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SUMMARY

This study examines the impact of sample size on predicting cognitive and mental health 

phenotypes from brain imaging via machine learning. Our analysis shows a 3- to 9-fold 

improvement in prediction performance when sample size increases from 1,000 to 1 M 

participants. However, despite this increase, the data suggest that prediction accuracy remains 

worryingly low and far from fully exploiting the predictive potential of brain imaging 

data. Additionally, we find that integrating multiple imaging modalities boosts prediction 
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accuracy, often equivalent to doubling the sample size. Interestingly, the most informative 

imaging modality often varied with increasing sample size, emphasizing the need to consider 

multiple modalities. Despite significant performance reserves for phenotype prediction, achieving 

substantial improvements may necessitate prohibitively large sample sizes, thus casting doubt on 

the practical or clinical utility of machine learning in some areas of neuroimaging.

In brief

Schulz et al. shed light on the role of sample size and imaging modalities in predicting cognitive 

and mental health traits from brain images. They underscore the potential of multimodal imaging 

to boost accuracy and caution about the challenges in achieving practical utility despite increasing 

sample sizes.

Graphical Abstract

INTRODUCTION

Advances in neuroimaging have provided unprecedented insight into the structure and 

function of the human brain. Concurrently, high-resolution brain scans have become 

increasingly cost effective and have raised hopes for automated disease diagnoses and 

clinical endpoint prediction based on neuroimaging data. Significant progress has been made 

in some areas of application, for instance in the automated detection of brain atrophy1–3 and 

the segmentation of brain lesions.4,5 However, the prediction of cognitive and behavioral 
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phenotypes and the diagnosis of psychiatric diseases has remained challenging.6,7 The 

main question that arises is whether these challenges in neuroimaging-based phenotype 

prediction are primarily due to insufficient sample sizes or a lack of predictive information 

in neuroimaging data.

Moving from group-level inference to accurate single-subject prediction and searching for 

intricate patterns in high-dimensional data can require sample sizes that are orders of 

magnitude larger than those of traditional neuroimaging studies.8,9 Indeed, neuroimaging 

datasets have continuously grown in sample size over the last decade.10 While early 

neuroimaging studies were limited to only tens of participants, researchers now often 

include hundreds of participants aggregated from multiple acquisition sites. Large-scale data 

collection initiatives have grown from the Human Connectome Project,11 with roughly 1,000 

participants, to the UK Biobank’s Imaging Initiative,12,13 with currently 46,000 participants 

and an end goal of 100,000 participants. Other researchers have proposed the Million Brains 

Initiative to facilitate precision medicine in the USA.14 Considering the significant resources 

required to collect large neuroimaging datasets, it is essential to determine the necessary 

sample size for reliable single-subject prediction of cognitive and behavioral phenotypes 

from brain images.

At the same time, there exists some controversy about how much predictive information 

can plausibly be extracted from conventional neuroimaging data. While high prediction 

accuracy has been reported for some phenotypes (overview in Arbabshirani et al.8), these 

findings have generated controversial debate,7,15–18 and reliable neuroimaging biomarkers 

for psychiatric disease remain elusive.6,7,19 High researcher degrees of freedom combined 

with imperfect model validation practices may have inflated results in small-sample 

studies.15,20 In line with this hypothesis of overly optimistic reporting, meta-analyses have 

shown a pronounced inverse trend between prediction accuracy and sample size.21 Even 

under ideal circumstances, it is unclear to what extent intricate cognitive or behavioral traits 

can be predicted based on brain images.7,22 Conventional neuroimaging could operate at 

suboptimal levels of abstraction or spatiotemporal resolution.22,23 Moreover, neuroimaging 

is particularly affected by high levels of noise in the data (e.g., in functional magnetic 

resonance imaging [MRI] where the phenomenon being studied often only makes up a small 

part of the blood-oxygen-level-dependent signal24,25) and in the target labels (e.g., inherent 

subjectivity of symptoms, low retest reliability of diagnoses26–28). A lack of predictive 

information in the data or high levels of noise can pose an upper limit to the prediction 

accuracy, even in the limit of infinite samples and perfect machine learning algorithms. 

This raises the following question: do structural and functional brain images contain enough 

exploitable predictive information to be useful for precision medicine?

The two questions of sample size and exploitable predictive information are closely related. 

If there was insufficient predictive information in the data, then adding more participants 

would not improve prediction accuracy, and there would be no need for a Million 

Brain Project. Conversely, if we find that increasing the sample size yields continuous 

improvements in predictive accuracy, then we can conclude that we have not yet exhausted 

the predictive information contained in the data, and there is hope for accurate single-subject 

prediction. Therefore, it is crucial to clarify whether low prediction accuracy in a small- 
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or medium-sized study primarily reflects fundamental limitations on predictive information 

(related to the so-called irreducible error, independent of sample size) or whether accuracy 

can be improved by increasing the sample size. This leads us to ask the following: can we 

mathematically characterize the empirical relationship between sample size and achievable 

prediction accuracy−the “learning curve”−for a given target phenotype? Characterizing and 

extrapolating such scaling laws would answer both original questions: it would provide 

estimates of the necessary sample size to reach a certain accuracy level as well as estimates 

of the highest achievable accuracy for a target phenotype given infinite samples.

Theoretical results from statistical learning theory state that the prediction accuracy typically 

scales as a power-law function of the sample size.29–32 Empirically, power-law scaling of 

learning curves has been shown for models ranging from linear estimators to deep neural 

networks.33,34 Hence, estimating power-law parameters from an empirical learning curve 

allows one to extrapolate the learning curve beyond the available sample size and thereby 

to delineate two key properties of the given prediction task: first, the convergence point 

of the learning curve represents the maximally achievable prediction accuracy. This can 

be taken as an estimate (technically a lower bound; see discussion) of the exploitable 

predictive information encoded in the data. Second, the speed of convergence can be 

defined as the sample efficiency, i.e., the amount of data needed by the model to learn 

the task. Intuitively, the former represents the ease of making accurate predictions, while the 

latter reflects the ease of learning how to predict. For a given brain imaging modality and 

phenotype, the power-law-scaling behavior of the learning curve should allow one to infer 

both the maximally achievable prediction accuracy and the necessary sample size to achieve 

clinically useful performance, thus quantitatively addressing two core aspects of feasibility 

for precision medicine.

In sum, deriving realistic estimates of achievable prediction accuracy and required sample 

sizes is crucial to gauge whether a predictive modeling approach may be suitable for single-

subject prediction in precision medicine. Here, we systematically evaluate learning curves 

for different neuroimaging data modalities (structural and functional MRI) and a diverse 

set of demographic, cognitive, behavioral, and mental health phenotypes. We assess the 

validity of extrapolated learning curves and analyze which representations of brain imaging 

data have the highest predictive potential when considering large sample sizes and thus 

delineate areas of feasibility and infeasibility in the landscape of machine-learning-enabled 

predictions in precision medicine.

RESULTS

We based our analyses on the UK Biobank brain imaging dataset, which is the largest 

uniformly acquired brain imaging dataset available to date (46,197 participants, June 2021 

release).13 Given its scope and extensive quality control, we argue that the UK Biobank can 

be considered a current “best-case scenario” for the upper end of available neuroimaging 

data analysis (see page 10 of the supplemental information for caveats regarding data 

quality). The UK Biobank provides imaging-derived phenotypes (IDPs) of T1-weighted 

structural brain MRI (regional gray and white matter volumes, cortical thickness and surface 

area), resting-state functional brain MRI (rfMRI; ICA-based functional connectivity), and 
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diffusion-weighted imaging (DWI; anisotropy and diffusivity measures). From these IDPs, 

we predicted widely studied phenotypes from sociodemographic (age, sex, education score, 

household size); cognitive (fluid intelligence, reaction time, numeric memory, trail making); 

behavioral (alcohol, tobacco, and TV consumption, physical activity); and mental health 

(financial and friendship satisfaction, depression, neuroticism) domains. We used regularized 

linear models to predict target phenotypes from brain imaging data. Such models are 

considered highly competitive in the analysis of neuroimaging data and performed on par 

with more complex nonlinear models on similar prediction tasks.9,35–37 To derive rigorous 

learning curves for our prediction scenarios, we repeatedly pulled smaller subsamples 

from the UK Biobank data (n = 256, 362, 512,…, 32,000) and trained and evaluated 

our models for each combination of sample size, input modality, and target phenotype. 

For each resulting learning curve, we fitted a standard power law [α n−β + γ] to the 

empirical measures (cf. Hutter32 and Cortes et al.33). For details on brain imaging data, 

target phenotypes, machine learning models, and evaluation procedure, please refer to the 

STAR Methods.

Learning curves follow power laws

To assess how accurately the power-law function family describes learning curves for 

neuroimaging-based phenotype prediction, we calculated goodness-of-fit statistics (R2, χ2) 

for each of the 48 (16 target phenotypes × 3 modalities) prediction tasks. An average 

coefficient of determination R2 of 0.990 (SD = 0.015, minimum [min] = 0.902) indicated 

an excellent fit between power law and empirical learning curves (Figure 1). Reduced 

χ2 statistics, on average 0.035 (SD = 0.038, maximum [max] = 0.207), were fully 

compatible with our power-law hypothesis. Note that χ2 <<1, suggesting that our estimated 

measurement uncertainties were rather conservative.38 Average goodness-of-fit statistics 

were comparable between imaging modalities (T1 R2 = 0.994, rfMRI R2 = 0.986, DWI 

R2 = 0.991) and target-phenotype categories (sociodemographic R2 = 0.993, cognitive R2 

= 0.996, behavioral R2 = 0.982, mental health R2 = 0.992). The observed scaling behavior 

of prediction accuracy with increasing sample size closely followed a power law for all 

investigated target phenotypes and imaging modalities.

Once a power law had been fitted to a learning curve, the curve could be mathematically 

extrapolated beyond the available sample size. To validate the results of such extrapolations, 

we fitted our power laws exclusively on sample sizes of 256 to 8,000, retaining the doubled 

sample size of 16,000 as a test set. We evaluated the out-of-sample extrapolation by 

comparing the extrapolated gain in prediction accuracy from 8,000 to 16,000 samples to 

the ground-truth gain (Figure 1C). Extrapolation and ground-truth pairs were aggregated 

for each of our prediction tasks. Power-law extrapolations of the learning curve were 

accurate with an average coefficient of determination of R2 = 0.788 (T1 R2 = 0.828, rfMRI 

R2 = 0.716, DWI R2 = 0.710). The obtained goodness-of-fit statistics and out-of-sample 

extrapolation suggest that learning curve power laws can be used to estimate trends of 

maximally achievable accuracy as well as necessary sample sizes for threshold accuracies.
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Learning curve extrapolation reveals performance reserves in phenotype prediction

All examined target phenotypes could be predicted from our T1, rfMRI, and DWI brain 

data, albeit to varying degrees of accuracy. Prediction accuracy (classification accuracy 

or regression R2, respectively) was highest for sex and age (best-performing modality: 

accuracy/R2 at max sample size; sex T1: 0.968 ± 0.001, age T1: 0.762 ± 0.002). 

Sociodemographic phenotypes (education score DWI: 0.034 ± 0.002, household size T1: 

0.085 ± 0.004) and cognitive phenotypes (reaction time T1: 0.090 ± 0.002, numeric memory 

rfMRI: 0.070 ± 0.002, fluid intelligence rfMRI: 0.101 ± 0.002, trail making T1: 0.120 ± 

0.003) scored higher than behavioral phenotypes (alcohol rfMRI: 0.063 ± 0.003, smoking 

T1: 0.048 ± 0.002, TV consumption rfMRI: 0.077 ± 0.002, physical activity T1: 0.011 

± 0.001) and mental health phenotypes (depression rfMRI: 0.564 ± 0.001, neuroticism 

T1: 0.030 ± 0.001, financial satisfaction T1: 0.023 ± 0.001, friendship satisfaction rfMRI: 

0.023 ± 0.002). However, different target phenotypes yielded wildly heterogeneous learning 

curves (Figure 2). For sex and age, all three neuroimaging modalities showed saturation of 

prediction accuracy when increasing the sample size beyond 16,000. In contrast, for every 

other target phenotype, at least one modality showed stable and continuous improvements 

in accuracy with increasing sample size (i.e., approximately linear scaling of prediction 

accuracy with log(n); see Figure 1A.2) up to the 32,000 training samples from the UK 

Biobank. In these data analysis settings, learning curve extrapolation projected continuous 

improvements up to at least 1 M samples. These patterns were further supported by our 

supplementary analyses on other datasets and expanded sets of target phenotypes (Figures 

S1–S5), even though the specific values varied somewhat in replication datasets on different 

cohorts or using nonidentical target measures.

To quantify how prediction performance is projected to gain from further increases in 

sample size beyond our sample, we used the Human Connectome Project sample size 

(1,000) as a reference and calculated the expected relative change in accuracy when 

escalating from 1,000 (Human Connectome Project) to 1 M (Million Brain Project goal) 

samples (Figure 3). The largest relative change was projected for mental health phenotypes 

(friendship satisfaction DWI: 8.89 ± 2.14, financial satisfaction rfMRI: 8.34 ± 1.47, 

depression rfMRI: 2.15 ± 0.27, neuroticism rfMRI: 3.99 ± 0.58) followed by behavioral 

phenotypes (alcohol rfMRI: 3.94 ± 0.23, smoking rfMRI: 7.74 ± 0.97, TV consumption 

rfMRI: 3.13 ± 0.18; physical activity could not be reliably estimated due to near-zero 

baseline), cognitive phenotypes (reaction time rfMRI: 3.35 ± 0.18, numeric memory rfMRI: 

3.41 ± 0.47, fluid intelligence rfMRI: 3.92 ± 0.19, trail making rfMRI: 1.92 ± 0.21), and 

sociodemographic phenotypes (household size rfMRI: 3.04 ± 0.27, education T1: 6.61 ± 

0.71). Consistent with observed learning curve saturation, sex (DWI: 0.21 ± 0.01) and age 

(rfMRI: 0.62 ± 0.03) scored the lowest. In other words, we project a 3- to 9-fold increase 

in prediction performance for behavioral and mental health phenotypes when moving from 

1,000 to 1 M samples. Our results suggest that for most investigated target phenotypes, 

linear models still operate far below their respective performance ceilings at currently 

available sample sizes.
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Optimal choice of imaging modality depends on both target phenotype and sample size

The scaling trajectory of prediction performance with sample size expressed a multitude 

of patterns based on the specific combination of evaluated brain imaging data and target 

phenotypes (Figure 2). No single modality consistently outperformed the other modalities, 

nor did we observe a consistent rank order of modalities over the set of prediction targets. 

Even for a single target phenotype, different modalities expressed different scaling behavior 

so that the accuracy hierarchy of modalities would often change with increasing sample 

size. Nearly every possible rank order of modalities was observed in at least one target 

phenotype and sample size range. The most frequent rank order was T1 > DWI > rfMRI, 

representing 40.26% target 3 sample size combinations excluding extrapolated values. 

However, extrapolated to 1 M samples, rfMRI was projected to outperform T1 and DWI 

for the majority (9/16) of target phenotypes. A compelling example is the case of fluid 

intelligence (Figure 2), where T1 outperformed rfMRI by 2.47 percentage points for small 

sample sizes (n = 256) but was projected to be outperformed by rfMRI by 7.92 percentage 

points for very large sample sizes (n = 1 M). In some but not all of such cases, T1 and 

DWI approached saturation accuracy (cf. cognitive function, Figure 2). In contrast, for 

rfMRI, learning curve extrapolation predicted continuous improvements up to at least 1 M 

samples (see Figure S7 for a comparison between Human Connectome Project (HCP) and 

UK Biobank (UKBB) data in terms of sex prediction using functional connectivity features), 

except for sex and age. In sum, the best-performing modality depended on both target 

phenotype and sample size, leading to pronounced modality cross-over effects for some 

target phenotypes. Further, extrapolation of performance scaling with increasing sample size 

suggests a higher accuracy ceiling for rfMRI than for T1 and DWI.

Multimodal data substantially boost prediction performance

Does combining different imaging modalities yield improvements in out-of-sample 

prediction performance over a single-modality baseline? Information extracted from 

different imaging modalities might be independent, so that combining modalities would 

improve out-of-sample prediction performance, or redundant, so that combining modalities 

would be ineffective. To investigate the impact of multimodal data, we concatenated the 

imaging data into dual-modality and triple-modality feature spaces and retained the first 512 

principal components for each respective feature space to align feature dimensionalities (cf. 

Schulz et al.37 and Abrol et al.39). Phenotype prediction based on the combination of T1, 

DWI, and rfMRI data outperformed prediction based on the respective best single modality 

for all target phenotypes and led to an average relative increase in accuracy of 30.78% 

(SD = 18.57 p.p.) at 16,000 samples. Switching from single modalities to multimodal 

input data led to improvements in prediction accuracy on par with doubling the sample 

size from 8,000 to 16,000 for 10 out of 16 target phenotypes. Learning curves observed 

in single-modality experiments (Figure 2) were mirrored in our analysis of multimodal 

feature spaces (Figures 4 and S8 for an alternative visualization). Our results suggest that 

different brain imaging modalities do not simply reflect the same limited set of variables but 

instead offer complementary, nonredundant predictive information for the majority of target 

phenotypes.
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Direct comparison of linear and nonlinear models

In recent work,37 we observed that linear and more expressive nonlinear machine learning 

models did not show relevant differences in performance for sex and age prediction based 

on T1 and rfMRI data for up to 8,000 training samples. We replicated these analyses for 

age, sex, fluid intelligence, and depression and on up to 32,000 training samples, comparing 

linear ridge regression with its nonlinear counterpart, RBF-kernelized ridge regression. Only 

in sex and age predictions based on DWI with large sample sizes above 16,000 did nonlinear 

models appear to marginally outperform their linear counterparts (Figure 5A.1). On all 

other evaluated prediction settings, linear models performed on par with nonlinear machine 

learning models. We found no consistent evidence of exploitable predictive nonlinear 

structure in neuroimaging data. Our collective results did not qualitatively differ between 

linear and nonlinear machine learning models.

DISCUSSION

Current research on neuroimaging-based precision medicine suffers from an information 

gap. Without principled estimates on the mutual information between brain imaging data 

and a given target phenotype, researchers are limited to a trial-and-error approach in 

which they are left guessing whether a machine learning model’s bad performance is due 

to technical error, insufficient sample size, or lack of predictive information in the data. 

Obtaining principled estimates on the mutual information between brain imaging data and 

target phenotype should help streamline the development of complex machine learning 

models, inform large-scale data collection initiatives, and help allocate resources to the most 

promising phenotypes.

In the present study, we introduced learning curve extrapolation as an effective tool to 

estimate achievable prediction accuracy and sample size requirements for neuroimaging-

based phenotype prediction. Our systematic characterization of learning curves for different 

imaging modalities and target phenotypes revealed three major findings: first, for most of the 

investigated target phenotypes, prediction performance continued to improve with additional 

samples, even at the limit of currently available sample sizes. These untapped performance 

reserves suggest that machine learning models in neuroimaging-based phenotype prediction 

operate far below their ceiling accuracy. However, it is important to note that the maximum 

accuracies were relatively low for all phenotypes except sex and age, which may be a 

cause for concern regarding the practical utility of these predictions. Second, different 

imaging modalities yielded unique predictive information, and combining modalities led 

to improvements in prediction accuracy on par with doubling the sample size. Moving 

from single imaging modalities to multimodal input data may unlock further substantial 

performance reserves for neuroimaging-based phenotype prediction. Finally, a majority of 

target phenotypes exhibited cross-over effects with regard to the best-performing modality. 

Instead of one single imaging modality being optimal for predicting a given target 

phenotype, the best-performing modality changed with the sample size. This insight has 

implications for planning large-scale neuroimaging studies, showing that results from small-

scale pilot experiments can be misleading.
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Our analyses comprised multiple brain imaging modalities (T1, rfMRI, DWI) and a wide 

range of sociodemographic, cognitive, behavioral, and mental health target phenotypes, 

evaluated using both linear and nonlinear machine learning frameworks on one of the largest 

available brain-imaging datasets. Due to the diversity of imaging modalities and target 

phenotypes, and owing to sample sizes orders of magnitude beyond the size of traditional 

neuroimaging studies, we cautiously expect our results to generalize to other neuroimaging-

based phenotype prediction scenarios.

Foundational for the present study is the premise that prediction performance follows 

strict mathematical laws. The gain in prediction accuracy that is enabled by an increase 

in sample size can be modeled and extrapolated. This allowed us to, in essence, forecast 

the prediction performance that we would likely reach at sample sizes orders of magnitude 

larger than the datasets of today. Learning curve extrapolation has already been applied in 

machine translation,34 genomics,40,41 and radiology42 to assess sample size requirements. 

Regarding the estimation of learning curves, our investigation makes at least three key 

contributions. First, we demonstrated consistent and highly accurate (average goodness-of-

fit R2 = 0.99) power-law scaling of prediction accuracy with sample size in 48 (16 target 

phenotypes × 3 modalities) common neuroimaging data analysis scenarios. The diversity 

of analyzed phenotypes and imaging modalities suggests that the power-law functional 

form can describe learning curves for neuroimaging data, independent of target phenotype 

or imaging modality. Second, we demonstrated that the underlying power law allows for 

extrapolating learning curves. While earlier studies40,42 assumed the integrity of out-of-

sample extrapolation without empirical evidence, we experimentally validated our ability to 

extrapolate learning curves based on subsamples of data. Finally, we conceptually linked 

the ceiling accuracy of extrapolated learning curves to the amount of predictive information 

contained in the data. Particularly for research in precision medicine, it is crucial to estimate 

whether neuroimaging data could ever be predictive of a certain disease or treatment 

response at a clinically useful accuracy. We argue that the ceiling accuracy of extrapolated 

learning curves can serve as an estimate of the maximally achievable accuracy and partially 

answer the question of potential for clinical use. Our present study is, to the best of our 

knowledge, the first to use the theory of learning curves as an empirical tool to assess the 

irreducible error, or maximal accuracy, of real-world prediction tasks.

Will structural and functional neuroimaging benefitfrom exceedingly large sample sizes? 

In machine learning benchmarks datasets of comparable dimensionality like MNIST43 or 

Fashion,43,44 linear models approach saturation accuracy at around 1,000 samples.37 One 

may reasonably expect our neuroimaging data to follow a similar pattern. Indeed, for the 

prediction of sex and age in all modalities and the prediction of aspects of cognitive function 

using T1 and DWI, linear models begin to saturate (Figure 3). However, for nearly all other 

combinations of imaging modality and target phenotype, linear models appear to operate 

far below their ceiling accuracy. In conjunction with the observation that linear models are 

competitive with more complex nonlinear models at present sample sizes,35–37,45 this allows 

for several conclusions.

Most importantly, there may be more predictive information contained in neuroimaging data 

than early small-sample trials indicate, although the predicted accuracies remain modest 
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even with large sample sizes. The extent to which quantifiable measures of behavior, 

cognition, and even mental health can be inferred from structural or functional brain 

MRI is contentious in the quantitative neuroscience community.22,23,46–49 For instance, 

in the ABCD challenge benchmarking the prediction of fluid intelligence based on T1 

data, most contributing researchers reported low (R2 < 0.04) explained variance.50 While 

some contributing researchers hypothesized insufficient sample size,51 others speculated that 

“structural features alone do not contain enough information related to fluid intelligence 

to be useful in prediction contexts.”52 Our learning curve extrapolation suggests that 

the amount of explained variance could likely be doubled−or, using rfMRI data, even 

quadrupled−given enough training samples and that we by far have not exhausted the 

predictive information in neuroimaging data (Figures 2, 3, 4, and S3–S5). However, it 

is important to consider how these predictions compare with nonimaging data and their 

added value for clinical utility, as well as the limitations in generalizing these results to 

other contexts. Though we cannot draw definitive conclusions on whether structural MRI 

and fMRI are operating on appropriate temporal or spatial resolutions, our results give 

cause for cautious optimism that current spatiotemporal resolutions are “good enough.” The 

majority of medium-sample-regime HCP-sized (~1,000 samples) studies on neuroimaging-

based phenotype prediction have likely severely underestimated the accuracy that can be 

achieved in the limit of larger sample sizes and more robust predictive models.

Contrary to our expectations, rfMRI provided the best prediction accuracy in the limit 

of large sample sizes of many prediction tasks. fMRI is often criticized for being 

highly susceptible to a variety of noise sources,24,25 having low temporal resolution,53,54 

and relying on the BOLD signal as a proxy for neural activity that is far removed 

from the actual local field potentials.22,23 Such skepticism is, superficially, supported by 

comparably low prediction performance at small sample sizes (Figure 2). However, learning 

curve extrapolation projected that rfMRI would eventually outperform structural imaging 

modalities in the prediction of the majority (9/16) of target phenotypes (see Figures S6 and 

S7 for analyses of the impact of rfMRI data quality). Higher-quality rfMRI data, like the 

longer recordings from the HCP, may further improve results (Figure S7).55–57 Even with 

all its shortcomings, rfMRI appears to have a wealth of extractable predictive information. 

Given that fMRI likely leaves much room for technological innovation,58,59 we cautiously 

conclude that fMRI could well allow for single-subject prediction on very large datasets of 

the future, although the predicted accuracies remain modest even with large sample sizes in 

this study.

Further, we observed that prediction performance for sex and age is saturating before all 

other phenotypes. In neuroimaging-based phenotype prediction, there is a well-founded 

fear that the model may mostly rely on confounding variables like sex and age to derive 

its prediction. Our results allow for cautious optimism in this regard. Most phenotypes 

showed continuous improvements in achievable accuracy for the sample size ranges in 

which accuracies for age and sex confounds are already saturating. Thus, accuracy gains are 

unlikely to be driven primarily by age and sex confounds and, by the exclusion principle, are 

more likely to be driven by phenotype-specific effects.
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Finally, our results suggest that neuroimaging researchers may need to recalibrate what they 

consider large sample sizes. Average machine learning studies in the field of precision 

psychiatry include hundreds up to a few thousand samples8; 10,000 is conventionally 

considered very large. However, 100,000, even 1 M, samples may not be sufficient to 

characterize simple linear modes for most target phenotypes (Figure 3). This is consistent 

with sample sizes of widely acknowledged reference datasets from computer vision, for 

example the popular Imagenet dataset, which comprises 14 M images. As brain images 

have an even higher dimensionality than photos from Imagenet (cubed instead of squared 

resolution), excessively large sample sizes may prove necessary to fully extract predictive 

information in neuroimaging data.

Our collection of findings underlines that “snapshot” measurements of accuracy at a single 

sample size can be highly misleading when deciding which imaging modality is most 

promising for predicting a given target phenotype. In particular, cognitive target phenotypes 

featured cross-over effects, where the most informative imaging modality changed with 

increasing sample size. Take the example of fluid intelligence (Figure 2): accuracy at a 

few hundred samples would suggest that T1 yields best performance, contains the most 

information about the target, and should be prioritized for further research. At a few 

thousand samples, a researcher may conclude that all modalities work comparably well 

and that it barely matters which modality to prioritize for further data collection. Only when 

considering the extrapolated learning curve did it become clear in the present investigation 

that rfMRI can be expected to substantially outperform structural modalities at high sample 

sizes for the prediction of fluid intelligence. This cross-over effect is likely driven by 

different phenotype-specific signal-to-noise ratios of different imaging modalities, leading to 

heterogeneous sample efficiency and, consequently, differently shaped learning curves.

Modality cross-over effects have implications for the planning and design of large-scale 

neuroimaging studies. Large-scale studies are often preceded by a pilot experiment to assess 

sample size requirements and to determine which particular neuroimaging techniques or 

modalities are most promising for the research question at hand. Without characterizing 

learning curves, pilot experiments will often produce deceptive results regarding the optimal 

imaging modality, like erroneously discarding rfMRI in favor of T1 in our example of fluid 

intelligence, leading to suboptimal design choices down the road. In contrast, learning curve 

extrapolation from the pilot experiment can reveal not only the optimal imaging modality in 

the limit of infinite samples but also for specific sample size regimes, facilitating superior 

design choices regarding sample size and imaging protocol of large-scale neuroimaging 

studies.

In the present study, mental health phenotypes could be predicted to a lesser accuracy 

compared to sociodemographic and cognitive phenotypes, alcohol and smoking behavior. 

This could be due to either particularly high noise in the features that are predictive 

for mental health compared to other phenotypes or comparatively high noise (i.e., low 

reliability) in the target variable.

In our results, prediction appeared to work best for objective measures like age, reaction 

time, and fluid intelligence and worst for less reliable measures derived from subjective 
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experience, like neuroticism or friendship satisfaction. Thus, we hypothesize that noise in 

the target variable may play an important role in the comparatively low prediction accuracy 

for mental health phenotypes.

This interpretation of our results ties into current discourse in psychiatry. Many diagnostic 

categories may insufficiently map on the underlying neurobiology26 or suffer from low 

inter-rater and low test-retest reliability.27,28 The concept of unsuitable labels provides a 

potential way to increase accuracy besides the collection of more and more data: target 

phenotypes like depression or neuroticism (as used in this study) may be insufficiently 

reliable due to the subjectivity of individual experience or may insufficiently map on the 

underlying neurobiology and may need to be redesigned or split into constituent parts to 

optimize prediction.

The introduction of research domain criteria60 targets this problem by searching for 

“new ways of classifying mental disorders based on dimensions of observable behavior 

and neurobiological measures.”61 Such newly derived phenotypes are expected to yield 

improved reliability and validity. Thus, research domain criteria may not only improve 

clinical practice but may also benefit neuroimaging-based precision psychiatry by improving 

the sample efficiency of machine learning models.

In our study, we focus on the more common between-participant settings where models 

are trained on some participants and used to predict outcomes for others. In these cases, 

predictive information may be “hidden” behind individual differences in brain structure and 

function. A within-participants setting could potentially require less training data and yield 

better results, as the training distribution is closer to the test distribution. This proximity 

might allow for more apparent statistical relationships between brain and behavior since they 

are not obscured by significant individual variations. It remains unclear to what extent our 

results are transferable to the within-participants prediction setting.

Another important consideration is the distinction between predicting past (e.g., education), 

current (e.g., fluid intelligence at the same visit), and future outcomes (e.g., expected weight 

gain). Our study focuses on past and current outcomes, but future research should investigate 

whether brain images differentially contain information for past, current, and future targets.

Furthermore, there may be subtle differences between classification and regression 

scenarios. Our study primarily focuses on regression targets, as they are comparatively easier 

to evaluate regarding goodness-of-fit versus multiclass accuracy for highly imbalanced 

targets with heterogeneous numbers of classes. This approach also allows us to mitigate 

concerns related to excessive class imbalances. When comparing the results for regression 

targets in our study with a small minority of classification targets, we observed no 

significant differences.

Lastly, within any predictive scenario, predicting certain targets on the whole cohort may 

prove difficult but may be relatively easy on specific subpopulations (e.g., certain disease 

subtypes, sex differences, socioeconomic groups with different statistical relationships 

between brain and behavior, and generally cases where the target label merges together 
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conceptually dissimilar aspects, making the target challenging for machine learning models 

to learn). All four points warrant further investigation in future studies.

Limitations of the study

Our study has multiple conceptual and technical limitations. Conceptually, our learning 

curves inherently only give a lower bound to practically achievable prediction accuracy for 

a given model and a given representation of input data. A different model or a different 

representation of the input data may give different, potentially even better, results. While 

we cannot fully exclude such possibilities, we are confident in our results on both accounts. 

For the sample size range analyzed in this study (32,000 and extrapolated up to 1 M), 

our learning curves may be quite close to the ground-truth achievable accuracy, even for 

arbitrarily expressive models (cf. Figure 5). We give one empirical and one principled 

argument for this conjecture. Empirically, a number of recent studies found that linear 

models performed comparably to their more sophisticated nonlinear counterparts. In prior 

work,37 we saw virtually no difference in performance when moving from linear models 

to kernel support vector machines, random forests, gradient boosting, and deep neural 

networks. Dufumier et al. confirmed this result and concluded that “simple linear models 

are on par with SOTA [state-of-the-art] CNN [convolutional neural networks] on VBM 

[voxel-based-morphometry], which suggests that DL [deep learning] models fail to capture 

nonlinearities in the data.” Though these results are critically discussed by Abrol et al., 

it does remain controversial how much complex nonlinear models may improve over a 

well-tuned linear baseline in the analysis of neuroimaging data. High levels of noise in 

neuroimaging data may effectively linearize decision boundaries, potentially leaving little 

nonlinear structure for machine learning models to exploit.37,62 Even if the task of mapping 

a brain image to a phenotype is nonlinear, we have a principled reason to assume that this 

nonlinear predictive structure can rarely be exploited at present sample sizes. Our results 

show that linear models are still operating far below their ceiling accuracy at present sample 

sizes for nearly all of the analyzed target phenotypes. It follows that the parameters that 

constitute the linear model cannot be adequately estimated at present sample sizes. The 

linear model is the simplest possible mapping from features to prediction target, and any 

nonlinear extension requires additional parameters that would need to be estimated from 

the same insufficient data. We argue that if there are insufficient data to characterize a 

linear interaction, then there is little reason to expect to be able to characterize a more 

complex nonlinear interaction from the same data−unless the model implements an inductive 

bias specifically suited to the precise type of nonlinear interaction in the data, e.g., by 

incorporating neuroscientific domain knowledge.

Regarding a better representation of features, we are using the state-of-the-art representation 

of neuroimaging data, derived from years of experience and incorporating vast 

neuroscientific domain knowledge from nonlinear registration to feature creation based 

on cortical or volumetric parcellation. For a machine learning model like, for example, 

a deep neural network operating on minimally preprocessed T1 images to learn an 

internal representation that outcompetes the carefully handcrafted representations we have 

available today is a substantive challenge, and positive results39,63–65 are still controversially 

debated.36,37,66
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Further, it should be reiterated that archivable prediction accuracy and its precise scaling 

behavior can depend on the given cohort and the type and reliability of the specific measures 

used to assess the target phenotype. Effects of such cohort and target phenotype differences 

are illustrated in the supplemental information (Figures S1 and S2).

Technical limitations pertain to the representation of target variables and to uncertainty 

quantification. It is difficult to make direct comparisons of prediction accuracy between 

different target phenotypes due to heterogeneous coding of the target variables. Moreover, 

our analysis was constrained by the small number of positive cases for psychiatric and 

neurological diseases in the UKBB, limiting us at times to less common prediction targets 

for which information was available for nearly all participants. The explained variance (R2), 

which we report as a metric of prediction performance, has no intrinsic meaning and can 

only be interpreted in reference to the given coding, retest reliability, and construct validity 

of a given target variable.

Finally, the quantification of uncertainties on the results of cross-validation schemes is an 

area of active research and has no established solutions. Our Monte Carlo cross-validation 

approach should yield legitimate estimates of uncertainty for small sample sizes, for which 

subsampled sets will be approximately statistically independent. When we approach 32,000 

training samples, sampled from a finite base population, statistical independence is violated, 

and error bars in all figures should be taken with caution. Consequently, we intentionally 

restrict ourselves to mostly qualitative interpretation of results and refrain from explicit 

statistical inference on the level of learning curves and from reporting explicit confidence 

intervals on the results of learning curve extrapolations.

In conclusion, we argue that the amount of predictive information contained in 

neuroimaging data, particularly in rfMRI, is likely underestimated, combined with, and 

partly due to, an overoptimistic assessment of the sample efficiency of machine learning 

models on neuroimaging data. However, the often still quite low extrapolated accuracies 

raise doubts about the practical usefulness of neuroimaging-based phenotype prediction. We 

recommend characterizing and extrapolating learning curves as an essential part of pilot 

experiments to test feasibility by estimating the achievable accuracy, assess sample size 

requirements, and establish the optimal imaging modality regardless of cross-over effects.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Marc-Andre Schulz (marc-

andre.schulz@charite.de).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• This paper analyzes existing, publicly available data. Neuroimaging data was 

obtained from UK Biobank under Data Access Application 33073 and are 
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available on request directly from the UK Biobank (http://www.ukbiobank.ac.uk/

register-apply/).

• Code for learning curve estimation is available here https://github.com/brain-

tools/esce; DOI: https://doi.org/10.5281/zenodo.10019019.

• Any additional information required to reanalyze the data reported in this work 

paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Dataset and feature spaces—Our analyses required large sample sizes to reliably 

estimate learning curves. Hence, we based our analyses on the UK Biobank,67 which has 

been described as the “world’s largest multi-modal imaging study”.12 The UK Biobank 

provides genotyping as well as extensive phenotyping data on approximately half a million 

participants, out of which 46197 (June 2021 release) underwent additional medical imaging. 

Structural T1-weighted brain images, resting-state fMRI, and diffusion-weighted brain 

images are available for each of these participants. For details on the UK Biobank’s data 

acquisition and processing protocols, please refer to Alfaro-Almagro et al.

A majority of past and present studies on machine learning for clinical neuroimaging 

rely on features designed by domain experts; cf. recent reviews on machine learning in 

epilepsy,68 autism,69 stroke,70 and mild cognitive impairment.71 The UK Biobank directly 

provides widely used feature representations (IDPs) for structural, functional, and diffusion 

tensor imaging. To align with common usage of neuroimaging feature representations and 

to increase reproducibility, we used the UK Biobank-provided features for our analysis. 

The structural MRI features (1425 descriptors) represented regional gray and white matter 

volumes, and parcellated cortical thickness and surface area.72 Resting-state functional MRI 

was distilled into a functional connectivity matrix (1485 descriptors), based on networks 

derived from a 100-component group ICA,72 note that the UK Biobank only records a 

comparatively short 5 min of rfMRI - for a direct comparison to the 30 min Human 

Connectome Project rfMRI data, see Figure S6). Diffusion-weighted imaging features 

(675 descriptors) represented fractional anisotropy, mean diffusivity and tensor mode, intra-

cellular volume fraction, isotropic or free water volume fraction and orientation dispersion 

index for “over 75 different white-matter tract regions based both on subject-specific 

tractography and from population-average white matter masks”.13 For details on the UK 

Biobank’s pre-computed feature representations, please refer to Alfaro-Almagro et al. Aside 

from standard scaling, features were used exactly as provided by the UK Biobank.

Prediction targets and target variable coding—Widely studied sociodemographic, 

cognitive, behavioral, and mental health phenotypes served as prediction targets for our 

analyses. Specifically, we included participant age (UK Biobank field-ID 21003–2), sex 

(field 31–0), education score (field 26414–0), and household size (number of people in 

household, field 709–2) as sociodemographic phenotypes. Fluid intelligence (summary 

score, field 20016–2), reaction time (mean time to correctly identify matches, field 20023–

2), numeric memory (maximum digits remembered correctly, field 4282–2), trail making 

(interval between previous point and current one in alphanumeric path, field 6773–2) 
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represented cognitive phenotypes. Alcohol consumption (intake frequency, field 1558–2), 

tobacco consumption (intake frequency, field 1249–2), physical activity (International 

Physical Activity Questionnaire activity group, 22032–0), TV consumption (hours per day, 

field 1070–2) represented behavioral and lifestyle phenotypes. Finally, depression (ever felt 

depressed for a whole week, field 4598–2), neuroticism (summary score, field 20127–2), 

friendship satisfaction (field 4570–2), and financial satisfaction (field 4581–2) represent 

mental health. For detailed information on the prediction targets, please refer to the UK 

Biobank online documentation (https://biobank.ndph.ox.ac.uk/showcase).

With the exception of sex and depression, all targets are either continuous or ordinally 

represented and were treated in a regression setting. Prediction of sex and depression, both 

binary targets, was treated as a classification task. All target phenotypes were provided by 

UK Biobank and used as-is, excluding “prefer not to answer” and “do not know” responses 

on a per-phenotype basis. Full phenotype information was not available for all participants, 

so that we generally report results for 16 thousand participants or the maximum available 

sample size per target phenotype (see Table S1).

METHOD DETAILS

Machine learning models and out-of-sample validation—For each combination of 

MRI modality, target phenotype, and training sample size, we subsampled the data into a 

training set (n = 256, 362, 512,…, 32k), a validation set for hyperparameter tuning (n = 2k), 

and a test set for final evaluation of prediction accuracy (n = 2k). The subsampling into train, 

validation, and test sets was repeated 20 times (Monte Carlo cross-validation, also known 

as repeated random sub-sampling validation) to provide an averaged accuracy as well as 

uncertainty estimates. Uncertainties were derived by bootstrapping over the cross-validation 

resamplings. Samples of train, validation, and test sets can be considered approximately 

independent for small train set sizes. For large train set sizes, train sets will overlap, and 

uncertainty estimates must be viewed with caution.

A new machine learning model was trained on the train set, tuned on the validation 

set, and the best hyperparameter configuration evaluated on the test set, for each MRI 

modality (n = 3), target phenotype (n = 16), training sample size (n = 15), and cross-

validation resampling (n = 20). We used ridge regression (l2 regularized linear regression, 

sklearn.linear_model. Ridge, Pedregosa et al. for regression tasks, and logistic regression (l2 

regularized, sklearn.linear_model.LogisticRegression,73 for classification tasks. Regularized 

linear models are considered highly competitive in the analysis of neuroimaging data and 

performed on par with more complex nonlinear models, such as kernel support vector 

machines and deep artificial neural networks, on similar prediction tasks.35–37

Hyperparameter tuning on the validation set was performed separately for each fitted model. 

For ridge regression, alpha values from 2^−15 to 2^15 were evaluated in steps of 2^-(2n+1). 

For logistic regression, l2 penalty weights ranged from 2^−20 to 2^10 in insteps of 2^-(2n). 

Hyperparameter ranges and granularity of the search range were checked visually for each 

modality x target phenotype combination.
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Learning curve fitting—The empirical scaling of prediction performance with increasing 

training sample size is called a learning curve. Theoretical results from statistical learning 

theory state that learning curve bounds follow a power law function.29–32 Empirically, 

power law scaling was shown for models ranging from linear estimators to deep neural 

networks.33,34 Thus, we fitted the expected power law functional form [αn−β + γ] to our 

empirical data. Learning curves were averaged over the 20 cross-validation resamplings 

before fitting the power law via nonlinear least squares (scipy.optimize.curve_fit).74 

Parameters were bound to 0<α<inf, -inf<β < 0, and 0<γ < 1.

QUANTIFICATION AND STATISTICAL ANALYSIS

For learning curve estimation and extrapolation we used the ESCE software (see Data 

and code availability). Uncertainty estimates are derived via bootstrapping over the 

cross-validation resamplings. Statistical details are included in the figure legends, further 

implementation details are available in the ESCE documentation and code.

We intentionally restrict ourselves to mostly qualitative interpretation of results and refrain 

from explicit statistical inference on the level of learning curves, and from reporting explicit 

confidence intervals on the results of learning curve extrapolations (see discussion).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Full predictive information in brain images not utilized even at 1 M samples

• Multiple imaging modalities improve accuracy akin to doubling sample size

• Most informative modality varies with larger sample sizes

• Achieving practical utility may require prohibitively large samples
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Figure 1. Learning curves for neuroimaging-based phenotype prediction precisely follow a 
power-law function
(A) Prediction accuracy scales with the number of training samples. The precise nature of 

this relationship can be described by a simple power law [α n−β + γ]. (A.1) For instance, 

when predicting fluid intelligence from rfMRI data using ridge regression, out-of-sample 

accuracy (blue) closely followed the fitted power law (red). (A.2) We observed stable and 

continuous improvements in accuracy with increasing sample size, i.e., approximately linear 

scaling of prediction accuracy with log(n). (A.3 and A.4) Residuals of the power-law fit gave 

no indication of systematic deviations between measured accuracy and fitted power law.

(B) Power-law scaling was observed in all evaluated prediction tasks (i.e., combinations 

of imaging modality and target phenotype), with a goodness-of-fit R2 between measured 

learning curve and power law of on average 0.990 (SD = 0.015, min = 0.902).

(C) Learning curve extrapolation predicted accuracy achievable on unseen larger samples. 

Shown are projected gains in prediction accuracy derived from learning curve extrapolation 

on the y axis in relation to observed gains in prediction accuracy on the x axis. Both were 

derived by doubling the training sample size from 8,000 to 16,000. Error bars indicate 

standard error of the mean (SEM).
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Figure 2. Linear models are operating far below ceiling accuracy for most target phenotype 
predictions
Learning curves show the collective results obtained from regularized linear models 

using T1, DWI, and rfMRI data to predict sociodemographic, cognitive function, behavior/

lifestyle, and mental health phenotypes. Training datasets were subsampled from the UK 

Biobank up to a size of 32,000 participants. Learning curves were extrapolated beyond 

32,000 participants. To indicate extrapolation uncertainty, each colored line represents a 

power-law fit based on a bootstrap sample of observed accuracies. Observed prediction 

accuracies are marked black; majority classifier/median regression baselines are marked 

dashed gray. Blue vertical lines indicate the sample size of the Human Connectome Project 
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(1,000), the imaging sample size goal of the UK Biobank (100,000), and the proposed 

Million Brain Initiative (1 M). Error bars indicate SEM.
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Figure 3. Multifold gains in prediction performance are projected for behavioral and mental 
health phenotypes when moving from 1,000 to 1 M samples
Shown is the relative increase in prediction accuracy per modality and target phenotype 

derived from learning curve extrapolation on regularized linear models. Results for physical 

activity could not be reliably estimated due to near-zero baseline (cf. Figure 2). Error bars 

indicate SEM.
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Figure 4. Augmenting single-modality feature spaces to incorporate multimodal input data can 
lead to improvements in prediction accuracy on par with doubling the sample size
The 512 leading principal components of single-modality data, or of concatenated dual-

modality data, were used as the basis for phenotype prediction. Pictured is the min-max 

scaled prediction accuracy, with accuracy at 1,000 training samples representing the origin 

of the respective graph. Switching from single modalities to multimodal input data led to 

improvements in prediction accuracy for all target phenotypes. For 10 out of 16 target 

phenotypes, improvements from multimodality were comparable to improvements from 

doubling the sample size from 8,000 to 16,000. Different brain imaging modalities appear 
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to provide complementary, nonredundant predictive information for most target phenotypes 

(see Figure S7 for an alternative visualization).
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Figure 5. Linear models performed on par with nonlinear machine learning models in 
neuroimaging-based phenotype prediction
We found no consistent evidence of exploitable predictive nonlinear structure in 

neuroimaging data. Only for DWI-based prediction of sex and age at large (>16,000) 

training sample sizes did nonlinear models marginally outperform their linear counterparts. 

Pictured are results for linear and RBF-kernelized nonlinear ridge regression. For other 

nonlinear machine learning models, see the supplemental information. Error bars indicate 

SEM.
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