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Abstract

Light sheet microscopes enable rapid, high-resolution imaging of biological specimens; however, 

biological processes span a variety of spatiotemporal scales. Moreover, long-term phenotypes 

are often instigated by rare or fleeting biological events that are difficult to capture with a 

single imaging modality. To overcome this limitation, we present smartLLSM, a microscope that 

incorporates AI-based instrument control to autonomously switch between epifluorescent inverted 

imaging and lattice light sheet microscopy. We demonstrate the utility of this approach by studying 

two unique biological processes: cell division and immune synapse formation. In each of these 

contexts, we demonstrate that smartLLSM provides population-level statistics across thousands of 

cells and autonomously captures multicolor 3D datasets or 4D time-lapse movies of rare events 

at rates that dramatically exceed human capabilities. Automating both data acquisition and image 

analysis allows us to quantify the effects of Taxol dose on spindle structure and kinetochore 

dynamics in dividing cells and of antigen strength on cytotoxic T lymphocyte engagement and 

lytic granule polarization at the immune synapse. Overall, this new methodology enables efficient 

detection of rare events within heterogeneous cell populations and records these processes with 

high spatiotemporal 4D imaging over statistically significant replicates.
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Introduction

Light sheet microscopes offer reduced photobleaching, less phototoxicity, and increased 

imaging speed compared to widefield or confocal microscopes1,2. These advantages 

permit the visualization of dynamic events ranging from single molecules that diffuse in 

milliseconds 3–7 to organisms that develop over multiple days8–11. However, these advances 

also present new challenges. First, light sheet microscopes can extract gigabytes per second 

of information from the specimen which necessitates specialized data storage, visualization, 

and quantification tools12. Second, biological samples can rarely tolerate hardware-limited 

maximum imaging rates for very long before becoming perturbed by the imaging process13. 

Third, because data is still acquired plane-by-plane, there is an inherent sacrifice between 

the volumetric sampling rate and the imaging field of view driving a tradeoff between rapid, 

high-content imaging (images with high spatio-temproal resolution) of a small region vs 

high-throughput imaging (fast scanning speed) of many samples or replicates. Lastly, the 

oblique geometry, high-magnification, and limited field of view used by many light sheet 

microscopes impede the rapid selection of specific cells or regions of interest across a large 

sample, especially if such cells are rare within a population6,14–16.

By detecting and responding to specific image features, event-triggered microscopy has 

emerged as a way to overcome these tradeoffs. Previous demonstrations include: automating 

confocal imaging experiments on rare cells17, combining population-level analysis 

with high-resolution widefield imaging18 and super-resolution localization microscopy19, 

selectively increasing the acquisition rate to capture mitochondrial fission and bacterial 

cell division events with structured illumination microscopy20, and switching between 

diffraction limited and super-resolution stimulated emission depletion modalities when 

specific spatial signatures are detected within live-cell time-series21. Inspired by these recent 

advances, we sought to determine whether similar approaches could be used to program 

a self-driving lattice light sheet microscope “smartLLSM” that is capable of searching for 

specific cells within a population and then automatically capturing 4D light sheet movies 

of these specimens. We accomplish this by rapidly scanning centimeter-scale specimens 

via inverted epifluorescent microscopy that captures a large field of view parallel to the 

coverslip and switching on demand to perform lattice light sheet microscopy (LLSM) at 

automatically determined fields of view. We control the instrument by feeding images 

to a fully convolutional machine learning algorithm “You Only Look Once, version 5 

(YOLOv5)”22–24 so that the locations and classes of identified objects from inverted 

microscopy images can automate the acquisition of desired cells via LLSM. We demonstrate 

the generality of this approach by studying cell division and immune synapse formation, two 

distinct biological processes that substantially benefit from the low-phototoxicity imaging 

afforded by light sheet microscopy25–28. SmartLLSM processes hundreds of cells per 

second, dramatically cuts down user interaction time, and generates statistically significant 

replicates of rare cellular events. This allows it to dramatically reduce the need for up-front 

data storage and post-acquisition data mining to draw meaningful biological conclusions.
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Results

smartLLSM incorporates a fast and accurate object detector

YOLOv5 must be trained on annotated examples that specify both the bounding box and 

object class within an image. To train the network to identify mitotic cells, we generated 

a retinal pigment epithelium cell line stably expressing fluorescent fusions of centromere 

protein A (CENPA-mNeonGreen) and histone H2B (H2B-mScarlet) to label centromeres/

kinetochores and chromosomes respectively. We used chromosome morphology to identify 

cell state and the inverted epifluorescent microscopy mode of smartLLSM to generate 

single-channel training data (Fig. 1A). To train the network to identify immune synapses, 

we generated coverslips containing a 3-color mixture of cytotoxic T lymphocytes (CTLs) 

and peptide presenting GFP-tagged target cells. CTLs were fluorescently labeled via indirect 

immunofluorescence to tag receptors on the CTL plasma membrane and lytic granules 

within the CTL. We used both the CTL plasma membrane and target cell GFP signal to 

generate two channel training data via inverted epifluorescent microscopy and classified 

cells using both CTL morphology and CTL/target cell proximity (Fig. 1B). These images, 

together with annotated bounding box coordinates, and the object classes present in each 

box were used to train YOLOv5 (Fig. 1C, D). Complete details about training set acquisition 

and model generation are provided in Methods (Fig. S1 and S2). In total, we annotated 
~54,000 RPE cells with approximately 5% comprising different mitotic stages and ~2,600 

CTLs and 14,000 target cells with approximately 8% comprising contacting cell pairs or 

discernable immune synapses. Our trained models achieved an average accuracy of 85% 

for all mitotic stages and 78% for identifying target cells and immune synapses (Fig. 1E, 

F). As shown in the confusion matrices, the major sources of misidentification occurred 

between classes that were visually similar or that did not have clear transitions, even 

to a human observer (e.g. identifying a prophase cell as an interphase cell, mislabeling 

metaphase and prometaphase, or misidentifying contacting pairs vs. true immune synapses). 

Networks trained on subsets representing ~15% of the total training data for each application 

still functioned within 10% of peak performance suggesting that, depending on the desired 

accuracy, the instrument can be rapidly trained for new applications using many fewer 

annotated examples (Fig. S3). Furthermore, precision vs. recall curves, calculated as “one 

vs. all” for each class, can be used to tune the models to maximize network precision (low 

false positive rate) or recall (low false negative rate) depending on experimental goals (Fig. 

1G, H).

smartLLSM implementation and timing

To demonstrate the utility of smartLLSM, we first highlight its ability to survey large 

populations of cells and acquire multicolor 3D volumes of selected cells of interest. In this 

case, we perform a 2D tiled scan of a 16 mm x 6 mm area using inverted epifluorescent 

microscopy while passing the tiled images to the YOLOv5 network (Fig. 2A). For a typical 

dataset, we process batches of 100 images in parallel, with each image consisting of 800 

x 800 pixels. With a pixel size of 100 nm at the sample, each individual image is an 80 x 

80 μm field of view and each batch represents a 10 x 10 tiled array of images from 800 

x 800 μm of the sample. When RPE cells are plated at 80% confluence, each image batch 

contains approximately 300 nuclei and requires 0.84 seconds to process (Fig. S4A). This 
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yields a network processing rate of ~357 cells per second. For synapse detection, each image 

batch contains 220 cells on average, and requires 1.85 seconds to process, which yield a 

processing rate of 120 cells per second. The slower speed for synapse detection is mostly 

due to increased load during preprocessing to merge images from the two channels into an 

RGB image while the network’s inference speed was similar, (Fig. S4B). Thus in both cases, 

our processing pipeline dramatically exceeds the rate of manual image inspection.

For fixed specimens, we scan the entire area via 2D inverted epifluorescent microscopy 

while logging the stage and position of each cell (Fig. 2B). With a camera exposure time 

of 50 ms, the entire 96 mm2 imaging region containing approximately 30,000 cells can be 

scanned with 300 nm lateral resolution in ~15 minutes while processing the resulting 11,400 

2D images takes ~10 minutes for cell detection and classification including file input/output 

overhead. Pipelining image acquisition and network inference in parallel allows for real time 

processing. Once complete, we then switch to LLSM and return to each cell of interest to 

perform multicolor 3D imaging (Fig. 2C). For both dividing cells and immune synapses, 

scanning a 60 μm by 110 μm by 30 μm volume around each cell at 50 ms exposure per plane 

with three colors via LLSM takes approximately 20 s, although this could be sped up by an 

order of magnitude or more by shortening the exposure-per-plane, depending on fluorophore 

brightness and desired imaging quality. Altogether, this application provides automatic and 

high-throughput 3D imaging of select cells within a population (Movie S1, S2).

smartLLSM to surveil cell populations

To verify that that the trained YOLO network performed as expected, we sought an 

orthogonal validation that did not rely on user annotation. To this end, we determined 

the proportion of mitotic cells found by our network when imaging a synchronized cell 

population compared to a control sample. Under live-cell conditions, we repeatedly imaged 

a 16 mm x 6 mm area via inverted epifluorescent microscopy once every 30 minutes. 

The classification network detected a clear mitotic wave in synchronized RPE reporter 

cells between 10 and 14 hrs after thymidine release whereas this peak was absent in 

unsynchronized control samples (Fig. S5). In control samples, the ratio of mitotic cells 

increased slightly over the course of the 18 hr imaging experiment, indicating minimal 

phototoxicity or perturbation from being maintained in the microscope imaging chamber or 

from the imaging itself, whereas the network detected very few mitotic events in unreleased 

cells.

We next sought to demonstrate the advantages of smartLLSM to determine population-level 

trends introduced either by drug or biological perturbations. We imaged chemically fixed 

RPE cells expressing CENPA-mNeonGreen and H2B-mScarlet. Across multiple coverslips, 

we located and classified approximately 180,000 cells of which only ~0.4 percent were in 

mitosis, which is similar to our live-cell control samples above (Fig. 3A). Of the mitotic 

cells, the majority were in metaphase (0.195%) while prophase was the rarest sub-class 

(0.022%). Treatment with a low-concentration, 5 nM dose of Paclitaxel (Taxol), a commonly 

used chemotherapeutic, significantly reduced the percentage of cells in mitosis (p = 0.02) 

and altered the distribution of cells in each mitotic subclass (p = 7E-8 via chi-square 

test of independence) (Fig. 3A). This implied that, as expected, Taxol-treated cells are 
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inhibited from progressing through downstream mitotic stages29,30. For immune synapses, 

we compared the effects of target cells expressing different strength activating peptides 

(High – N, Medium – T, and Low – G)31,32 and quantified the total number of CTLs, 

target cells, and the fraction CTLs that either contract a target cell or successfully formed 

an immune synapse. Across 4 separate coverslips, we detected in total 248,713 target cells 

and 48,821 CTLs across all conditions (Fig. 3B). Of all “objects” detected on the coverslip, 

immune synapses represented only 1.4%, demonstrating that these are indeed rare events 

within a heterogeneous population. These observations allowed us to determine whether 

differences in target cell antigen strength affect the percentage of CTLs in contact with target 

cells. We computed the normalized contacting ratio which takes into account the relative 

densities of both the CTLs and target cells within an experimental condition (Fig. 3B inset). 
Prior studies have suggested that antigen strength can increase the percentage of CTLs 

forming conjugates33. However, other studies have suggested that antigen strength increases 

synapse signaling, but does not increase the number of synapses formed34. Here, we found 

a weak, but not statistically significant trend, wherein increased antigen strength resulted 

in a slightly higher propensity for CTLs to be found in contact with target cells. Overall, 

these data demonstrate that smartLLSM captures changes in the distribution of cellular states 

within two very different biological systems and under different types of perturbations.

smartLLSM for high-content and high-throughput imaging of specific cells

In addition to population-level statistics, smartLLSM also allows for automated, high-

resolution imaging of select cells within a sample. This is in contrast to alternative methods 

like flow cytometry where it is not possible to revisit individual cells after the initial 

scan. To demonstrate the utility of this approach, we quantified the sub-cellular effects of 

Taxol perturbation on specific mitotic stages, by automatically imaging kinetochores, H2B, 

and microtubules (immunostained for β-tubulin-Alexa647) in prometaphase and metaphase 

cells using multicolor LLSM (Fig. 3C). We then transformed this collection of 3D LLSM 

datasets to the same reference frame using the kinetochore distribution and the plane of 

the metaphase plate as a coordinate origin (Fig. 3D, see Methods for details). When we 

examined the orientation of the metaphase plate relative to the cover glass, we found a 

clear reorientation from parallel (in prometaphase) to perpendicular (in metaphase) (Fig. 

3E), in agreement with previous observations tracking the spindle pole orientation during 

these stages35. Interestingly, this reorientation was disrupted by exposure to Taxol, leading 

to a randomly orientated metaphase plate (Fig. 3E). We also found that our control cells 

displayed a “barrel-like” microtubule and kinetochore distribution that was maximal in 

prometaphase and was persistent into metaphase. This structure is thought to facilitate 

accurate chromosome segregation by increasing the probability of correct amphitelic 

attachments between kinetochores and microtubules35,36 and was disrupted by low-dose 

Taxol treatment (Fig. S6A, B). Finally, we found that Taxol treatment decreased the 

anisotropy of the kinetochore spatial distribution and increased the presence of multipolar 

(≥3) spindles. These multipolar structures were not present in prophase cells, but peaked 

to nearly 60% of all cells examined in prometaphase before declining gradually for other 

mitotic cell stages (Fig. S6C, D).
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In a parallel example, we studied the organization of cytotoxic granules that CTLs secrete 

through the immune synapse to kill target cells. In agreement with prior studies32,34, 

we found that strong antigens increased the percentage of synapses with polarized 

granules delivered to the CTL-target cell interface whereas weak antigens resulted in more 

heterogeneously distributed granules (Fig. 3F, G, Fig. S7). Interestingly, aside from this 

polarization we did not observe changes to the amount of granule clustering in CTLs which 

has been proposed to potentially occur in response to stronger TCR stimulation (Fig. S8)32. 

Overall, our studies demonstrate that smartLLSM can automate high-content imaging and 

identify subtle perturbations on rare cells or structures within heterogeneous populations.

smartLLSM for automated 4D imaging

Fixed cell imaging provides only a snapshot of a dynamic 3D process. As such, it is difficult 

to capture transient temporal events and it is impossible to quantify longitudinal changes 

in single cells. To address this need, we used smartLLSM for event triggered live-cell 

imaging of cell division utilizing the dual-labeled reporter RPE line described above. In 

this case, we continuously scanned living cells via 2D inverted epifluorescent microscopy 

until YOLO detected a cell in prophase. Once a prophase cell was found, a feedback loop 

drove the stage to the target coordinates (Fig. 4A) and the microscope collected a 50-minute 

LLSM time-series, which is sufficient to capture a typical mitotic progression (Fig. 4B, 

Movie S3). Because mitotic cells are especially sensitive to phototoxicity13, we first utilized 

smartLLSM to optimize the light dose, exposure time, and imaging rate while ensuring 

proper cell division (Table S1), settling on a time course of 3 seconds/volume for the first 

5 minutes when motion is the most dynamic and then transitioning to a rate of 6 seconds/

volume for the following 45 minutes of imaging.

Kinetochores link chromosomes to microtubules to properly partition DNA into the two 

daughter cells. In mitosis, they travel complex trajectories as the cell transitions through 

each mitotic stage. By observing kinetochore dynamics, we can gain a better understanding 

of the biophysical steps required for proper chromosome segregation and of the origin 

of mitotic errors25–27,37. Toward this end, we first examined the instantaneous speed of 

kinetochores from prophase to prometaphase (Movie S4). Shortly after nuclear envelop 

breakdown, kinetochores move rapidly inward as they are captured by microtubules27. 

Based upon this, we plotted the kinetochore speed distribution for each of four stages: 

prophase, contracting, prometaphase, and metaphase, (Fig. S9A, B, Movie S4). We found 

an increase in kinetochore speed after nuclear envelop breakdown in prophase, but no 

significant differences between the contracting, prometaphase or metaphase stages. In all 

cases, kinetochore speed was well above our noise floor of 10 nm/s, estimated by repeatedly 

imaging chemically fixed cells at different stages (Fig. S10). We next investigated whether 

kinetochore dynamics might be differentially sensitive to Taxol during specific mitotic 

stages (Movie S5).

Cells treated with 5 nM Taxol were still able to enter prophase. However, compared to 

control cells, none of the 5 nM Taxol treated cells progressed through mitosis (33/35 vs. 

0/27), typically arresting at the prometaphase to metaphase transition. In contrast, cells 

treated with 0.5 nM Taxol progressed similarly to control (16/17). Cells treated with 1 
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nM Taxol lay in between, with roughly one third of the cells completing mitosis and two 

thirds arresting prior to metaphase (7/23) (Fig. S11). Live kinetochore tracking revealed that 

metaphase plate reorientation is delayed and diminished under Taxol treated conditions (Fig. 

4C, Fig. S12) and that 5 nM Taxol strongly reduced kinetochore speed in prometaphase 

compared to control cells (Fig. 4D). For 1 nM Taxol treated cells that completed mitosis 

successfully, there was no significant difference in kinetochore speed at any cell stage, 

whereas for those that eventually arrested, we observed decreased kinetochore speed during 

prometaphase with an intermediate magnitude of effect compared to the 5 nM dose. 

Kinetochore speed during the initial contracting stage of kinetochore motion after nuclear 

envelop breakdown was less sensitive to Taxol than kinetochore speed during prometaphase, 

suggesting that other factors besides microtubule dynamics may impact kinetochore motion 

during this stage.

In addition to quantifying instantaneous kinetochore speed, we can longitudinally track 

kinetochores. Recent studies have used LLSM and 3D single particle tracking to identify 

“lazy” or lagging kinetochores which fail to partition into the daughter cells at the same rate 

during anaphase37. Intriguingly, this study revealed that metaphase kinetochore dynamics 

could be partially predictive of future mislocalizations during anaphase. Here, we track 

kinetochores in LLSM movies of mitosis and identify outlier kinetochores based on their 

spatial coordinates (see Methods for details on outlier identification). Once an outlier 

kinetochore is identified, its trajectory can be analyzed to reveal its behavior before, during, 

and after it deviated from the population distribution (Fig. 5A, Movie S6). Although we did 

not observe any significant change in the speed of outlier kinetochores vs. others (Fig. S13), 

we found that the probability of observing an outlier kinetochore varied at different mitotic 

stages (Fig. 5B). We did not detect any outliers in prophase, but detected that approximately 

1% of kinetochores were outliers in both prometaphase and anaphase. In contrast, only 0.2% 

of kinetochores are outliers in metaphase (Fig. 5B). Chromosome positions undergo the 

largest reorganizations during prometaphase and anaphase, so the potential for mitotic errors 

and for kinetochores to deviate from the expected distribution may be higher in these stages 

than during metaphase when most chromosomes move relatively little within the metaphase 

plate. We next examined average duration during which a kinetochore is classified as 

an outlier. Interestingly, outlier events were longest in metaphase (505.8 s), followed by 

prometaphase (238.6 s) and shortest in anaphase (78.4 s), indicating that the mechanisms 

for outlier correction may take longer during metaphase (Fig. 5C). By considering both 

the number of outlier kinetochores in a given stage, the duration of the outlier events 

themselves, and the average duration of a mitotic stage, we can compute the instantaneous 

probability of observing an outlier kinetochore at any instant in time within given cell 

stage. With this information, we find that at any given time, there is an approximately 

0.26%, 0.14%, and 0.20% percent chance to observe an outlier kinetochore in prometaphase, 

metaphase, and anaphase respectively (Fig. 5D).

Longitudinal tracking also enables us to test additional hypotheses about the search and 

capture process of kinetochores by microtubules. For example, a recent study suggested that 

the location of a kinetochore within the interphase nucleus can influence its propensity 

to missegregate during mitosis38. Focusing specifically on kinetochores that could be 

unambiguously tracked from the start of prophase through to anaphase (Fig. S14), we 
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tracked 899 trajectories from 33 cells total and plotted the duration, distance traveled, and 

average speed for each kinetochore as a function of its position within the prophase nucleus. 

Interestingly, we found no clear correlation between any of these values and the position of 

the kinetochore in the prophase nucleus (Fig. S15), although it’s not immediately clear if 

this might be due to differences in methodologies between our approach and prior studies.

Discussion

In this work, we combine AI-based computer vision with LLSM to autonomously image 

rare events in both fixed and live-cell conditions. This system allows for quantification of 

subtle biological and pharmacological effects to population-level distributions as well as 

to the sub-cellular organization of stereotypical structures such as the mitotic spindle and 

the immune synapse. Automated sample search, live imaging, and longitudinal 4D tracking 

allows quantification of kinetochore trajectories, reveals that certain mitotic stages are more 

prone to outlier events than others, and explores the effects of drug perturbations on this 

process. The statistical power of these comparisons arise from thousands of 3D fixed cell 

datasets and hundreds of 4D live cell movies, that together consist of millions of 2D image 

planes and over 40 TB of total raw data. By scanning, localizing, and classifying hundreds 

of cells per second, smartLLSM dramatically exceeds the rate of manual sample search, 

it reduces the overall data burden, and it enriches the acquired data for specific events of 

interest.

SmartLLSM builds upon recent work in automated, adaptive, or “self-driving” 

microscopes17,20,21,39,40. In particular, automated sample search and cell classification has 

been demonstrated previously using object segmentation, feature vector computation, and 

support vector machines (SVM) on commercially available confocal microscopes17. Timing 

data was not provided in these demonstrations, thus preventing a direct comparison to this 

work; however, due to the need to first segment cells and then compute feature vectors 

for each cell independently, our initial trials with SVM-based approaches were over an 

order of magnitude slower than our implementation with YOLOv5 on the same data. 

For example, generating the segmentation masks via Cellpose, the first step of our SVM 

classification test, took roughly 20-fold longer than the entire YOLOv5 pipeline. Although 

this could be explained in part by the specifics of how these processes were implemented, 

fully convolutional approaches are well-established to be faster than methods with separate 

detection and classification steps23. Combined with the fact that LLSM can be 1 to 2 orders 

of magnitude faster than point scanning confocal6, we estimate that our approach is between 

10X - 100X faster than the prior state of the art, while achieving comparable accuracy for 

automated sample search and 3D imaging (Supplementary Note 1).

While our initial demonstrations focused on mitosis and immune synapse formation, the 

pipeline can be adapted to any biological phenomena that is stereotypical, morphologically 

distinct, or that contains a unique combination of image properties. For example, in 

addition to the examples studied here, the platform can also be used automate more routine 

laboratory tasks such as quantifying and imaging co-expressing reporter cells within a mixed 

population while avoiding cells that display overexpression artifacts (Fig. S16). However, 

a limitation for any supervised learning method, including smartLLSM, is that the network 
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may behave unpredictably when presented with data that is outside the training dataset. Care 

must be taken to retrain the network if experimental conditions or the desired cellular events 

to be captured change. Additionally, the network will still be subject to any user bias present 

in the annotated training data. There is a risk that by only imaging cells that conform to 

preconceived ideals, the user may miss cells with unexpected and potentially interesting 

phenotypes. A lengthier discussion of the tradeoffs and potential caveats of relying on 

supervised learning for automated imaging is provided in Supplementary Note 2.

Overall, we demonstrate that smartLLSM bridges spatial and temporal scales, enabling 

mm-scale search and surveillance of cell populations and high-resolution 4D imaging of 

cellular structures and dynamics. To facilitate the adoption of this approach and aid its 

adaptation to other types of microscopes, we provide our open-source annotated datasets, 

the annotation GUI, and the trained networks. We anticipate that this automated approach 

will increase statistical power for observations of rare cellular events, increase experimental 

throughput by capturing relevant data at higher speeds than can be achieved via manual 

sample acquisition, and facilitate the screening of new pharmacological perturbations on a 

subset of rare cells or cell stages within heterogeneous populations.

Methods:

Neural Network Training

Fig. S1 provides an overview of the training process for the YOLO network. We first 

collected images via inverted epifluorescent microscopy of the RPE nuclei (Fig. S1A–E) or 

T cell and target cells (Fig. S1F–I). These images were segmented with the deep-learning 

based algorithm Cellpose41 to crop out a bounding box around each cell (Fig. S1B and 

G). Each cell was then annotated to associate a class to each bounding box (Fig. S1D and 

H). For mitotic cells, because over 90% of the cells are in interphase, to facilitate manual 

annotation of the rarer cell stages, we utilized a bootstrap approach to first train a three-state 

classifier for cells in interphase, mitosis, and a “blurry” class to deal with out of focus 

regions or non-specific cellular debris (Fig. S1C and Fig. S2). Eventually, the raw images, 

the bounding boxes, and the associated class of each box are fed into the YOLO network for 

training. Details of each step are described in the following sections.

i) Segmentation: To train our network, we utilized an initial data set of z-stacks of fixed 

cells expressing H2B-mScarlet captured through the inverted objective with epi illumination 

on the lattice light sheet instrument. For a given location, 41 z-planes were acquired at 1 

μm spacing and 10 ms exposure to image a full volume above and below the coverslip. The 

field of view for each z-stack was 800 x 800 pixels in size (80 x 80 μm) and contained 

approximately 8 cells on average. The stages were then scanned to acquire z-stacks at 

23,100 separate positions across the sample. The most in-focus position for each stack 

was evaluated based on the position with a minimum Shannon Entropy and was used 

for further processing. This process was repeated for three separate biological replicates. 

Batches of images were then passed to a pretrained Cellpose network41. The algorithm 

efficiently segmented out potential cells, allowing masks and bounding boxes to be saved 

for 69,300 individual images. This allowed us to pass individual cells to our cell annotator 
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and classification networks in subsequent steps. Of note, while Cellpose was able to segment 

clearly defined cells, it also picked up on blurry cells that lie in different focal planes as 

well as other non-cellular debris that was picked up while imaging. We utilized general 

image features (e.g., mask diameter) along with classification categories while annotating 

(to be learned by the classification network) to account for these blurry cells and erroneous 

Cellpose masks. To train the YOLO network for detecting immune synapses, we applied 

a similar imaging scheme except utilizing 2-color rather than single color imaging. We 

simultaneously imaged target cells and CTLs in different channels, and applied Cellpose to 

segment out potential cells. All cells segmented in the target cell channels are automatically 

annotated as target cell, and cells in the CTL channel are annotated manually as described in 

section iii.

ii) Classification: In order to generate labeled training data from the raw images, we 

developed a custom interface in Python (Fig. S17). The main GUI consisted of a split view, 

with the right half displaying the current cell to be labeled and the left half displaying the 

entire image (with the current cell outlined) to provide local context for the user. This was 

especially useful when classifying cells in stages such as late anaphase and telophase. In 

these cases, Cellpose tended to segment the single splitting cell into two separate cells. 

However, using the global context, it became easy to classify these cells as the second 

daughter cell could be seen close by the current cell. Moreover, we were able to fine tune 

our annotation options to account for any artifacts in the Cellpose masks (e.g., debris or cells 

that were clipped by the edge of an image).

We utilized an iterative approach to bootstrap and expedite annotation of mitotic cells by 

embedding a neural network within the annotation GUI to “pre-screen” images. Because 

mitotic cells represent a small fraction of all cells in the images, the class distribution 

is highly skewed and many images contained only interphase cells. Therefore, we first 

manually scanned the data to generate a small subset of curated cells (e.g. 10 cells for each 

class). We used these images to train a three-category neural network classifier that could 

discriminate between interphase, blurry, and mitotic cells (Fig. S2). Before being passed 

to the network, we cropped out a 200 x 200 pixel region centered on each cell. Other 

cells present off-center, but still in the crop, were retained as opposed to masking each 

individual cell since it seemed to improve classification results. Next, data augmentation was 

performed using TensorFlow’s “ImageDataGeneration” function. This function preprocessed 

and augmented the cells via sample-wise standardization and image rotation, flipping, and 

shearing. The trained network was then implemented in the cell annotator, allowing each 

image to be “pre-scanned” to determine if the image contained only interphase cells or 

if cells in any mitotic class were present. This process could be refined by changing 

the threshold value for classifying cells as mitotic, allowing for a trade-off between the 

likelihood of images presented to the user containing mitotic cells vs. the likelihood of 

erroneously discarding useful images to annotate. This allowed for a much more efficient 

method to acquire training data. This “in-line” neural network was periodically retrained 

as we acquired more annotated data allowing for more efficient filtering of images and 

ultimately a more accurate classifier.
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iii) Annotation: Fig. S18A shows representative images of the annotated mitotic cells 

at prophase, prometaphase, metaphase, anaphase, and telophase. We annotated cells as in 

prophase when clear chromosome condensation is observed, the condensed chromosomes 

are evenly distributed across the entire cell nuclei, and the overall nucleus shape was 

ellipsoidal. We annotated prometaphase cells when chromosomes form a ring-like structure 

and the overall shape of the nucleus deviates from circular but not yet reached a line-like 

structure. Metaphase cells were defined as nucleus becoming a line-like structure. Anaphase 

cells were defined as when cells just start to split, with chromosomes in the two daughter 

cells in close vicinity. Telophase cells were defined as when the chromosomes in the two 

daughter cells were still condensed, but the two daughter cells were far apart.

For CTLs, we show the representative images of the annotated results in Fig. S18B. We 

classified CTLs into non-contacting, contacting with target cells, and synapses. We defined 

CTLs with a clear concave morphology as “synapses” and CTLs that touch but are not 

conformal along target cell membranes as “contacting”.

iv) YOLO Implementation (smartLLSM Neural Network): Once we obtained 

the training data, we utilized the state-of-the-art, open-source YOLO architecture23 to 

rapidly locate and classify RPE cells within the microscope images into the following 

categories: interphase, prophase, prometaphase, metaphase, anaphase, telophase, and blurry. 

We classified cells from the immune synapse substrates as target-cell, CTL-non contacting, 

CTL-contacting, and CTL-synapse. YOLO is a single-shot detector (it does not have a 

separate region proposal step), prioritizing detection speed while still maintaining high 

classification accuracy. We refer the reader to the well-maintained and documented 

YOLOv5 repository for detailed instructions for training YOLO on custom datasets24. In 

short, we transformed our labeled data to a YOLO-compatible format with uniform square 

bounding boxes (200 x 200 for mitotic cells and 300 x 300 for T cells, to match our 

annotation procedure). YOLO is trained on the entire microscope field of view (versus 

individual cell crops, as per our annotation procedure). We split images into a training 

(70%, 3981 images for mitotic cells and 2122 images for CTLs) and test set (30%, 1678 

images for mitotic cells and 909 for CTLs). In the training set, 33879 total cells were used 

for mitotic cell detection: 84 anaphase, 5787 blurry, 26284 interphase, 631 metaphase, 293 

prometaphase, 258 prophase, and 542 telophase; 11293 total cells were used for synapse 

detection: 9494 target cells, 872 CTL-non contacting, 499 CTL-contacting, and 428 CTL-

synapse. In the test set, 15154 total cells were used for mitotic cell detection: 29 anaphase, 

2814 blurry, 11592 interphase, 260 metaphase, 141 prometaphase, 132 prophase, and 186 

telophase; 4964 total cells were used for synapse detection: 4176 target cells, 341 CTL-non 

contacting, 244 CTL-contacting, and 203 CTL-synapses.

We trained the YOLOv5s (“small”) model using default settings for 195 epochs (early 

stopping, best model used) in 2.8 hours using a Linux workstation equipped with an 

NVIDIA GeForce RTX 2080 Ti GPU with 12 GB VRAM. Network performance results 

are shown in Fig. 1E–H. To validate the localization accuracy of YOLO, we compared the 

center of YOLOs bounding boxes to the center of the original Cellpose masks and found 

good agreement between YOLO and Cellpose (Fig. S19) which was sufficient for accurately 

centering the cells for 3D LLSM imaging.
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Microscopy optical path

The optical path for smartLLSM is based on a modified version of the instrument described 

in Chen et al.6 and Moore RP et al.42 . Key modifications relevant to this work are the 

use of a 0.6 numerical aperture (NA) excitation lens (Thorlabs, TL20X-MPL), and 1.0 NA 

detection lens (Zeiss, Objective W “Plan-Apochromat” x20/1.0, model # 421452-9800), and 

a matching 1.0 NA objective lens located below the sample to allow for high-resolution 

epifluorescent inverted imaging. Fig. S20 shows the microscopy optical path. The optical 

path for lattice light sheet mode is similar to Chen et al, where the light goes through a 

beam shaping module to illuminate a stripe on a spatial light modulator (SLM). We applied 

a 0.4/0.3 multi-Bessel lattice on the SLM, and applied the corresponding annular pattern on 

a mask rotator located in a rear pupil conjugate plane to block the DC component. The light 

is sent into the excitation objective via the x galvo, and together with the z galvo, it allows 

scanning of the lattice pattern at the back pupil of the excitation objective (EO). The emitted 

fluorescence collected by the detection objective (DO) is sent to the camera (Orca Flash 

4.0, Hamamatsu) through a tube lens. For the epi-illumination, a flip mirror (FM1) diverts 

the light to at beam expanding module to illuminate the entire SLM that displays an empty 

“flat” pattern of uniform grey values. In this mode, the annular mask is rotated to a circular 

pattern to transmit the DC component of the reflected beam from SLM. The x galvo position 

is set such that the light path diverts to the inverted objective (IO) through a dichroic rather 

than EO, and a flipping mirror (FM2) is closed to direct light from IO through a tube lens 

and onto the same camera that was used for light sheet imaging.

smartLLSM operation

Microscope control is accomplished with a custom developed and freely available 

LABVIEW software6. All samples are mounted to a 25 mm circular coverslip. For inverted 

imaging, we set the ROI of the camera to 800 by 800 pixels and scanned a tiled array of 10 

by 10 positions (in total 800 μm by 800 μm). Inverted imaging was done with an exposure 

time of 50 ms resulting in approximately 6 s to cover the 800 μm by 800 μm region when 

including stage settling time. To scan the entire cover glass, we set a list of positions in 

a 19 by 6 grid covering an area of 16 mm by 6 mm (Fig. 2A). To compensate for any 

cover glass warping over this large area, we manually tuned the z-focal position in a 3 by 

3 grid covering the same area and then fit these positions to a two dimensional second 

order polynomial to program the z-focal position of each point in the 19 by 6 grid. This 3D 

position list is then used to perform “Sample Finding” scanning to generate the input data 

for the deep learning network.

The detection of mitotic cells or immune synapses is done by a Python script that runs 

in parallel to the LABVIEW instrument control software. Images acquired by LABVIEW 

are passed to the Python script to be processed by the trained YOLOv5 network. After 

processing, the Python script outputs a list of coordinates of mitotic cells together with 

the classification probability from YOLOv5 (Fig. S21). We applied a threshold of 0.2 (for 

mitotic cells) and 0.8 (for CTLs) on the classification likelihood to filter out false positive 

detections. The threshold was determined based on manual evaluation of the network 

performance and the same threshold was applied to both live cell and fixed cell imaging. 

For cells in anaphase or telophase, the YOLOv5 network tends to independently localize 
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each of the separated daughter cells. To account for this, we averaged any localizations from 

these classes that occurred within 10 μm of each other to accurately identify the center of the 

dividing cell (Fig. S21 d–g). Once a targeted position is generated from the Python script, 

its coordinates are passed to the Labview software to move the stage to the target position 

and switch the microscope to LLSM mode. We performed LLSM scanning by moving 

the sample stage laterally, in the plane of the coverslip, with an “x” step-size of 400 nm 

(this results in 215 nm translation along the detection optical axis due to an angle of 32.5 

degrees between detection focal plan and sample cover glass) over a range of 60 μm. For 

live-cell imaging, we used a 10 ms exposure time leading to a sampling rate of 2.8 s per 

volume for the first 100 frames, which typically covers prophase and early prometaphase, 

and a 20 ms exposure time leading to a sampling rate of 5.8 s per volume for the rest 

450 frames, which covers the rest of the mitotic process (in total approximately 50 minutes 

per cell). This maximizes the sampling rates during prophase to capture the fast-moving 

kinetochores while minimizing photobleaching and phototoxicity. For fixed cell imaging 

where rapid acquisition was less critical, we increased the exposure time to 50 ms and 

utilized sequential exposures for each wavelength to minimize spectral bleedthrough. This 

resulted in a volumetric sampling time of 22 s per cell. Detailed experimental parameters for 

all datasets are provided in Table S2.

RPE cell line generation, cell culture, and sample preparation:

All cells used in this study were maintained in hTERT RPE-1 growth media consisting 

of DMEM/F12 (Thermo Fisher Scientific, 11320033) media supplemented with 10% FBS 

(Omega Scientific FB-11), 100 U/mL Penicillin-Streptomycin (Thermo Fisher Scientific, 

15140122), and 0.01 mg/mL hygromycin B (Thermo Fisher Scientific, 10687010) unless 

otherwise noted. The cells were cultured in 25 cm2 or 75 cm2 dishes without a fibronectin 

coating. hTERT RPE-1-mScarlet-H2b+mNeon-CENPA cells were generated from parental 

lines (RRID: CVCL_4388, ATCC) using piggyBac transposon-based methods43. The cDNA 

for mScarlet-H2b and mNeon-CENPA genes was synthesized by GeneScript, then ligated 

into piggyBac plasmids that conferred resistance to either Blasticidin or Gentymycin44,45. 

0.3 x 106 hTERT RPE-1 cells were electroporated with 1,200 ng of mScarlet-H2b, 

1,200 ng of mNeon-CENPA, and 600 ng of piggyBac Transposase (Systems Biosciences, 

PB210PA-1), using the Neon Transfection system. Immediately following electroporation, 

cells were plated in 35mm dishes with antibiotic-free hTERT RPE-1 growth media. The 

media was replaced with fresh antibiotic- free media 6 hours after plating and again the 

following day. After 48 hours to allow the cells to recover from electroporation, cells 

were maintained in selection media containing 800 μg/mL of G418 Sulfate (Thermo Fisher 

Scientific, 10131027) and 6 μg/mL of Blasticidin (Goldbio, B-800-25) for two weeks. 

The hTERT RPE-1-mScarlet-H2b+mNeon-CENPA cells were then expanded in hTERT 

RPE-1 growth media and harvested for cryopreservation in a mixture of 40% DMEM/F12, 

60% FBS, and 10% DMSO (Millipore-Sigma, D2650-100ML). hTERT RPE-1-mScarlet-

H2b+mNeon-CENPA cells were used for experiments for up to 20 passages after thawing.

For transient transfections (Fig. S16), wild-type RPE cells were seeded at a density of 3 x 

105 cells per well in 12-well plastic dishes 24 hours prior to transfection and incubated at 

37°C in a humidified 5% CO2 atmosphere. On the day of transfection, three distinct DNA 
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plasmid solutions were prepared in Opti-MEM (Thermo Fisher Scientific, 31985070): one 

with 100 ng of GFP-Sec61b (Addgene Plasmid #121159), another with 100 ng of Halo 

Tag-Tomm20 (Addgene Plasmid #123284), and a third mixture containing 100 ng each of 

GFP-Sec61b and HaloTag-Tomm20. Transfections were performed using the Lipofectamine 

3000 system (Thermo Fisher Scientific, L3000001) in accordance with the manufacturer’s 

protocol. Sixteen hours post-transfection, the cell media was replaced with pre-warmed 

growth medium and the cells were allowed to recover for an additional eight hours. Cells 

were then harvested, combined, and plated on fibronectin-coated #2 coverslips as previously 

described.

For imaging, 25 mm #2 coverslips (Warner Instruments, 640722) were sonicated in 1M 

KOH (Millipore-Sigma 484016-1KG) for 30 minutes, washed with diH2O then sonicated in 

diH2O for 30 minutes. Immediately after sonication in diH2O, cover slips were dried with 

compressed nitrogen then stored a plastic dish lined with lens paper for a maximum of three 

weeks. One day prior to imaging experiments, cleaned coverslips were incubated with 10 

μg/mL of fibronectin (Stemcell Technologies, 07159) ) at 37°C for 30 minutes. Immediately 

thereafter, hTERT RPE-1-mScarlet-H2b+mNeon-CENPA cells were plated on fibronectin 

coated coverslips at a density of 3.4 x 104 cells/cm2.

CTL generation and culture:

To generate CTLs from OT-I mice (Jackson Labs), splenocytes were isolated and stimulated 

with 10nM OVA257-264 peptide (AnaSpec, Fremont, CA, USA) in T cell media (Iscove’s 

Modified Dulbecco’s medium (IMDM, Gibco) plus 10% fetal bovine serum (FBS, Cytivia 

Life Sciences), 2mM L-glutamine (Gibco), 1mM sodium pyruvate (Gibco), 1X MEM 

non-essential amino acids (Gibco), 50U/mL penicillin/streptomycin (Gibco), and 50μM 

β-mercaptoethanol (ThermoFisher)). After 48 hours of stimulation, cells were washed 

and resuspended in T cell media plus 10 IU/mL recombinant human IL-2 (rhIL-2, R&D 

systems) and seeded in fresh media at 0.5x106 cells/mL every 48 hours. Animals were 

maintained in accordance with the Guide for the Care and Use of Laboratory Animals. Altos 

Labs is an AAALAC-accredited facility and all animal activities in the research studies were 

conducted under protocols approved by the Altos Labs Institutional Animal Care and Use 

Committee (IACUC).

Target Cell Line:

The MC57G murine cancer cell line was maintained in DMEM (Gibco) with 10% FBS and 

50U/mL penicillin/streptomycin. The piggybac transposase system (Hera Biolabs) was used 

to generate the MC57G-EGFP cell line. The sequence coding for EGFP was synthesized 

de novo and cloned into a piggybac expression vector preceded by an EF1α promoter. 

Synthesis and cloning performed by Genscript USA, Inc. The MC57G cell line was 

transfected with piggybac-EF1α_EGFP using Lipofectamine 3000 (Invitrogen) according 

to the manufacturer’s protocol. One week following transfection, EGFP+ cells were sorted 

by FACS. The MC57G-EGFP cell line was a bulk sorted, polyclonal cell line.
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T cell/Cancer cell Sample Preparation:

To investigate the dependence of TCR:peptide-MHC affinity on lytic granule polarization, 

in-vitro activated CTLs from OT-I mice were combined with adherent MC57G-EGFP 

cells that present MHC-bound peptides with varying affinity for the OT-I TCR. MC57G-

EGFP cells suspended in cRPMI were incubated with the peptides SIINFEKL(high 

affinity), SIITFEKL(medium affinity), or SIIGFEKL(low affinity) peptides (Anaspec) at 

1μM concentration complete DMEM at 37°C for 30 minutes, washed three times, and 

resuspended in phenol red-free DMEM with 2% FBS (imaging media). 5x105 cells were 

added to wells of a 6-well plate. Each well contained a single 25mm round #1.5 coverglass 

(Thomas Scientific) coated with human Fibronectin (Corning). The MC57G-EGFP cells 

were allowed to settle and adhere for 2 hours in an incubator at 37°C/5% CO2. After this 

time, 5x105 OT-I CTLs in 0.5mL imaging media were added to each well and the plate 

was returned to the incubator. The CTLs were allowed 15 minutes to find and engage their 

targets before fixation.

Taxol Treatment:

Two days prior to imaging experiments, hTERT-RPE-1-mScarlet-H2b+mNeon-CENPA 

cells were plated on fibronectin coated coverslips at a density of 1.7 x 104 cells/ cm2. 

One day prior to imaging experiments, media was replaced with hTERT RPE-1 growth 

media supplemented with 5 nM Taxol (Millipore-Sigma, PHL89806-10MG). Cells were 

maintained in Taxol supplemented media for 20 hours. For live-cell experiments, cells 

were imaged in FluoroBrite (Thermo Fisher Scientific), A1896701) supplemented with 10% 

FBS, 100 U/mL Penicillin-Streptomycin and 5 nM Taxol. For fixed cell experiments, cells 

were washed once with 37°C PBS and immediately fixed in a 4% paraformaldehyde-PBS 

(Thermo Fisher Scientific, 50-980-487) solution for 12 minutes at room temperature. Cells 

were washed once with PBS for 10 seconds followed by 3 washes with PBS for 5 minutes. 

Following the final wash step, cells were stored for a maximum of 72 hours at 4° C prior to 

imaging.

Immunofluorescence:

hTERT RPE-1-mScarlet-H2b+mNeon-CENPA cells were plated on fibronectin-coated 

dishes at the specified cell densities and times above prior to immunostaining. The cells 

were washed once with 37°C PBS and immediately fixed in a 4% paraformaldehyde-PBS 

solution for 12 minutes at room temperature. The cells were then washed with PBS and 

permeabilized with a 0.5% Triton-PBS (VWR, 0694-1L) solution for 20 minutes. The cells 

were washed with PBS and blocked in a normal goat serum-PBS (NGS-PBS) (Thermo 

Fisher Scientific, ICN642921) solution for 1 hour. The cells were then incubated in a 1:250 

Anti-β-Tubulin mouse monoclonal antibody (Millipore-Sigma, T5293-.2ML)-NGS-PBS 

solution for 2 hours. The cells were washed with PBS and incubated with a 1:500 solution of 

Alexa Fluor 647 (Thermo Fisher Scientific, A-21245) conjugated goat anti-mouse secondary 

antibody NGS-PBS solution for 2 hours. Cells were washed with PBS and stored for a 

maximum of 48 hours at 4° C prior to imaging. To minimize the loss of less-adherent 

mitotic cells, all incubation steps were performed without rocking and all aspiration steps 

were performed using a pipette instead of a vacuum. The protocol for all PBS wash steps, 
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except for the initial washing prior to fixation, consisted of 1 wash with PBS for 10 

seconds followed by 3 washes with PBS for 5 minutes. All steps were performed at room 

temperature unless otherwise noted.

CTL and target cell substrates were fixed with PBS containing 4% PFA (Thomas Scientific) 

for 10 minutes. Cells were permeabilized for 10 minutes with Cytofix/Cytoperm solution 

(BD Biosciences) and subsequently stained with antibodies against mouse Granzyme B 

(APC, Biolegend) and mouse CD8E (PE, Biolegend). Antibody incubation and subsequent 

washes were performed in Perm/Wash Buffer (BD Biosciences).

Cell synchronization

Four days prior to imaging, hTERT-RPE-1-mScarlet-H2b + mNeon-CENPA cells were 

plated on fibronectin coated coverslips at a density of 6000 cells/ cm2 for thymidine (Sigma, 

T9250) blocked samples and 3000 cells/cm2 for control samples. On day 2 after plating, 

media for the thymidine blocked samples was replaced with 8 nM thymidine supplemented 

media. Control cells received fresh media. Cells were allowed to incubate for 18 hours. After 

18 hours, all samples were washed 3 times with warm media and received fresh media. 

Cells were allowed to incubate for 8 hours. Media for the thymidine blocked samples was 

then replaced with 8 nM thymidine supplemented media and control cells received fresh 

media. Cells were again allowed to incubate for 18 hours. After 18 hours, all samples were 

washed 3 times with warm media and received fresh growth media. Cells were then allowed 

to incubate for 5 hours before being moved to the microscope for imaging.

Imaging processing, kinetochore tracking and trajectory quantification

Because of the angle between the detection focal plane and the sample plane, raw lattice 

light sheet images are first deskewed6. The deskewed images are then deconvolved with the 

corresponding experimentally measured point spread function using Richard-Lucy method 

for 10 iterations46.

i) Kinetochore localization and tracking: For kinetochore localization, we applied 

a difference of Gaussian filter to the 3D deconvolved images of the kinetochore channel 

and then fit the local maxima of each spot with a 3D Gaussian function using a maximum 

likelihood estimator (MLE). To track kinetochores across time points, we utilized a modified 

Matlab code based on uTrack47 with a maximum search radius of 10 pixels (~ 1 μm). To 

remove spurious localizations, we discarded any tracks with a length less than 10 frames. 

To identify the cell stage from the live-cell time lapse movies of kinetochore trajectories, 

we manually determined the first frame corresponding to the onset of mitotic stage based 

on kinetochore motion and organization. We defined the “contracting stage” as the starting 

point where kinetochores move rapidly inward after prophase, prometaphase as the endpoint 

of this contracting process, metaphase as the time point where all kinetochores aligned to the 

metaphase plate and anaphase as the time where kinetochores start to move outward toward 

the two daughter cells (Movie S3).

ii) Quantification of kinetochore spatial distribution and metaphase plate 
orientation: To compensate for varying cellular orientation and to quantify changes in the 
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kinetochore arrangement under different conditions, we first applied principal component 

analysis of the localizations of kinetochores in each image using the PCA function in 

Matlab (The Mathworks). This function extracts the eigenvalues, the eigenvectors, and the 

projected coordinates of the localizations to the eigenvectors of the data. The orientation of 

the metaphase plate (θ, Fig. 3D, E) is defined as the angle between the normal vector of the 

sample plane (in our case the z direction) and the eigenvector associated with the smallest 

eigenvalue. These values provide a normalized metaphase plate reference frame (defined 

as the projected coordinates along the first and second eigenvectors) that can be used to 

register other channels within the same dataset. The normalized variation of kinetochore 

coordinates along the first and second eigenvectors respectively can be used to define an 

affine transform, x′i = r ⋅ e i
Ei

, where r  is the kinetochore location in the camera coordinate, 

and e i is the ith eigenvector and is the ith eigenvalue. This transform operates on either 

the 3D point cloud of kinetochore locations or on the pixel coordinates within the images 

themselves. This affine transform can then be used to rotate and stretch the images of 

chromosomes, microtubules, and kinetochores to register them into the same coordinate 

frame and account to variations in cellular orientation and size. We generated heatmap 

images of the distributions for kinetochores, chromosomes, and microtubules based on the 

histogram of positions (kinetochores) or immunofluorescence intensity (chromosomes and 

microtubules) aggregated across all cells in each condition (Fig. S6A).

We quantified the anisotropy of the kinetochore distribution (Fig. S6C) as A = l1 + l2
2l3

, where 

l1, l2, and l3 are the largest to smallest ordered eigenvalues respectively. To quantify the 

orientation of the metaphase plate in live-cell movies, we plotted the metaphase plate 

orientation (defined above) and as a function of time after the start of prometaphase (Fig. 

4C). We then fit the metaphase plate orientation vs. time curve from each cell to a sigmoid 

function, which follows the form of θ = θ0 + H ∗ 1

1 + e−(x − x0
D )

 (Fig S12). From these fits, 

we extracted the total reorientation angle H and the time at which the reorientation finishes 

(defined as x0 + D).

iii) Calculation of kinetochore speed: To compensate for the uneven sampling rate 

during prophase and the rest of the mitotic process (2.8 s per volume for the first 100 frames 

and 5.8 s per volume for the last 450 frames), we first interpolated the kinetochore tracks 

over the first 100 frames using a sampling rate of 5.8 s per volume. To compensate for 

global cell motion or microscope drift, we subtracted the average translational motion of 

all kinetochores between frames. We then calculated kinetochore speed as the distance a 

kinetochore traveled between two neighboring interpolated frames.

To segment the speed distribution at different mitotic stages, we manually annotated the 

onset of contracting, prometaphase, metaphase and anaphase in each mitotic cell time-lapse 

as described above. For the non-splitting cells treated with 1 nM or 5 nM Taxol, there 

is no anaphase onset time point. To generate probability distributions of the kinetochore 

speed, we aggregated the computed speed at each time point in a given mitotic stage of all 

kinetochores across all cells. To generate the box plot of medians of the velocity distribution, 
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we calculated the median velocity of all kinetochores within each cell across all time points 

for a given mitotic stage.

iv) Outlier kinetochore detection: Because there can occasionally be extra cells 

present within a live-cell movie in addition to the mitotic cell of interest, we first identified 

the kinetochores corresponding only to the mitotic cell of interest by applying the DBSCAN 

function in Matlab with a search radius of 50 pixels (5.4 μm) and a minimum cluster size of 

50 points. Localizations within the largest cluster correspond to the dividing cell of interest 

and are utilized for further analysis. To account for spurious localizations that may results 

from camera noise or other sources, we additionally filtered localizations to only include 

tracks with a minimum length of 10 frames. We then project the remaining kinetochore 

localizations along the eigenvectors based on PCA analysis described above, and applied 

“rmoutliers” function in Matlab to detect abnormal kinetochores. We used “gesd” method 

(generalized extreme studentized deviate test) with a detection threshold of 0.05. For time 

points after the anaphase onset, we detect the two daughter cells usingthe DBSCAN function 

in matlab with a search radius of 40 pixels (4.3 μm) and a minimum cluster size of 40 points 

and then detect outliers for each cluster using the same “rmoutliers” function as described 

above. The probability for observing an outlier kinetochore at a given stage is calculated 

as ∑Di
NKT ∗ Dstage

, where Di indicates the duration of an outlier over which kinetochore i was 

considered an outlier, NKT is the total number of kinetochores in a cell and Dstage is the 

duration of a specific mitotic stage.

v) Analysis of longitudinal kinetochore tracks: To analyze the relationship 

between kinetochore location during prophase and kinetochore dynamics and location in 

the metaphase plate, we only included kinetochores with trajectories that span all time points 

from prophase to the onset of metaphase. We calculated the Mahalanobis distance of each 

kinetochore to the group centroid and normalized it to a value between 0 and 1 (0 for the 

kinetochore at the center and 1 for the kinetochore at the edge). To calculate the time point 

where the kinetochore reaches the metaphase plate, we generate the convex hull that covers 

the kinetochore distribution during metaphase, and detected the first time point when the 

kinetochore is included in the convex hull. We then calculated the traveled contour length of 

the kinetochore trajectory and the median instantaneous speed throughout each kinetochore 

track.

vi) CTL granule polarization: To quantify the granule polarization in CTLs, we first 

applied the “imbinarize” function in matlab to generate the masks for CTL and target 

cells. We then followed the same method as kinetochore localization to localize CTL 

granules within the mask of CTLs. Next, we calculated the distance of each granule to 

the CTL centroid, projected it along the vector connecting the centroid of the CTL and 

the centroid of the target cells that are defined by the mask, and then normalized by the 

radius of the CTL (See Fig. 3F). The mathematical form of this normalized distance is 

Rnorm =
r granule − r CTL ⋅ r target − r CTL

RCTL ∗ r target − r CTL
, where r granule is the localization of CTL granules, r CTL

is the localization of CTL centroid, r target is the localization of target centroid, and RCTL the 
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radius of CTL cells. |…| indicates norm of the vector. Rnorm typically falls between −1 to 

+1with positive Rnorm meaning the granule is close to the target-CTL interface (front of the 

CTL), and negative Rnorm meaning the granules is at the back of CTL. Next, we assemble 

Rnorm for all granules in the CTL, compute its histogram, and categorize the synapse type 

based on the location of the highest peak in the histogram (Fig 3F and Fig. S7). If the 

location of the peak is larger than 0.3, we called it “front”, as the granules concentrated at 

the front of CTL; if the location of the peak is less than −0.3, we called it “back”; if the 

location of the peak falls between −0.3 to 0.3, we called it “middle”.

Statistics and reproducibility

No statistical method was used to predetermine the sample size. Data sets for fixed 

cells were repeated for three independent biological replicates each with two cover glass 

samples for each condition. Data for mitotic wave detection was repeated for two biological 

replicates with one coverslip for each replicate and condition. Datasets for live cell movies 

comparing control and Taxol conditions were repeated for three independent biological 

replicates for each condition.

For fixed samples, we used a T-test to compare the proportion of cells in each mitotic 

stage between control and Taxol treated conditions and a chi-square test of independence 

to determine whether there is a change in the overall distribution of mitotic stages between 

control and Taxol conditions (Fig. 3A). We used a Kolmogorov-Smirnov test to determine 

if there are differences in the distribution of the metaphase plate orientation and kinetochore 

anisotropy between control and Taxol conditions (Fig. 3E, Fig S6C. We used a T-test to 

compare if there is a difference between the ratio of CTL contacting with target cells 

between different target cell antigen strength (Fig 3B). We used a Kolmogorov-Smirnov 

test to test if there is a difference in CTL granule polarization between different target cell 

antigen strength (Fig. 3F).

For live-cell movies, we used a T-test to compare if there is a significant difference in 

the median kinetochore speed between control and various Taxol-treated conditions and to 

compare if there is a significant difference in the parameters extracted from sigmoid fits 

of the metaphase orientation curves (Fig. 4C, Fig. S12). We used a Kolmogorov-Smirnov 

test to determine if there is a significant difference between the probability, duration, and 

normalized probability of abnormal kinetochores in different mitotic stages (Fig. 5B–D). We 

used linear regression to test if there is a linear relationship between a kinetochore’s position 

in prophase and the traveled distance, the duration, and the speed of the kinetochore between 

prophase and metaphase (Fig. S15).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: smartLLSM training and performance.
(A) Sample classes for cells in different mitotic stages. (B) Sample classes for different 

CTLs. (C, D) Sample output from trained YOLO network to detect mitotic cells and CTLs 

forming synapses. (E, F) Confusion matrix for test images across all detected classes. 

“Background FN” stands for background false negative, meaning ground-truth labeled cells 

are misidentified as background. (G), (H) Precision vs. recall curves for each detected class. 

The numbers in the legend indicate the area under each curve.
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Figure 2: smartLLSM workflow.
(A) Flowchart for smartLLSM imaging. (i) A total imaging area of 16 mm by 6 mm is 

segmented into a grids of 800 μm by 800 μm squares. (ii) At each location, 100 images of 80 

μm by 80 μm fields of view are imaged via inverted epifluorescence microscopy. (iii) These 

images are sent to the YOLOv5 network to extract the location and associated class for each 

cell. (B) Flow chart for imaging fixed samples. After scanning is complete, the microscope 

switches to LLSM imaging to acquire a gallery of 3D image scans for each cell stage of 

interest. (C) Mitotic cell images show chromosomes (cyan), kinetochores (magenta), and 
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microtubules (yellow). CTL Images show MC57 target cells (green), CTLs (orange), and 

granules (cyan). Scale bars - 10 μm.
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Figure 3: High throughput imaging of Taxol induced mitotic defects and the effect of antigen 
strength on immune synapses.
(A) Proportion of cells in different mitotic stages for control (purple) and 5 nM Taxol 

treated (yellow) RPE cells. The number above each bar indicates the total number of 

cells in the corresponding stage. The data is integrated over three independent samples for 

each condition, the bar plot and the error bars indicate the mean and the standard error 

of the mean respectively. *:p<0.05 (B) Average proportion of target cells and CTLs with 

different levels of proximity to target cells (non-contacting, contacting, and synapse). Color 
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code indicates target cells with different antigen strength (blue: high (N), red: medium 

(T), yellow: low (G)). Inset: normalized proportion of T cells that are in contact with 

target cell under high affinity (N), medium affinity (T) and low affinity (G) condition 

calculated as # of CTL − synapse + # of CTL − contacting
# of total CTL * # of target cell . Horizontal bars in the inset show 

the results of Student’s T-test between different target cells antigen strength. Data is 

integrated over four independent samples for each condition, and the error bar shows the 

standard error of the mean. (C) Representative maximum intensity projections (MIPs) of 

prometaphase and metaphase cells under control and 5 nM Taxol treated conditions showing 

chromosomes (cyan), kinetochores (magenta), and microtubules (yellow). (D) Diagram for 

the characterization of kinetochore distributions. Top: anisotropy is defined by the ratio 

between the variation of the axis with the largest and the smallest variation and is used 

to determine the metaphase plate orientation (see Methods for details). Bottom: Diagram 

depicting the metaphase plate orientation relative to z-axis of the microscope objective (see 

Methods for details). (E) Violin plot of metaphase plate angle (θ) for control and 5 nM 

Taxol treated cells in prometaphase (green) and metaphase (magenta). The colored areas 

indicate the distribution. Horizontal bars indicate the significance based on the Kolmogorov-

Smirnov test (K-S test) between Taxol and control in prometaphase (n = 117 for control 

and n = 64 for Taxol) and metaphase (n = 360 for control and n = 197 for Taxol). (F) 
Representative MIPs and cartoon of CTL synapses with lytic granules concentrated at front, 

middle and back of CTLs (See Method for details). (G) Histogram of the three types 

of synapses under different affinity conditions. Blue: high affinity; Red: medium affinity; 

Yellow: low affinity (n = 317 for high affinity, n = 497 for medium affinity, and n = 334 for 

low affinity). Data is integrated over four independent samples for each condition. Vertical 

bars near the legend indicate the significance based on the Kolmogorov–Smirnov test (K-S 

test) between different target cell antigen strength. **: p< 0.01
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Figure 4: High throughput imaging of kinetochore dynamics during mitosis.
(A) Flow chart for imaging live-sample dynamics. Once a cell in prophase is found, the 

microscope switches to LLSM imaging to capture a 4D movie of the mitotic process. (B) 
Images show representative time points from a live-cell movie of kinetochores (magenta) 

and chromosomes (cyan). (C) Metaphase plate orientation (θ) plotted over time for each 

cell. The solid line indicates the average angle at a given time after the start of prometaphase 

(t = 0 s, see Methods for details) and the shades indicate the standard error across cells. (D) 
Box and whisker plots for the median kinetochore speed of a given cell at a given stage. The 

box indicates the 25th to 75th percentiles and the horizontal marker indicates the population 

median. The whiskers extend to the most extreme data that are not considered outliers. All 

perturbed conditions are compared to the control condition via t-test. n.s.: not significant, 

****:p<1E-4. For (C) and (D): control (n = 35), 1 nM Taxol 1 nM split (n = 7), Taxol 1 nM 

non-split (n=16), and Taxol 5 nM (n = 27)
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Figure 5: Longitudinal tracking of kinetochore motion during mitosis.
(A) Sample snapshots of the kinetochore trajectories during mitosis. T = 0 s is the start 

of the movie in prophase. Red circles indicate kinetochores that are identified as outliers. 

Green circles indicate the locations of outlier kinetochores prior to and after being identified 

as outliers. (B) Plot of the percentage of kinetochores that are considered an outlier in 

different mitotic stages measured across n = 33 control cell movies. Crosses and error bars 

indicate the median and the standard error measured across individual cell movies. (C) Plot 

of the durations of outlier events (blue, left axis) and the durations of different mitotic 

stages (orange, right axis). The crosses and error bars indicate the mean and the standard 

error of outlier kinetochores detected in different stages: prophase n = 0, prometaphase n 

= 30, metaphase n = 10, anaphase n = 28. Here n is the number of outlier kinetochores 

across all 33 control cell movies. (D) Plot of the instantaneous probabilities for finding an 

outlier kinetochore at a given time point in different mitotic stages (see Methods for details). 

The matrices below B-D show the p-value of the pairwise K-S significant test between 

prometaphase, metaphase, and anaphase.
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