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Abstract

Epigenetic transcriptional regulation frequently requires histone modifications. Some, but not all, 

of these modifications are able to template their own inheritance. Here I discuss the molecular 

mechanisms by which histone modifications can be inherited and relate these ideas to new results 

about epigenetic transcriptional memory, a phenomenon that poises recently-repressed genes for 

faster re-activation and has been observed in diverse organisms. Recently, we found that the 

histone H3 lysine 4 dimethylation that is associated with this phenomenon plays a critical role in 

sustaining memory and, when factors critical for the establishment of memory are inactivated, can 

be stably maintained through multiple mitoses. This chromatin-mediated inheritance mechanism 

may involve a physical interaction between an H3K4me2 reader, SET3C, and an H3K4me2 writer, 

Spp1− COMPASS. This is the first example of a chromatin-mediated inheritance of a mark that 

promotes transcription.

Keywords

Epigenetics; chromatin; transcription; memory

A genome encodes multitudes. The numerous phenotypes, morphologies and functions 

of cells in the tissues of a multicellular organism represent distinct expression states 

of the same genome 1. Likewise, unicellular organisms respond to changes in their 

environment by altering their gene expression. Thus, while the DNA sequence of the 

genome defines the phenotypic potential of an organism, that potential is realized through 

the regulation of gene expression, often through selective transcription. Changes in 

transcription can be rapid and transient but, under certain circumstances, cells undergo long-

term changes in gene expression that persists in the absence of the initiating stimulus. For 

example, in multicellular organisms, transient developmental cues lead to the progressive 

establishment of stable and (generally) irreversible transcriptional programs that commit 

cells to differentiation and restrict their developmental potential 2,3. In single cell organisms, 

transcriptional responses can also result in stable, long-term changes in phenotype 4. For 

example, wild isolates of Saccharomyces cerevisiae5,6 as well as pathogenic yeasts such 

as Candida albicans 7,8 and Cryptococcus neoformans 9 exhibit switching between several 
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alternative colony morphologies due to changes in transcription10,11. These meta-stable 

colony morphologies are stably inherited but their relative frequency can be modulated by 

environmental stimuli 12,13. Thus, the transcriptional responses to environmental stimuli can 

be either transient or longer-term; in some cases, they are inherited through mitosis and 

meiosis 14. Changes in transcription that are inherited through mitosis or meiosis are termed 

epigenetic transcriptional regulation.

Heritable transcriptional regulation can be mediated by transcription factor activity, 

DNA methylation, non-coding RNAs and histone modification. Such regulatory factors 

function either in trans or in cis; trans-acting factors such as transcription factors bind to 

genetically encoded DNA elements to promote or repress transcription, while cis-acting 

DNA methylation or histone modifications “mark” regulatory regions to impact transcription 

of nearby genes 15.

Chromatin as a regulator of transcription

How do cis-acting marks impact transcription? Transcription is a complex process involving 

the coordinated recruitment of numerous factors and complexes 16. Eukaryotic genomes are 

packaged into nucleosomes 17, which limit access to the DNA, inhibiting transcription 18,19 

and many regulators of transcription impact DNA accessibility by regulating nucleosome 

occupancy 20. The first indication that this was the case was the discovery that enzymes 

that control acetylation or deacetylation of histones either promote or repress transcription 
21,22 and that large ATP-dependent complexes that could slide or remove nucleosomes 

regulate transcription 23,24. Acetylation of lysine residues in histones promotes transcription 
25,26, in part because it neutralizes their charge and reduces their affinity for DNA 27 and 

disrupts interactions between neighboring nucleosomes 28, making them easier to displace 

by transcription factors or RNA polymerase 29–32. Also, acetylated histones serve as binding 

sites to recruit coactivators – including acetyltransferases themselves and nucleosome 

remodeling complexes 33 - that possess bromodomains 34. Thus, histone deacetylation 

represses transcription both by stabilizing chromatin to limit access to the DNA and 

by preventing recruitment of bromodomain coactivators 35–37. Regulating nucleosome 

occupancy through nucleosome remodeling and histone modification plays a critical role 

in regulating transcription.

Myriad covalent modifications of histones have been identified 38, including methylation, 

phosphorylation and ubiquitylation on their unstructured terminal tails. Mutations in either 

the enzymes that catalyze these modifications or the amino acids that are modified perturb 

transcriptional regulation, highlighting their functional significance 38.

Whereas histone acetylation generally promotes transcription 26, histone methylation 

promotes both transcription and silencing, depending on which amino acid is methylated. 

The histone H3 lysine 9 methyltransferase from mammals, flies and yeast promotes 

transcriptional silencing 39,40. The histone H3 lysine 4 methyltransferase Trithorax and 

the histone H3 lysine 27 methyltransferase Polycomb play antagonistic roles during 

development 41; loss of Trithorax leads to decreased expression of critical transcription 

factors within the homeotic gene cluster, while loss of Polycomb has the opposite effect 
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41. Thus, these two marks are associated with alternative, stable transcriptional states 

that regulate differentiation; H3K4 methylation is associated with actively transcribed loci, 

while H3K27 methylation is associated with silent loci. Genomic analysis reveals that, in 

differentiated cells, H3K4 methylation (H3K4me) and H3K27 methylation (H3K27me) are 

generally mutually exclusive and that the boundary between these marks in the homeotic 

gene cluster in flies and mammals defines which genes are expressed and which are silenced 
42. This is due to recruitment of co-activators by H3K4me or co-repressors by H3K27me, 

regulation of histone H3K27 acetylation by H3K27me and through changes in chromatin 

folding and compaction 43. In pluripotent stem cells, certain loci possess “bivalent” loci in 

with both H3K4me and H3K27me, reflecting their potential for transcription or silencing 
42,44.

Regions near centromeres and telomeres are constitutively silent 45. This stable silencing 

requires histone deacetylation and, in most species, histone H3 lysine 9 methylation 

(H3K9me) 46,47. Reporter genes adjacent to telomeres and centromeres have been a critical 

tool for screens to identify molecular players essential for this type of stable silencing. 

For example, a chromosomal inversion in Drosophila that places the white gene beside the 

centromere of the X chromosome results in variegated silencing of white in a subset of 

cells in the eye 48,49. Likewise, reporter genes inserted near a centromere in S. pombe or 

near telomeres in S. cerevisiae show variegated silencing 50,51. ChIP sequencing reveals that 

H3K9me localizes at many constitutively repressed loci in the genomes of yeast, flies and 

mammals 52.

Genomes are therefore divided into regions having distinct histone marks that correlate with 

different transcriptional states. Histone modifications are generally directed by cis-acting 

genetic information. For example, histone acetyltransferases are recruited to enhancers or 

promoters by sequence-specific transcription factors 53. Likewise, at the silent mating type 

locus in budding yeast, which is silenced by histone deacetylation, the histone deacetylase 

Sir2/Sir4 is recruited through binding of the Origin Replication Complex and Sir1 to 

elements that flank the locus 54–56. In the case of histone methylation, the mechanism is 

related but less simple 46. While the enzymes responsible for H3K27 and H3K9 methylation 

can be recruited to chromosomal loci by sequence-specific transcription factors 57,58, other 

recruitment mechanisms also occur. H3K9 methylation near centromeres in S. pombe 
depends on low level transcription of pericentromeric repeats that results in double stranded 

RNAs that are processed by Dicer 59. These small RNAs are incorporated into an RNAi 

transcriptional silencing complex that recruits the H3K9 methyltransferase Clr4 to the 

transcribed locus 60,61. Likewise, H3K27me is stimulated by recruitment of PcG complexes 

by both sequence-specific DNA binding proteins and mechanisms such as RNA and other 

histone modifications 62,63.

H3K4 methylation has been proposed to reflect transcription; in yeast, the sole H3K4 

methyltransferase Set1/COMPASS is recruited through interaction with the Paf1 complex 

(Paf1C) 64, which binds to elongating RNA polymerase II (RNAPII). Loss of Paf1C leads 

to global loss of H3K4 methylation 64. Furthermore, Paf1C physically interacts with the E3 

ubiquitin-conjugation/ligase Rad6/Bre1, which mediates ubiquitination of H2B lysine 123 
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65. This mark is also required for all H3K4 methylation in budding yeast 66,67. These results 

suggest that active RNAPII recruits Set1/COMPASS, leading to H3K4 methylation.

Heritable chromatin states

The heritability of DNA methylation and its requirement for the maintenance of certain 

epigenetic states suggests a general conceptual model for the inheritance of cis-acting 

information: following DNA replication, hemi-methylated CpG sites are recognized and 

re-methylated on the complementary cytosine (Figure 1A). Therefore, a mechanism that 

both recognizes a cis-acting mark and stimulates its re-establishment might allow that mark 

to be faithfully inherited at that location. Is there evidence that histone post-translational 

modifications are heritable? In other words, can cis-acting histone marks be perpetuated 

in the absence of trans-acting factors? Studies of silencing of telomeres, centromeres and 

special loci like the hidden mating type loci (HM) in flies and yeast suggested that histone 

modification-dependent transcriptional states are heritable in the absence of some of the 

trans-acting factors necessary for their establishment. For example, although Sir1 facilitates 

recruitment of the Sir2/Sir4 HDAC to the silent HM loci through interaction with sequence-

specific DNA binding proteins 68, loss of Sir1 does not lead to immediate loss of silencing. 

Rather, in sir1 mutant strains, there are two stable populations, one that continues to silence 

the HM loci and the other that expresses the HM loci 69. This suggests that chromatin 

domains defined by deacetylated histones are epigenetically inherited.

Additional compelling evidence for epigenetically heritable chromatin modifications comes 

from studies of H3K9 methylation in S. pombe. Tethering of a the H3K9 methyltransferase 

Clr4 to an ectopic locus is sufficient to stimulate nearby H3K9 methylation and 

transcriptional silencing 70,71. In cells lacking a putative H3K9 demethylase Epe1, this mark 

can be maintained for many generations upon removing the tethered Clr4 71. Inheritance 

requires the endogenous Clr4 71 and is dependent on the density of H3K9me3 72, but is 

independent of the RNAi machinery 71. Thus, while wild type cells (having Epe1) require 

constant re-establishment of H3K9 methylation, this mark can mediate its own inheritance.

For histone modifications to be inherited, two conditions must be met. First, nucleosomes 

must be reincorporated into chromatin near their original location following DNA 

replication. Classic pulse-chase experiments 73 as well as more recent global experiments74 

reveal that nucleosomes are partitioned equally between the two daughter chromosomes 

after DNA replication. Furthermore, the location of nucleosomes is quite stable over 

many cell divisions, particularly in silent regions 75. This suggests that nucleosomes are 

preferentially reincorporated near their original location. Indeed, several histone chaperones 

associate with PCNA and the DNA replication machinery and have been proposed 

to facilitate efficient reincorporation 76,77. These results suggest that, following DNA 

replication, approximately half of nucleosomes will be marked as they were before S-phase 

and the other half will be unmarked.

Second, to facilitate re-establishment of histone marks after DNA replication, the histone 

modifications on parental nucleosomes must be recognized (by a “reader”) and that must 

be coupled to recruitment of the enzyme that modifies new nucleosomes (“writer”). This 
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is referred to as a read-write mechanism (Figure 1B). Read-write mechanisms have been 

defined for heritable histone deacetylation, H3K9 methylation and H3K27 methylation. 

Deacetylated nucleosomes of the HM loci or telomeres are recognized by the Sir3 protein, 

which both binds to unacetylated histone H4 lysine 16 78 and recruits the Sir2 histone 

deacetylase. Likewise, H3K9 methylation is recognized by both the HP1 protein and a 

chromodomain within the Clr4 H3K9 methyltransferase. Because HP1 interacts with Clr4, 

this protein functions as a reader, while Clr4 is both a reader and writer. The recognition 

of H3K9 methylation stimulates the methyltransferase activity 79,80, promotes spreading 

of the mark 81 and is essential for inheritance of H3K9 methylation 71 (Figure 1C). 

Finally, H3K27methylation can also stimulate its own inheritance through a read-write 

mechanism involving two subunits of the PRC2 complex. The EED subunit of PRC2 

binds to H3K27me3. This leads to both recruitment of PCR2 to nucleosomes that possess 

H3K27me3 as well as stimulation of the catalytic activity of the methyltransferase EZH2 
82,83 (Figure 1D). Thus, read-write mechanisms are a common strategy to faithful replication 

of histone modifications.

Epigenetic transcriptional memory

To-date, the best examples of heritable chromatin states are those associated with stable 

silencing. Histone modifications associated with active transcription are, for the most part, 

not heritable; histone acetylation is unstable and nucleosomes in actively transcribed regions 

are not reincorporated faithfully at the same location through multiple cell divisions 75. 

However, modifications that reflect previous transcription can be inherited. Here, I highlight 

a phenomenon whereby a heritable histone modification over an inactive gene both reflects 

previous expression and promotes future transcription. This mark (H3K4me2) is associated 

with both active and poised loci, although the molecular requirements and heritability in 

these two circumstances are different.

Some inducible genes are more rapidly or strongly induced in cells that have previously 

expressed them 14. This phenomenon, called epigenetic transcriptional memory, was 

discovered in budding yeast 84, but has since been observed in flies 85 and human cells 86 

and related phenomena occur in worms 87 and plants 88,89. The general features of this type 

of memory are the requirement for interaction with nuclear pore proteins, H3K4me2 and 

recruitment of poised RNAPII. This type of memory persists through mitosis for between 

4 and 15 cell divisions, depending on the system. One of the best-understood models for 

memory is the yeast INO1 gene 90,91, encoding the inositol 3-phosphate synthase enzyme, 

which is only expressed in the absence of exogenous inositol. This gene has also been a 

model to understand the role of the nuclear pore complex (NPC) in regulating transcription 

and chromatin structure 92.

When cells are starved for inositol, the transcriptional activation of the INO1 gene is coupled 

with repositioning to the nuclear periphery and a physical interaction with the NPC 92,93 

(Figure 2, left). The interaction with the NPC requires two transcription factors (Cbf1 and 

Put3) that bind to cis-acting DNA zip codes upstream of the promoter, as well as several 

nuclear pore proteins 93–95 (Figure 2, left). Disrupting the interaction with the NPC leads to 

a defect in INO1 transcription 93,94.
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If inositol is added back, INO1 is immediately repressed 84,96. However, the gene remains 

associated with the NPC for approximately four generations (8h), both in the cells that had 

been expressing INO1 and in their daughters, granddaughters, and great granddaughters 84 

(Figure 2, right). Ultimately, this interaction is lost and INO1 repositions to the nucleoplasm. 

Thus, the interaction of recently-repressed INO1 with the NPC is an epigenetically heritable 

state. Importantly, this interaction is mediated by a different transcription factor called Sfl1 
97. This TF binds upon repression and is necessary and sufficient to mediate interaction 

with the NPC97. Also, the nuclear pore protein Nup100 is required for localization to the 

periphery only during memory and has no role in targeting active INO1 to the periphery 
96. Finally, the systems controlling positioning of active and recently repressed INO1 
are independent of each other. Thus, genes can be targeted to the NPC by at least two 

mechanisms and the INO1 gene utilizes both under different circumstances.

Transcriptional memory maintains INO1 in a poised state (Figure 2). The RNAPII 

preinitiation complex associates with the INO1 promoter during memory, leading to faster 

induction and faster adaptation if the cells are challenged with inositol starvation 96–98. 

Also, memory is associated with distinct histone modifications over the promoter compared 

with those associated with either the long-term repressed or active promoter. Whereas the 

long-term repressed INO1 promoter shows low histone acetylation and H3K4 methylation 

and the active INO1 promoter shows high acetylation and H3K4me3, during memory, 

the promoter and 5’ end of the INO1 gene show low levels of acetylation and high 

levels of H3K4me2, but not H3K4me3 86,97,98. During memory, an alternative form of 

the Set1/COMPASS histone methyltransferase lacking the Spp1 subunit, is recruited 97. 

Spp1− COMPASS catalyzes dimethylation, but not trimethylation, of H3K4 99. Furthermore, 

the histone variant H2A.Z is incorporated upstream of the promoter during memory 84,96. 

Poised RNAPII, H3K4me2 and H2A.Z are also associated with the promoters of other yeast 

genes that exhibit memory as well as genes in human cells that exhibit memory 86,97,98,100.

The interaction with the NPC is required for these chromatin changes. Loss of Nup100 or 

Sfl1 leads to loss of H3K4me2 and H2A.Z incorporation during memory 86,96,97. In contrast, 

loss of these factors has no effect on the H2A.Z at the +1 nucleosome of the repressed INO1 
promoter or H3K4 methylation over the active INO1 promoter96,97.

Chromatin-dependent transcriptional memory

These chromatin changes play an essential role in promoting INO1 memory. Mutations that 

inactivate the Set1/COMPASS histone methyltransferase or the SWR1 complex - which 

exchanges H2A.Z for H2A - lead to loss of memory 86,96,97. Likewise, deletion of the HTZ1 
gene or mutation of the lysine 4 in histone H3 also disrupt memory 84,97. Finally, while 

H2A.Z incorporation requires H3K4me2, H3K4 dimethylation is independent of H2A.Z, 

suggesting that H3K4me2 is a critical upstream step 98. In fact, the SET3C complex, 

which binds preferentially to H3K4me2 101, is essential for both maintaining H3K4me2 

and for binding of RNAPII 86,97. Importantly, this role is specific to memory; loss of 

Set3 has no effect on H3K4me2/3 or RNAPII binding over the active INO1 promoter 
86,97. Finally, conditional inactivation of Set1/COMPASS during memory leads to loss of 
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H3K4 methylation and RNAPII association 97. Thus, H3K4me2 is continuously required for 

RNAPII poising.

To understand the molecular function of H3K4me2, we employed conditional genetics. The 

recruitment of preinitiation RNAPII to the INO1 promoter during memory requires the 

Mediator kinase Cdk8 97,98. Either conditional depletion of Cdk8 97 or inhibiting an analog 

sensitive mutant Cdk898 leads to rapid loss of RNAPII from the poised INO1 promoter. 

Inhibition by the analog is rapidly reversible, allowing us to test if continuous RNAPII 

binding is critical for maintaining the INO1 promoter in a poised state. If so, then RNAPII 

should fail to be recruited upon removing the inhibitor. However, RNAPII was recruited 

back to the recently repressed INO1 promoter following removal of the Cdk8 inhibitor, 

suggesting that the conditions necessary for RNAPII poising are maintained in the absence 

of RNAPII 98.

Given that RNAPII binding is not required to maintain the INO1 promoter in a poised state, 

we next tested if H3K4me2 is required. To do this, we combined temporary inhibition of 

Cdk8, which leads to loss of RNAPII binding, with inactivation of SET3C, which leads to 

rapid loss of H3K4me2 97. Thus, we assessed the ability of RNAPII to be recruited back 

to the INO1 promoter after removal of the Cdk8 inhibitor in the presence and absence of 

H3K4me2. In the absence of H3K4me2, RNAPII failed to associate with the INO1 promoter 
98, suggesting that recruitment of poised RNAPII during memory requires H3K4me2.

How does H3K4me2 promote RNAPII recruitment? Our data suggest that H3K4me2 

functions in a positive feedback loop during memory. While loss of Sfl1 or Nup100 prevents 

H3K4me2 from being deposited during memory, conditional removal of H3K4me2 disrupts 

Sfl1 binding 98. Therefore, Sfl1-mediated interaction with the NPC is required for H3K4 

dimethylation and H3K4me2 is required for continued Sfl1 binding. This suggests that 

H3K4me2 permits Sfl1 binding and Sfl1 interacts with Cdk8+ Mediator 102 to promote 

RNAPII recruitment.

Chromatin as a source of heritable transcriptional memory

Could H3K4me2 be the source of epigenetically heritable information? In other words, is 

H3K4me2 inherently stable and capable of being re-established after DNA replication? We 

first assessed the stability of H3K4me2 associated with active transcription by examining 

this mark over the INO1 promoter in a mutant that lacks memory. In such a mutant, 

H3K4me2 is rapidly lost upon repressing transcription 98. This suggests that H3K4me2 per 
se, is neither stable nor heritable.

If H3K4me2 associated with memory is epigenetically heritable, it should persist in 

the absence of trans-acting initiating factors 103. To assess the heritability of H3K4me2 

during memory, Sfl1 was depleted by auxin-induced degradation 104 after establishing 

INO1 memory. Under these conditions, interaction with the NPC, RNAPII binding and 

H2A.Z were lost, confirming that Sfl1 function was disrupted 98. However, H3K4me2 was 

maintained without dilution through four cell divisions 98. Thus, while interaction with 

the NPC is essential for establishment of H3K4me2 during memory, this mark can be 
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maintained and re-established through cell divisions in the absence of this interaction. This 

is reminiscent of the perpetuation of silent chromatin upon loss of Sir1 on HM silencing or 

removal of tethered Clr4 and suggests that H3K4me2 may stimulate its own inheritance.

How might H3K4me2 be inherited during memory? Could this involve a read-write 

mechanism? During memory, the writer of H3K4me2 is Spp1− COMPASS and the putative 

reader is SET3C 86,97, a histone deacetylase complex with a PHD finger that recognizes 

H3K4me2 101. Simultaneous inactivation of Sfl1 and SET3C led to loss of H3K4me2 

during memory 98, consistent with this complex facilitating inheritance. Furthermore, co-

immunoprecipitation revealed that SET3C physically interacts with Spp1− COMPASS 98. 

This interaction suggests a read-write model in which SET3C recognizes H3K4me2-marked 

nucleosomes after DNA replication and recruits Spp1− COMPASS to re-establish this mark, 

facilitating both its spreading and inheritance (Figure 3).

These observations suggest that the same mark (H3K4me2) at the same location in the 

genome can be either unstable or heritable, depending on the pathway by which it is 

deposited. While all H3K4 methylation in budding yeast requires COMPASS, at least two 

distinct mechanisms can lead to COMPASS-mediated H3K4me2; H3K4me2 during active 

transcription and H3K4me2 during memory. H3K4 dimethylation during active transcription 

requires RNAPII, but H3K4 dimethylation during memory does not; inactivation of Cdk8 or 

Sfl1 led to loss of RNAPII but did not affect H3K4me2 during memory 98. H3K4me2 during 

memory requires Nup100 and Set3C, but these factors are not required for H3K4me2 over 

transcribed genes 86,97. Likewise, a subunit of the Paf1C, Leo1, is specifically required for 

H3K4 methylation during memory 98. Therefore, the heritability and functional impact of 

H3K4 methylation depends on additional, context-specific factors.

Future work will determine the molecular basis of the switch from RNAPII-dependent, 

unstable H3K4me2 to RNAPII-independent, heritable H3K4me2 during memory. We 

hypothesize that this switch is regulated by transcription factors that mediate interaction with 

nuclear pore proteins. But it is unclear what regulates these transcription factors and how 

the interaction with nuclear pore proteins impacts histone methylation. Nup98, the Nup100 

homolog in flies and mammals, physically interacts with the Trithorax and Set1/COMPASS 

complexes and impacts H3K4 methylation in those organisms 105,106. This suggests that 

nuclear pore proteins may play critical and conserved roles in regulating epigenetically 

heritable histone methylation. Also, it will be important to define the molecular mechanism 

by which SET3C and Spp1− COMPASS physically interact to mediate inheritance of 

H3K4me2. Integrating how transcription factors, nuclear pore proteins and chromatin 

modifications stimulate RNAPII poising to lead to changes in future gene expression will 

have a broad impact on basic cell biology, developmental biology and genetics.
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Figure 1. Read-write mechanisms for replicating chromatin marks.
A. Following DNA replication, hemi-methylated CpG sites are recognized by Dnmt1, 

which re-establishes symmetric methylation. This protein possesses the ability to both 

recognize the appropriate substrate and to catalyze the reaction. B. Because histone H3/H4 

nucleosome cores are reincorporated nearby but randomly distributed between the daughter 

products of DNA replication, approximately half of the nucleosomes contain parental, local 

H3/H4 tetramers and half contain new H3/H4 tetramers. The parental nucleosomes can be 

recognized by reader proteins that bind to specific histone marks. Recognition by readers 

leads to recruitment of writers, which re-establish these marks on neighboring nucleosomes 

after DNA replication. C. Inheritance of H3K9 methylation. Both the writer Clr4/Suv29h 

and the reader Swi6/HP1 can bind H3K9me3. Because Swi6 physically interacts with Clr4, 

this provides both a direct and an indirect mechanism for Clr4 recruitment to H3K9me3-

marked loci. Binding of H3K9me3 to Clr4 also stimulates catalytic activity of the enzyme. 

D. Inheritance of H3K27 methylation. The PRC2 Polycomb complex contains both a reader 

(EED; light green) and a writer (EZH2; dark green). Binding of EED to H3K27me3 both 

recruits PRC2 to chromosomal sites with this mark and stimulates EZH2 catalytic activity to 

promote methylation of lysine 27 on neighboring nucleosomes.
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Figure 2. INO1 transcriptional states.
Long-term repressed INO1 localizes in the nucleoplasm and is neither associated with 

RNAPII nor H3K4 methylation. Upon activation, INO1 is recruited to the nuclear pore 

complex (NPC) through the action of the Put3 and Cbf1 TFs (red proteins), which bind to 

cis-acting DNA zip codes upstream of INO1. Upon transcriptional repression, INO1 remains 

associated with the NPC. During memory, interaction with the NPC requires different 

factors: the Sfl1 TF and the nuclear pore protein Nup100. This interaction leads to changes 

in chromatin modifications (H3K4me2 and H2A.Z incorporation; indicated in blue) and 

recruitment of a pre-initiation form of RNAPII.
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Figure 3. Proposed mechanism of replication of H3K4me2 during transcriptional memory.
Following DNA replication, SET3C recognizes the H3K4me2 mark near the promoter 

of genes that exhibit memory. Through interaction with Spp1− COMPASS, potentially 

involving the Paf1C complex subunit Leo1, SET3 recruits COMPASS to this site and 

re-establishes H3K4me2.
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