.
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planting (Figure 3). On the other hand, our study found that the

suitability of growing wheat in Indian and Pakistani regions varied

very drastically under two warming targets. The impact of global

warming on wheat cultivation suitability in southern and northern

India exhibited distinct patterns. In northern India, higher

temperatures were found to enhance the suitability for wheat

cultivation, whereas in southern India, they were observed to

suppress it. In contrast, regional suitability in Pakistan was

significantly enhanced under different temperature rise scenarios,

with high crop suitability in Pakistan increasing from 2% to 13%

and 22% under the 1.5°C and 2°C global warming targets,

respectively (Figure 4). The study by Pervez et al. (2014) showed

that climate change, including global warming, will not have a

negative impact on wheat production in Pakistan, while the study

by Rehana et al. (2012) further showed that climate change has a

positive impact on wheat production. This suggests that climate

change may contribute to making Pakistan a new growth point in

the global wheat production chain.

While wheat cultivation thrives at cold regions in mid-high

latitudes, warmer temperatures have negative impacts on

southeastern Australia, southeastern China, southern America,

southern Brazil and Africa countries (Figure 4). In particular, the

warming scenario reduces Australia’s suitability for wheat from

97% to 93% and 92% of moderately suitable regions at 1.5°C and

2°C targets, respectively. Similarly, rising temperatures have

decreased the wheat planting suitability in wheat-import

dependence regions, such as Africa countries (Figure 6E). For

instance, at 1.5°C and 2°C targets, Ethiopia encounters a decline

in agricultural suitability across 90% of its regions, with 1% and 3%

of the area transitioning frommarginally suitable for wheat planting

to unsuitable, respectively.

This phenomenon is likely to further exacerbate the imbalance

between global wheat supply and demand. As major wheat-

producing regions, such as Western Europe, Canada and Russia,

will become more suitable for wheat cultivation under global

warming, which will consolidate the position of these countries or

regions as wheat-exporting regions. In contrast, achieving self-

sufficiency in wheat is increasingly challenging for less-developed

and low-latitude regions, particularly African countries, and the

reliance of African nations on wheat imports is projected to escalate

further. Currently, the wheat supply in Africa heavily relies on

imports (Negassa et al., 2013; Shiferaw et al., 2013), The market

demand and cost for wheat in Africa are steadily increasing year

after year (Tadele, 2017). As global warming becomes an

indisputable fact, the suitability of wheat cultivation in these

regions would be further reduced (Figure 6E), which will further

dampen the interest of local farmers in wheat cultivation. Zhang

et al. (2022) also presented that the profitability of farmers in

advanced economies can be maintained or even raised, but this

will inevitably cause economic losses and inequalities for farmers in

less-developed, wheat-importing countries with global warming.

In light of the challenges posed by global warming, particularly

in African countries, intensified efforts are imperative to achieve

wheat self-sufficiency. For example, the agricultural sector could

employ management strategies (Li et al., 2024), such as adjusting

sowing dates (Xiao et al., 2020), optimizing irrigation practices
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(Shrestha, 2014), and enhancing fertilization strategies (Yu et al.,

2022) to effectively mitigate the impacts of global warming.

Furthermore, policymakers in these regions may need to actively

introduce and breed wheat varieties that are resistant to high

temperatures, as well as strengthening international education

and training on advanced agronomic techniques to minimize the

adverse effects of climate change (Hawkesford et al., 2013; Liu

et al., 2018).
4.3 SNR is significantly associated with the
robustness of changes in suitability

Xiong et al. (2020) proved that the choice of GCMs is one of the

essential factors affecting the uncertainty in predicted responses of

yield to warming. This study also found that the differences between

the two targets and GCMs caused uncertainty in the influence of

climate warming on the potential suitability of wheat cultivation.

Compared to a 1.5°C target, under a 2°C target, there is a marked

increase in the area of regions with robust suitability changes affected

by climate warming, which indicates that a further 0.5°C warming

will result in a more significant impact on the potential planting

distribution of wheat. Furthermore, at the 2°C target, a robust but

slight increase in wheat planting suitability is expected over Western

Europe and the central and eastern United States, and a robust but

significant decrease is expected over south-central India, Australia

and Argentina. At the two targets, the potential suitability of wheat

cultivation in France, India, the Jiao Dong Peninsula in China and

Argentina is not as robust as we expected. Therefore, the impact of

global warming targets on the potential suitability of wheat

cultivation in these areas may need further investigation.

Meanwhile, by analysing the differences in the potential wheat

planting suitability among various climate scenarios, it can be

found that the MIR climate scenarios may have larger differences

from other model data, and the choice of this climate scenarios may

introduce noise to the robustness of the results.

We then analysed the relation between the extent of the dynamic

variation in wheat cropping potential under the two climate change

scenarios in contrast with the baseline period and the corresponding

resilience. First, the magnitude of change in wheat planting suitability

(change), the number of models with consistent signals of change in

wheat planting suitability (consistency), the signal-to-noise ratio

(SNR), and the robustness of change in wheat planting suitability

(robustness) were statistically determined for each grid cell; then,

based on the above statistical data, we analysed the relationship

between the correlation of change with consistency, SNR, and

robustness. The results showed that change was positively

correlated with SNR under the 1.5°C target, while change was

negatively correlated with robustness when the effects of

consistency and SNR were removed. Under the 2°C target,

removing the effects of consistency and SNR revealed no

correlation between change and robustness. The true correlation

remained between change and SNR, both of which showed a

positive correlation.

In conclusion, at the two targets, the magnitude of change in

potential wheat planting suitability (change) was positively
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correlated with SNR. This means that the greater the magnitude of

change in wheat planting suitability was, the more valid information

was obtained. However, the magnitude of change in potential wheat

planting suitability was only negatively correlated with the

robustness of change at 1.5°C target. In other words, the more

drastic the change in wheat suitability was, the less robust it was.

The results above indicate that the SNR is significantly associated

with the robustness of changes in potential wheat suitability.
4.4 Method viability and
upcoming research

In this study, the Maxent model was applied to quantify the

planting suitability of wheat at the 1.5°C and 2°C targets based on

five GCMs. We also analysed the impact of different types of global

warming on wheat cultivation and the reliability of these results.

The statistical and spatial accuracy confirmed that the Maxent

model can recognize the potential wheat planting suitability. In

the baseline and two warming targets, the spatial distribution

patterns of the levels of wheat planting suitability in the two

targets are roughly the same, and the highly suitable area mostly

appears in Pakistan and India. The land that is suitable for wheat

cultivation makes up the largest part, and its distribution range is

also the widest. The regions with moderate and high suitability for

future wheat cultivation, as projected by the Maxent model, closely

align with the primary wheat-producing nations according to FAO

statistical records (FAO, 2021). In addition, the area proportion of

marginal suitability and unsuitability for planting wheat is small. As

studies have shown that the main products in these areas are indeed

not wheat (Leff et al., 2004; Monfreda et al., 2008), it can be

considered that these areas are very unlikely to grow wheat.

Therefore, the potential wheat cultivation distribution we

estimated is reliable.

It should be noted that there are some limitations in our study.

First, the potential wheat cultivation we estimated was driven by

weather and soil factors only, while factors related to wheat growth

characteristics on a larger scale were not taken into account. In

addition, we did not discuss the impact of socioeconomic

development and management factors, which are also critical for

taking serious actions to adapt to climate change. Socio-economic

factors such as revenue (Guo et al., 2024) and market demand (Su

et al., 2023) will significantly change farmers’ planting decisions,

which in turn will affect the distribution of crop cultivation.

Similarly, the international situation also brings some uncertainty

to the distribution of wheat cultivation, e.g., wars may lead to

abandonment of cultivated land or reclamation of cultivated land in

non-war zones, and unrest in wheat-exporting countries may have a

global impact through the trade chain (Chowdhury et al., 2023;

Rawtani et al., 2022). Also, sowing and harvesting dates have

shifted, crop distribution and structure have been adjusted,

and agronomy and breeding have advanced (Anwar et al., 2007).

Consequently, further studies are essential to determine the

potential global wheat cultivation distribution driven by both

socioeconomic development and climate change. Second, in

addition to directly affecting the potential planting distribution of
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wheat, future temperature rise may also increase the frequency of

climate extremes such as heatwaves and flash droughts (Sheffield

and Wood, 2008; Dai, 2011, 2013; Ault et al., 2014; Trenberth et al.,

2014; Lehner et al., 2017), which could potentially have adverse

effects on wheat cultivation (Asseng et al., 2015; Liu et al., 2016; Yue

et al., 2018). Therefore, the expected increase in extreme event

impacts should be given more attention.
5 Conclusion

The potential global wheat distribution under 1.5°C and 2°C

targets was projected using the Maxent model and 5 GCMs. The

results suggest that there will be notable shifts in suitability for

cultivation. Both warming targets are expected to enhance the

suitability of more regions for wheat production, primarily

concentrated in the cold zones of major wheat-producing

countries at mid to high latitudes. Conversely, low latitude

countries heavily reliant on wheat imports will face adverse

impacts from climate warming on their ability to cultivate this

crop. This phenomenon is likely to exacerbate the existing

imbalance between global wheat supply and demand. Our

research reveals the global distribution pattern of wheat

cultivation under different temperature rise targets and uncovers

the potential impacts of climate warming on regional variations in

wheat suitability. The aforementioned statement offers valuable

insights for regional and international policymakers to effectively

address the pressing issue of climate change, devise comprehensive

mitigation strategies, and ensure the preservation of global

food security.
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