
Simulation of nanopore sequencing signal data
with tunable parameters

Hasindu Gamaarachchi,1,2,3 James M. Ferguson,2,3 Hiruna Samarakoon,1,2,3

Kisaru Liyanage,1,2,3 and Ira W. Deveson2,3,4
1School of Computer Science and Engineering, University of New SouthWales, Sydney, New SouthWales 2052, Australia; 2Genomics
and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; 3Centre for
Population Genomics, Garvan Institute of Medical Research and Murdoch Children’s Research Institute, New South Wales 2010,
Australia Australia; 4St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney,
New South Wales 2052, Australia

In silico simulation of high-throughput sequencing data is a technique used widely in the genomics field. However, there is

currently a lack of effective tools for creating simulated data from nanopore sequencing devices, which measure DNA or

RNA molecules in the form of time-series current signal data. Here, we introduce Squigulator, a fast and simple tool for

simulation of realistic nanopore signal data. Squigulator takes a reference genome, a transcriptome, or read sequences,

and generates corresponding raw nanopore signal data. This is compatible with basecalling software from Oxford

Nanopore Technologies (ONT) and other third-party tools, thereby providing a useful substrate for development, testing,

debugging, validation, and optimization at every stage of a nanopore analysis workflow. The user may generate data with

preset parameters emulating specific ONT protocols or noise-free “ideal” data, or they may deterministically modify a

range of experimental variables and/or noise parameters to shape the data to their needs. We present a brief example of

Squigulator’s use, creating simulated data to model the degree to which different parameters impact the accuracy of

ONT basecalling and downstream variant detection. This analysis reveals new insights into the nature of ONT data and

basecalling algorithms. We provide Squigulator as an open-source tool for the nanopore community.

[Supplemental material is available for this article.]

Nanopore sequencing is an increasingly important genomic tech-
nology. Devices from Oxford Nanopore Technologies (ONT) have
the ability to analyze both short and long native DNA and RNA
molecules, with countless potential applications across the life sci-
ences. An ONT device measures the displacement of ionic current
as a DNA or RNA molecule passes through a nanoscale protein
pore. The device records time-series current signal data (commonly
referred to as “squiggle” data), which can be “basecalled” into se-
quence reads or analyzed directly in a variety of contexts (Wang
et al. 2021).

Data simulation is an essential tool for data scientists and soft-
ware developers in many scientific domains, including genomics
(Escalona et al. 2016). The availability of reference data generated
in silicowith controlled parameters enables the user to test, debug,
optimize, and validate new analysis methods in absence of con-
founding experimental and biological variables. Simulated data
can also be used to develop and test new hypotheses or models,
to inform experimental design, or to be a ground truth during
benchmarking studies, among other applications (Escalona et al.
2016). There are a range of existing tools for high-throughput se-
quencing data simulation, including ART (Huang et al. 2012),
GemSIM (McElroy et al. 2012), pIRS (Hu et al. 2012), and
FASTQSim (Shcherbina 2014). These have helped catalyze impor-
tant developments across genomics, transcriptomics, metagenom-

ics, etc. (Escalona et al. 2016). A variety of tools now also support
long-read sequencing data simulation, including Badread (Wick
2019), NanoSim (Yang et al. 2017), Trans-NanoSim (Hafezqorani
et al. 2020), TKSM (Karaoğlanoğlu et al. 2024), and PBsim (Ono
et al. 2021). However, these tools generate sequence reads only
and cannot be used to create realistic nanopore sequencing data
with accompanying raw signal. To our knowledge, the only exist-
ing tool for rawnanopore data simulation isDeepSimulator, which
uses a neural network architecture to generate realistic signal data
(Li et al. 2020).

Here, we introduce Squigulator (squiggle simulator), a fast
and simple tool for in silico generation of nanopore current signal
data that emulates the properties of real data from a nanopore de-
vice. The simulated data are compatible withONT basecalling soft-
ware and open-source tools for signal data analysis, providing a
useful substrate for developers and data scientists in the growing
nanopore community. Squigulator uses existing ONT pore mod-
els, which model the expected current level as a given DNA/RNA
subsequence occupies a nanopore, and applies empirically deter-
mined noise functions to generate realistic signal data from a refer-
ence sequence/s (Fig. 1A). To determine the properties of their
simulated data set, users can flexibly adjust the noise parameters;
technical variables like DNA translocation speed (Fig. 1B), data ac-
quisition rate (Fig. 1C), and digitization (Fig. 1D); and pseudoex-
perimental variables like coverage depth and read-length
distribution. They may opt to create “ideal” signal data lacking

Corresponding authors: hasindu@garvan.org.au,
i.deveson@garvan.org.au
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.278730.123.
Freely available online through the Genome Research Open Access option.

© 2024 Gamaarachchi et al. This article, published in Genome Research, is
available under a Creative Commons License (Attribution-NonCommercial
4.0 International), as described at http://creativecommons.org/licenses/by-
nc/4.0/.

Method

778 Genome Research 34:778–783 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/24; www.genome.org
www.genome.org

mailto:hasindu@garvan.org.au
mailto:i.deveson@garvan.org.au
https://www.genome.org/cgi/doi/10.1101/gr.278730.123
https://www.genome.org/cgi/doi/10.1101/gr.278730.123
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


any noise or to select from preset configurations that recapitulate
the parameters of specific ONT sequencing protocols. This capac-
ity for deterministic parameter control is an important advantage
of Squigulator, enabling parameter exploration during algorithm
development.

Results

Squigulator compatibility with nanopore analysis software

Squigulator is designed to produce simulated nanopore signal data
that are compatible with any relevant software and can be used to
recapitulate a complete nanopore analysis workflow. To test this
capability, we created a data set that resembles a typical sequenc-
ing experiment run on the popular human reference individual
NA12878 (see Supplemental Methods). Briefly, we used BCFtools
consensus (Danecek et al. 2021) to incorporate high-confidence
NA12878 variants (single-nucleotide variants [SNVs] and indels)
annotated by the Genome in a Bottle Consortium (Zook et al.
2014) into the human reference genome sequence (GRCh38;
FASTA format). This was performed in a haplotype-aware fashion,
creating a diploid NA12878 reference in which heterozygous and
homozygous variants are represented at an appropriate copy num-
ber. We then used Squigulator to generate simulated nanopore
signal data from this custom reference, with default parameters.

The read length, standard deviation, and
read count were roughly matched to a
real sequencing experiment performed
on NA12878 genomic DNA (∼30× cover-
age) (see Supplemental Methods), which
is used for comparison below.

We analyzed both the simulated
and experimental NA12878 data sets via
a typical analysis workflow. Signal data
were basecalled with ONT’s Guppy soft-
ware (using the buttery-eel wrapper for
SLOW5 data access) (Samarakoon et al.
2023a). Basecalled reads were then
aligned to the reference genome using
minimap2 (Li 2018), and SNVs were de-
tected using each of two approaches: (1)
with Nanopolish (Loman et al. 2015),
which uses both the basecalled and raw-
signal data to identify variants, and (2)
with Clair3 (Zheng et al. 2022), which
calls variants from the basecalled data
alone. SNV detection performance was
then evaluated with RTGtools vcfeval
(see Supplemental Methods).

We observed broadly similar proper-
ties between the simulated and experi-
mental NA12878 data sets at each
workflow stage. The distributionof signal
values was similar between the two raw
data sets (Fig. 2A). After basecalling,
they showed a similar read length,
nucleotide composition, and quality
score distributions (Fig. 2B,C).Minimap2
alignment statistics were similar (Supple-
mental Table S1), as were the patterns of
mismatch and indel errors in reads
aligned to GRCh38 (Fig. 2D,E). The

most significant discrepancy between the simulated and experi-
mentalNA12878 data sets was a tail of basecalled readswith elevat-
ed mismatch errors in the experimental data, which was not
recapitulated by Squigulator (Fig. 2F). However, modal error rates
were similar between the two data sets (Fig. 2F), and variant detec-
tion tools were able to detect knownNA12878 SNVswith accuracy
>98% (F-score), with Clair3 showing superior performance to that
of Nanopolish on both the simulated and experimental data sets
(Supplemental Table S2). These results show thecapacityof Squigu-
lator to create simulated data that roughly emulate real experimen-
tal data and are compatible with relevant analysis software.

Comparison of Squigulator to DeepSimulator

There is currently only a single alternative tool for nanopore data
simulation: DeepSimulator (Li et al. 2020). DeepSimulator gener-
ates simulated signal data via either of two approaches: (1) using
a context-dependent Bi-LSTM trained model or (2) using a con-
text-independent model that uses a k-mer model provided by
ONT (see Supplemental Methods). Both approaches are designed
to generate realistic nanopore signal data, although the context-in-
dependent model is considerably faster.

To compare the performance of Squigulator and DeepSimula-
tor, we repeated the experiment above but this time generating
simulated NA12878 data sets using DeepSimulator (see

A C

B D

Figure 1. Simulated nanopore signal data with tunable parameters. Examples show experimental and
simulated data from a single DNA sequence, showcasing some of the different simulation parameters
available in Squigulator. (A) Experimental nanopore raw signal data (top track) versus simulated data
with no noise in the amplitude or time domains (‐‐ideal option; middle track) versus the -x dna-r9-
prom preset configuration (bottom track), which is currently the default option in Squigulator. This con-
figuration emulates standard sequencing of genomic DNA on an ONT PromethION R9.4.1 flow cell,
matching the experimental data above. (B) Simulated data with varying DNA translocation speeds
(‐‐bps option). (C) Simulated data with varying data acquisition rates (‐‐sample-rate option).
(D) Simulated data with varying data digitization levels (‐‐digitisation option).

Fast, flexible nanopore data simulation

Genome Research 779
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1


Supplemental Methods). We assessed the read length, nucleotide
composition, quality score distributions, Guppy basecalling accu-
racy, patterns of mismatch and indel errors, and Clair3 SNV detec-
tion, as above, with the real experimental NA12878 data set as a
point of comparison (Fig. 2A–H). Although there were modest dif-
ferences in each comparison, the Squigulator and DeepSimulator
data sets showed broadly similar accuracy to real experimental
data with equivalent basecalling models (Fig. 2F). However, in-
specting alignments to the reference genome, we observed that
basecalled data from DeepSimulator showed many reproducible
errors, whereas the errors in Squigulator data and experimental
data were distributed more randomly. As a result, Clair3 called
an abundance of erroneous SNVs on the DeepSimulator data sets
and missed many true SNVs (Supplemental Fig. S1A). We also ob-
servedmany examples of false-positive SNVs called in both the real
experimental data and Squigulator data but missing from DeepSi-
mulator data (Supplemental Fig. S1B). As a result, the NA12878
SNV accuracy with DeepSimulator data (context-dependent,
0.625; context-independent, 0.769 F-scores; Guppy SUP) was
poor by comparison to that of the Squigulator (0.987) or real exper-
imental data (0.996) (Fig. 2G), and SNVs called from the real exper-

imental NA12878 data set showed a higher concordance to those
called with the Squigulator data (0.985) than the DeepSimulator
data (0.624, 0.769) (Fig. 2H). Therefore, although the ONT base-
calling process itself uses context-dependent neural network
methods comparable to those of DeepSimulator, the k-mer-based
method used by Squigulator appears to generatemore realistic sim-
ulated data.

In addition to data quality, we compared the time and re-
sources used by the two simulation tools. Running with 16
CPUs, Squigulator took just 156 sec to generate ∼30× sequencing
data on Chr 22 (with peak RAM usage of 0.5 GB) or 68 min for
an entire human genome (3.4 GB RAM) (Supplemental Table
S3). To generate an equivalent Chr 22 data set on the same system,
DeepSimulator took about 20 times longer (50 min) in a context-
independent mode and about 3000 times longer (131 h) in a con-
text-dependent mode (Supplemental Table S3). DeepSimulator’s
peak RAM usage was also about ninefold and about 206-fold high-
er than that of Squigulator, in a context-independent and a con-
text-dependent mode, respectively. Although these analyses
show that DeepSimulator is able to generate simulated nanopore
signal data, Squigulator requires a fraction of the time andmemory

A B C

D E

F G H

Figure 2. Comparison of experimental and simulated NA12878 signal data sets. (A–C ) Frequency histograms show distributions of raw signal values (A),
basecalled read lengths (B), and Phred quality scores (C) in experimental data (orange) and simulated data sets fromSquigulator (orange) or DeepSimulator
(purple), based on the reference individual NA12878. A Guppy HAC basecalling model was used. (D,E) For the same data sets, bar charts show the relative
frequencies of each possible base substitution (D), and line plots show the relative frequency of insertions and deletions of different sizes (E). Substitution
and indels errors are determined relative to the GRCh38 reference genome after alignment with minimap2. (F ) Guppy basecalling accuracy (HAC model),
as measured by read:reference identity score distributions, for experimental (upper) and simulated (lower) data sets. Simulated data are from Squigulator
(red) or DeepSimulator with context-independent (purple) or context-dependent (blue) settings. (G) ROC curves evaluate accuracy of SNV detection with
Clair3 on the same data sets (colors as above). (H) ROC curves evaluate concordance of SNVs detected with real experimental NA12878 data set versus
simulated data from Squigulator or DeepSimulator (colors as above). SUP basecallingwas used tomaximize accuracy of SNV detection. The left vertical axes
in ROC curves show absolute numbers of detected SNVs, and right vertical axes show fraction of true positives detected (i.e., recall or sensitivity).

Gamaarachchi et al.

780 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1


and generates data that more closely resemble real experimental
data.

We also performed similar comparisons between Badread
(Wick 2019), a popular simulator for generating long, noisy se-
quence reads, and Squigulator data basecalled with Guppy (see
Supplemental Methods). Although, Badread sequence data were
preferable to those of DeepSimulator, Squigulator data showed
the highest concordance to real experimental data (Supplemental
Fig. S2A,B).

Using Squigulator for parameter exploration

Although they showed similar patterns, we observed higher overall
error rates during basecalling and SNV detection with the simulat-
ed versus experimental data sets above (Supplemental Table S1).
Anticipating that these processes may be affected by noise/warp-
ing in the amplitude and time domains, we next used Squigulator
to model the impact of each noise parameter. To do so, we gener-
ated alternative simulated data sets in which the degree of noise in
one domain was systematically modified, while keeping the other
static, and then repeated the above analysis workflow with each
data set (see Supplemental Methods).

Bothnoise parameters had a significant impact on basecalling
accuracy. Accuracy was negatively correlated with noise in the
time domain (Fig. 3A) and surpassed real experimental data
when noise was minimized (Supplemental Fig. S3A). In fact, base-
calling wasmuchmore sensitive to dwell-time noise (i.e., standard
deviation) than to fixed changes in the dwell-time mean (Supple-
mental Fig. S3B,C). This indicates that consistency inDNA translo-
cation speed is more important to Guppy than the actual speed
itself (within a sensible range). Noise in the amplitude domain
was also detrimental to basecalling accuracy; however, reducing
amplitude noise to zero did not lead to optimum results (Fig.
3B). Instead, Guppy performed best when a small amount of noise
was applied, presumably reflecting properties of the neural net-
work models involved, which are trained on real experimental
data. These trends were not consistent between Guppy’s FAST,
HAC, or SUP models, with HAC being more sensitive to changes
in the degree of amplitude noise than SUP or FAST (Fig. 3B). As ex-
pected, differences in basecalling accuracy at the read level result-
ing from noise in the time and amplitude domains manifested in
corresponding differences in the accuracy of SNV detection Clair3
(Fig. 3B,C). Overall, this analysis provides a simple demonstration
of how simulated data with tunable parameters may be used to in-
form algorithm development and optimization in the nanopore
field.

Discussion

The genomics field has benefitted from the availability of many
different tools for in silico data simulation, which have been devel-
oped in parallel to new sequencing technologies and applications
(Escalona et al. 2016). Squigulator addresses the need for a simple
and effective tool for creating realistic simulated data from nano-
pore sequencing experiments.

The most popular tool currently available for nanopore data
simulation, NanoSim (Yang et al. 2017) generates basecalled se-
quencing data (FASTQ format) but does not generate current signal
data, which is the primary output from a nanopore device.
Therefore, NanoSim cannot be used to recapitulate a complete
nanopore analysis workflow and has no utility for development
and benchmarking of signal-level analyses. In contrast, we have

shown above how Squigulator can be used to generate realistic sig-
nal data, suitable to evaluate every stage of a nanopore bioinfor-
matics workflow.

Another alternative, DeepSimulator (Li et al. 2020), uses a neu-
ral network architecture to generate realistic nanopore signal data.
This approach is computationally expensive but is designed to
best emulate the subtleties of experimental data on which it was
modeled. In contrast, Squigulator’s simple, deterministic framework
is designed to be fast and lightweight and to grant the user maxi-
mum control over all variables and noise parameters. Our compar-
ison experiments show that simulated data from Squigulator is
more similar to matched experimental data than can be achieved
with DeepSimulator’s either context-dependent or context-inde-
pendent modes. We note that the test data set selected here was
highly similar to DeepSimulator’s internal training data, that is,
NA12878 genome sequencing data with ONT R9.4.1 chemistry.

Generating realistic data is not the limit of Squigulator’s capa-
bilities. Rather than choosing a preset parameter configuration
modeled on a given ONT sequencing protocol, the user may in-
stead tune each experimental variable and/or noise parameter to
assess the impact on their analysis workflow. The pore-model in-
put framework also allows the user to provide their own custom
pore model. This means Squigulator is, in theory, suitable for sim-
ulating data from any alternative nanopore system in which the
user has access to a k-mer-based pore model (e.g., a hypothetical
solid-state nanopore device with voltage sensing). This need not
be limited toDNAor RNA; nanopore protein sequencing is similar-
ly amenable to k-mer-based biophysical modeling (Motone et al.
2023) and may, therefore, be simulated with Squigulator.

An effective tool for in silico data generation should reduce
friction in bioinformatic software development. Speed and sim-
plicity are essential to achieve this aim. Therefore, Squigulator is
designed to be easy to install and use. It has no external dependen-
cies apart from the ubiquitous zlib software library and can be com-
piled on Linux, MacOS, and Windows or simply run using
precompiled binaries provided for common systems. Squigulator
is also exceptionally fast in comparison to other similar tools.
We have found that generating 1 Gb of simulated data takes
∼2 min when running on 16 CPU threads compared with
∼45minwithDeepSimulator’s low-accuracy context-independent
mode and ∼90 h with its context-dependent mode (a comparison
with NanoSim was not possible because we were unable to com-
plete the installation). This combination of speed, simplicity,
and realistic, tunable data (see above) make Squigulator the ideal
tool for nanopore data simulation.

Squigulator outputs nanopore signal data in binary SLOW5
(BLOW5) format, an open-source community-centric alternative to
ONT’s native FAST5 format (Gamaarachchi et al. 2022). This feature
is essential to the tool’s highperformance, because thewriting speed
for BLOW5 is considerably faster thanwhat is attainablewith FAST5.
The BLOW5 format is now compatible with the latest ONT basecall-
ing models and approaches, via buttery-eel (a SLOW5 wrapper for
ONT’s production basecaller, Guppy) (Samarakoon et al. 2023a) or
SLOW5-enabled forks for open-source basecallers Dorado (https
://github.com/hiruna72/slow5-dorado) or Bonito (https://github
.com/Psy-Fer/bonito). BLOW5 format is also compatible with a
growing variety of open-source software (Simpson et al. 2017;
Gamaarachchi et al. 2020; Bao et al. 2021; Zhang et al. 2021; Sena-
nayake et al. 2023; Shih et al. 2023). Users may alternatively decide
to convert their BLOW5 files back to ONT’s native FAST5 format us-
ing slow5tools (Samarakoon et al. 2023b), before proceeding to their
analysis workflow.

Fast, flexible nanopore data simulation

Genome Research 781
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
https://github.com/hiruna72/slow5-dorado
https://github.com/hiruna72/slow5-dorado
https://github.com/hiruna72/slow5-dorado
https://github.com/hiruna72/slow5-dorado
https://github.com/Psy-Fer/bonito
https://github.com/Psy-Fer/bonito
https://github.com/Psy-Fer/bonito
https://github.com/Psy-Fer/bonito


Methods

Squigulator methodology

Squigulator generates simulated nanopore signal data based on an
input reference genome or transcriptome sequence (FASTA for-
mat) or directly from a set of basecalled reads (FASTQ or FASTA for-
mat). To do so, it uses an idealized “pore model” specifying the
expected current signal reading associated with every possible
DNA or RNA k-mer, as appropriate to the specific nanopore proto-
col being emulated. Pore models are available for ONT protocols
(https://github.com/nanoporetech/kmer_models), covering a
range of different flow-cell versions (e.g., R9, R10), kits (e.g.,
DNA vs. RNA sequencing) and ONT devices (e.g., PromethION
vs. MinION). The user can also provide their own custom pore
model, enabling simulation of data from existing or future non-
ONT nanopore systems. We also provide a “how to” guide on
how tomodel realistic noise parameters from scratch, for a new se-
quencing protocol: https://hasindu2008.github.io/squigulator/
docs/profile.html#determining-parameters-for-a-profile.

Squigulator generates sequential signal values corresponding
to sequential k-mers in the provided reference sequence. The num-

ber of signal values per k-mer is dictated by the translocation speed
and data acquisition rate for a specified ONT sequencing protocol
(e.g., 450 nt/sec and 400 kHz for DNA sequencing on R9.4.1 flow
cells) or provided manually by the user (Fig. 1). Other technical
variables relevant to nanopore sequencing, such as digitization,
range, offset, etc., can be similarlymodified. This process generates
perfect, noise-free signal reads when the ‐‐ideal option is selected
(Fig. 1A). By default, however, Squigulator applies noise to the
data to produce realistic, rather than ideal, signal reads (Fig. 1A).
The noise functions applied are empirically determined statistical
distributions modeled on stochasticity in the amplitude domain
and warping in the time domain observed during ONT experi-
ments. The user can select from amenu of preset parameter config-
urations modeled on specific ONT protocols. Additional preset
configurations will be added for further protocols from ONT as
these are released. Alternatively, they can use the ‐‐ideal-time or
‐‐ideal-amp options to limit noise to just a single domain, or they
can manually adjust each variable independently. The user can
also modify several pseudoexperimental variables, including cov-
erage depth, read-lengthmean, variation, etc., to determine the di-
mensions of their simulated data set. Detailed descriptions of the

software usage and options are provided
at GitHub (https://hasindu2008.github
.io/squigulator/docs/man.html).

Squigulator implementation

Squigulator is developed in C program-
ming language. The only external depend-
ency of Squigulator is the ubiquitous
library zlib. The Slow5lib library (Gamaar-
achchi et al. 2022) for reading and writing
nanopore signal data is included inside the
source code of Squigulator itself. The min-
imum compiler requirement is a C99 or
higher C compiler that supports POSIX ex-
tensions (e.g., gcc, clang, or icc). Therefore,
the software can be easily compiled on
Linux, MacOS and Windows (through
Windows Subsystem for Linux).

The core random number generator
used by Squigulator is a simple uniform
random number generator based on the
simple Multiplicative Linear Congruen-
tial Generator (LCG). This provides the
basis for generating normal distributions
(using Box-Muller transform) and gam-
ma distributions, where appropriate.
Sampling the genome at random posi-
tions for reads is modeled as a uniform
random distribution. Normal distribu-
tions are used for modeling noise along
amplitude domains of the signal, where
the mean and standard deviation of
each k-mer in the pore-model form a ran-
dom number generator. Normal distri-
butions are also used for generating
noise along the time domain (dwell),
and other signal metadata such as offset
and median_before. Read length variabili-
ty is modeled using a gamma distribu-
tion. In each case, the most appropriate
distribution type was selected based on
empirical exploration of real experimen-
tal ONT data.

0

2

4

6

0

2

4

6

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

2

4

6

0

2

4

6

0

2

4

6

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

2

4

6

Time noise stdev

0.0 6.0

Amp. noise factor

0.0 2.0

FAST basecalling

HAC basecalling

SUP basecalling

Impact of noise in time domainA

Impact of noise in amplitude domainB

Read:reference identity

R
e

la
ti
ve

 f
re

q
u

e
n

c
y

Read:reference identity

FAST basecalling

HAC basecalling

SUP basecalling

R
e

la
ti
ve

 f
re

q
u

e
n

c
y

default

default

T
ru

e
 P

o
s
it
iv

e
s
 (

×
1

,0
0

0
)

%

0

10

20

30

20

40

60

80

100

0 200 400 600 800 1,000

False Positives

%

0

10

20

30

20

40

60

80

100

200 400 600 800

False Positives

0

6.0

0

6.0

0

Amp.
noise

factor

Time

noise

stdev

T
ru

e
 P

o
s
it
iv

e
s
 (

×
1

,0
0

0
)

SNV detection (SUP basecalling)

SNV detection (SUP basecalling)

Figure 3. Modeling the impact of time and amplitude noise on sequencing accuracy. (A, left) Guppy
basecalling accuracy, as measured by read:reference identity score distributions, for repeated experi-
ments in which warping in the time domain (i.e., variation in the DNA translocation speed) was varied,
whereas other parameters were held at default. Higher values indicate increasing noise and default value
is ‐‐dwell-std = 4 (green distribution). Experiment was repeated with Guppy’s FAST (upper), HAC (middle),
and SUP (lower) basecallingmodels. (Right) ROC curves assess accuracy of SNV detection by Clair3 on the
same data sets (colors are matched). (B) Same analysis as above but with noise in the amplitude domain
(‐‐amp-noise) varied, whereas other parameters are static.

Gamaarachchi et al.

782 Genome Research
www.genome.org

https://github.com/nanoporetech/kmer_models
https://github.com/nanoporetech/kmer_models
https://github.com/nanoporetech/kmer_models
https://github.com/nanoporetech/kmer_models
https://hasindu2008.github.io/squigulator/docs/profile.html#determining-parameters-for-a-profile
https://hasindu2008.github.io/squigulator/docs/profile.html#determining-parameters-for-a-profile
https://hasindu2008.github.io/squigulator/docs/profile.html#determining-parameters-for-a-profile
https://hasindu2008.github.io/squigulator/docs/profile.html#determining-parameters-for-a-profile
https://hasindu2008.github.io/squigulator/docs/profile.html#determining-parameters-for-a-profile
https://hasindu2008.github.io/squigulator/docs/profile.html#determining-parameters-for-a-profile
https://hasindu2008.github.io/squigulator/docs/profile.html#determining-parameters-for-a-profile
https://hasindu2008.github.io/squigulator/docs/man.html
https://hasindu2008.github.io/squigulator/docs/man.html
https://hasindu2008.github.io/squigulator/docs/man.html
https://hasindu2008.github.io/squigulator/docs/man.html
https://hasindu2008.github.io/squigulator/docs/man.html
https://hasindu2008.github.io/squigulator/docs/man.html


Benchmarking data sets

The experimental data set used in benchmarking experiments was
generated by sequencing genomicDNA from the humanNA12878
reference sample on anONT PromethION device. Unsheared DNA
librarieswere prepared using theONTLSK109 ligation library prep,
and two R9.4.1 flow cells were used to generate ∼30× genome cov-
erage. The data are available at the NCBI BioProject database (https
://www.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA744329. All other benchmarking data sets can be created us-
ing Squigulator (see Supplemental Methods).

Software availability

With the exception of ONT’s commercially available Guppy base-
caller, all software used in this project is free and open source, in-
cluding Squigulator (https://github.com/hasindu2008/squigulator).
Squigulator experimentswere performed using the followingGitHub
commit: 7422d7384be428ac334caa61c019473f31f1e633. Squigula-
tor is also available as Supplemental Code.

Competing interest statement

I.W.D. manages a fee-for-service sequencing facility at the Garvan
Institute of Medical Research that is a customer of Oxford
Nanopore Technologies (ONT), but has no further financial rela-
tionship. H.G., J.M.F., and I.W.D. have previously received travel
and accommodation expenses to speak at ONT conferences.
H.G. and I.W.D. have paid consultant roles with Sequin PTY.
The authors declare no other competing financial or nonfinancial
interests.

Acknowledgments

We thank Derrick Lin and Tim Ho for providing HPC support. We
acknowledge the following funding support: Australian Medical
Research futures fund grants MRF1173594, MRF2016008, and
MRF2023126 (to I.W.D.) and Australian Research Council
Discovery Early Career Researcher Award (DECRA) fellowship
DE230100178 (to H.G.).

Author contributions: H.G. developed Squigulator with contri-
butions from all other authors. H.S., K.L., and J.M.F. conducted
rigorous user testing and feedback. I.W.D., H.G., and J.M.F.
performed benchmarking experiments. H.G. and I.W.D. generated
the figures and wrote the manuscript, with input from other
authors.

References

Bao Y,Wadden J, Erb-Downward JR, Ranjan P, ZhouW,McDonald TL,Mills
RE, Boyle AP, Dickson RP, Blaauw D, et al. 2021. SquiggleNet: real-time,
direct classification of nanopore signals. Genome Biol 22: 298. doi:10
.1186/s13059-021-02511-y

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO,
Whitwham A, Keane T, McCarthy SA, Davies RM, et al. 2021. Twelve
years of SAMtools and BCFtools. GigaScience 10: giab008. doi:10.1093/
gigascience/giab008

Escalona M, Rocha S, Posada D. 2016. A comparison of tools for the simula-
tion of genomic next-generation sequencing data. Nat Rev Genet 17:
459–469. doi:10.1038/nrg.2016.57

Gamaarachchi H, LamCW, Jayatilaka G, SamarakoonH, Simpson JT, Smith
MA, Parameswaran S. 2020. GPU accelerated adaptive banded event
alignment for rapid comparative nanopore signal analysis. BMC
Bioinformatics 21: 343. doi:10.1186/s12859-020-03697-x

Gamaarachchi H, Samarakoon H, Jenner SP, Ferguson JM, Amos TG,
Hammond JM, Saadat H, Smith MA, Parameswaran S, Deveson IW.
2022. Fast nanopore sequencing data analysis with SLOW5. Nat
Biotechnol 40: 1026–1029. doi:10.1038/s41587-021-01147-4

Hafezqorani S, Yang C, Lo T, Nip KM, Warren RL, Birol I. 2020. Trans-
NanoSim characterizes and simulates nanopore RNA-sequencing data.
GigaScience 9: giaa061. doi:10.1093/gigascience/giaa061

Hu X, Yuan J, Shi Y, Lu J, Liu B, Li Z, Chen Y, Mu D, Zhang H, Li N, et al.
2012. pIRS: profile-based Illumina pair-end reads simulator.
Bioinformatics 28: 1533–1535. doi:10.1093/bioinformatics/bts187

HuangW, Li L, Myers JR, Marth GT. 2012. ART: a next-generation sequenc-
ing read simulator. Bioinformatics 28: 593–594. doi:10.1093/bioinfor
matics/btr708

Karaoğlanoğlu F, Orabi B, Flannigan R, Chauve C, Hach F. 2024. TKSM:
highly modular, user-customizable, and scalable transcriptomic se-
quencing long-read simulator. Bioinformatics 40: btae051. doi:10
.1093/bioinformatics/btae051

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34: 3094–3100. doi:10.1093/bioinformatics/bty191

Li Y,Wang S, Bi C, Qiu Z, LiM,GaoX. 2020. DeepSimulator1.5: amore pow-
erful, quicker and lighter simulator for nanopore sequencing.
Bioinformatics 36: 2578–2580. doi:10.1093/bioinformatics/btz963

Loman NJ, Quick J, Simpson JT. 2015. A complete bacterial genome assem-
bled de novo using only nanopore sequencing data. Nat Methods 12:
733–735. doi:10.1038/nmeth.3444

McElroy KE, Luciani F, Thomas T. 2012. GemSIM: general, error-model
based simulator of next-generation sequencing data. BMC Genomics
13: 74. doi:10.1186/1471-2164-13-74

Motone K, Kontogiorgos-Heintz D,Wee J, Kurihara K, Yang S, Roote G, Fang
Y, Cardozo N, Nivala J. 2023. Multi-pass, single-molecule nanopore
reading of long protein strands with singe-amino acid sensitivity.
bioRxiv doi:10.1101/2023.10.19.563182

Ono Y, Asai K, HamadaM. 2021. PBSIM2: a simulator for long-read sequenc-
ers with a novel generative model of quality scores. Bioinformatics 37:
589–595. doi:10.1093/bioinformatics/btaa835

Samarakoon H, Ferguson JM, Gamaarachchi H, Deveson IW. 2023a.
Accelerated nanopore basecalling with SLOW5 data format.
Bioinformatics 39: btad352. doi:10.1093/bioinformatics/btad352

Samarakoon H, Ferguson JM, Jenner SP, Amos TG, Parameswaran S,
Gamaarachchi H, Deveson IW. 2023b. Flexible and efficient handling
of nanopore sequencing signal data with slow5tools. Genome Biol 24:
69. doi:10.1186/s13059-023-02910-3

Senanayake A, Gamaarachchi H, Herath D, Ragel R. 2023. DeepSelectNet:
deep neural network based selective sequencing for oxford nanopore se-
quencing. BMC Bioinformatics 24: 31. doi:10.1186/s12859-023-05151-0

Shcherbina A. 2014. FASTQSim: platform-independent data characteriza-
tion and in silico read generation for NGS datasets. BMC Res Notes 7:
533. doi:10.1186/1756-0500-7-533

Shih PJ, Saadat H, Parameswaran S, Gamaarachchi H. 2023. Efficient real-
time selective genome sequencing on resource-constrained devices.
GigaScience 12: giad046. doi:10.1093/gigascience/giad046

Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. 2017.
Detecting DNA cytosine methylation using nanopore sequencing. Nat
Methods 14: 407–410. doi:10.1038/nmeth.4184

WangY, Zhao Y, Bollas A,Wang Y, Au KF. 2021. Nanopore sequencing tech-
nology, bioinformatics and applications.Nat Biotechnol 39: 1348–1365.
doi:10.1038/s41587-021-01108-x

Wick RR. 2019. Badread: simulation of error-prone long reads. J Open Source
Software 4: 1316. doi:10.21105/joss.01316

Yang C, Chu J, Warren RL, Birol I. 2017. NanoSim: nanopore sequence read
simulator based on statistical characterization.GigaScience6: 1–6. doi:10
.1093/gigascience/gix010

Zhang H, Li H, Jain C, Cheng H, Au KF, Li H, Aluru S. 2021. Real-time map-
ping of nanopore raw signals. Bioinformatics 37: i477–i483. doi:10
.1093/bioinformatics/btab264

Zheng Z, Li S, Su J, Leung AW-S, Lam T-W, Luo R. 2022. Symphonizing pile-
up and full-alignment for deep learning-based long-read variant calling.
Nat Comput Sci 2: 797–803. doi:10.1038/s43588-022-00387-x

Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, Salit M.
2014. Integrating human sequence data sets provides a resource of
benchmark SNP and indel genotype calls. Nat Biotechnol 32: 246–251.
doi:10.1038/nbt.2835

Received November 14, 2023; accepted in revised form April 24, 2024.

Fast, flexible nanopore data simulation

Genome Research 783
www.genome.org

https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
https://www.ncbi.nlm.nih.gov/bioproject/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1
https://github.com/hasindu2008/squigulator
https://github.com/hasindu2008/squigulator
https://github.com/hasindu2008/squigulator
https://github.com/hasindu2008/squigulator
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278730.123/-/DC1

