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Underrepresented populations are often excluded from genomic studies owing in part to a lack of resources supporting

their analyses. The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP), which have recently

been sequenced to high coverage, are valuable genomic resources because of the global diversity they capture and their

open data sharing policies. Here, we harmonized a high-quality set of 4094 whole genomes from 80 populations in the

HGDP and 1kGP with data from the Genome Aggregation Database (gnomAD) and identified over 153 million high-quality

SNVs, indels, and SVs. We performed a detailed ancestry analysis of this cohort, characterizing population structure and

patterns of admixture across populations, analyzing site frequency spectra, and measuring variant counts at global and sub-

continental levels. We also show substantial added value from this data set compared with the prior versions of the compo-

nent resources, typically combined via liftOver and variant intersection; for example, we catalog millions of new genetic

variants, mostly rare, compared with previous releases. In addition to unrestricted individual-level public release, we provide

detailed tutorials for conducting many of the most common quality-control steps and analyses with these data in a scalable

cloud-computing environment and publicly release this new phased joint callset for use as a haplotype resource in phasing

and imputation pipelines. This jointly called reference panel will serve as a key resource to support research of diverse an-

cestry populations.

[Supplemental material is available for this article.]

The 1000 Genomes Project (1kGP) and Human Genome Diversity
Project (HGDP) have been among the most valuable genomic re-
sources because of the breadth of global diversity they capture
and their open sharing policies with consent to release unrestrict-
ed individual-level data (Rosenberg et al. 2002; Li et al. 2008; The
1000 Genomes Project Consortium 2012, 2015; Bergström et al.
2020). Consequently, genetic data from these resources have

been routinely generated using the latest genomics technologies
and serve as a ubiquitous resource of globally diverse populations
for a wide range of disease, evolutionary, and technical studies.
These projects are complementary; the 1kGP is larger and has con-
sisted of whole-genome sequencing (WGS) data for many years; as
such, it has been the default population genetic reference data set,
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consisting of 3202 genomes including related individuals that
were recently sequenced to high coverage (Ebert et al. 2021;
Byrska-Bishop et al. 2022). The 1kGPhas also been themostwidely
used haplotype resource, serving as a reference panel for phasing
and imputation of genotype data for many genome-wide associa-
tion studies (GWAS) (Howie et al. 2012; Lam et al. 2020). HGDP
was founded three decades ago by population geneticists to study
human genetic variation and evolution andwas designed to span a
greater breadth of diversity, although with fewer individuals from
each component population (Cavalli-Sforza et al. 1991; Cavalli-
Sforza 2005). Originally assayed using only GWAS array data,
948 individuals have recently undergone deep WGS and fill
some major geographic gaps not represented in the 1kGP, for ex-
ample, in the Middle East, sub-Saharan Africa, parts of the
Americas, and Oceania (Bergström et al. 2020).

The 1kGP and HGDP data sets have been invaluable sepa-
rately, but far larger genomic data aggregation efforts, such as
the Genome Aggregation Database (gnomAD) (Karczewski et al.
2020) and TOPMed (Taliun et al. 2021), have clearly shown the
utility of harmonizing such data sets through the broad uptake
of their publicly released summaries of largenumbers of high-qual-
itywhole genomes. For example, the gnomADbrowser of allele fre-
quencies has vastly improved clinical interpretation of rare disease
patients worldwide (Karczewski et al. 2017). Additionally, the
TOPMed Imputation Server facilitates statistical genetic analyses
of complex traits by improving phasing and imputation accuracy
compared with existing resources (Taliun et al. 2021). Yet, without
individual-level data access from these larger resources owing to
more restrictive permissions, the 1kGP and HGDP genomes re-
main the most uniquely valuable resources for many of the most
common genetic analyses. These include genetic simulations, an-
cestry analysis including local ancestry inference (Maples et al.
2013), genotype refinement of low-coverage genomes (Rubinacci
et al. 2021), granular allele frequency comparisons at the subcon-
tinental level, investigations of individual-level sequencing quali-
ty metrics, and many more.

Previously, researchers wishing to combine HGDP and 1kGP
into a merged data set were left with suboptimal solutions. Specif-
ically, the sequenced data sets had been called separately, requiring
intersection of previously called sites rather than a harmonized
joint callset. Additionally, they were on different reference builds,
requiring lifting over of a large data set before merging, which in-
troduces errors and inconsistencies. Here, we have created a best-
in-class, publicly released, harmonized, and jointly called resource
of HGDP+1kGP on GRCh38 that will facilitate analyses of diverse
cohorts. This globally representative haplotype resource better
captures the breadth of genetic variation across diverse geograph-
ical regions than does previous component studies. Specifically,
we aggregated these genomes into gnomAD and then jointly pro-
cessed these 4094 high-coverage whole genomes; jointly called
variants consisting of single-nucleotide variants (SNVs), inser-
tions/deletions (indels), and structural variants (SVs); conducted
harmonized sample, variant, and genotype quality control (QC);
and separately released these individual-level genomes to facilitate
a wide breadth of analyses. We quantify the number of variants
identified in this new callset compared with existing releases and
identify more variants as a result of joint variant calling, construct
a resource of haplotypes for use as a phasing and imputation panel,
examine the ancestry composition of this diverse set of popula-
tions, and publicly release these data without restriction alongside
detailed tutorials illustrating how to conduct many of the most
common genomic analyses.

Results

A harmonized resource of high-quality, high-coverage diverse

whole genomes

Here, we have developed a high-quality resource of diverse human
genomes for full individual-level public release along with a guide
for conducting themost commongenetic analyses. To this end,we
first extracted from gnomAD jointly called variants from 4150
whole genomes recently sequenced to high coverage from the
1kGP and HGDP (Bergström et al. 2020; Byrska-Bishop et al.
2022), the latter of which are new to gnomAD, and then harmo-
nized project metadata (Supplemental Table S1). Figure 1A shows
the locations and sample sizes of populations included in this har-
monized resource. After sample, variant, and genotype QC (Chen
et al. 2024), including ancestry outlier removal (Methods) (Supple-
mental Table S2), we identified 153,894,851 high-quality variants
across 4094 individuals, 3400 of whom are inferred to be unrelated
(Methods) (Supplemental Table S3). We computed the mean cov-
erage within each population and project (Supplemental Figs. S1,
S2) as well as the mean number of SNVs per individual within
each population to better understand data quality and population
genetic variation (Supplemental Table S4). Although coverage was
more variable among samples in the HGDP (μ=34, σ=6, range =
23–75×) than in the 1kGP (μ=32, σ=3, range =26–66×), consistent
with older samples and more variable data generation strategies
(Bergström et al. 2020), all genomes had sufficient coverage to per-
form population genetic analysis. Consistent with human popula-
tion history and as seen before (The 1000 Genomes Project
Consortium 2015), African populations had the most genetic var-
iation with 6.1 million SNVs per individual, whereas out-of-Africa
populations had an average of 5.3million SNVs (Supplemental Ta-
ble S4; Fig. 1B). The San had the most genetic variants as well as
singletons per genomeon average overall (Supplemental Table S4).

We generated a jointly genotyped SV callset by detecting SVs
in the HGDP genomes (Supplemental Fig. S3) using the same en-
semble SV discovery tool, GATK-SV (Collins et al. 2020), as was
used to generate SV calls in the high-coverage 1kGP genomes
(Byrska-Bishop et al. 2022). We combined SVs from HGDP and
1kGP samples to form a nonredundant set of SV sites and uniform-
ly genotyped them across all samples in both cohorts. In total, we
identified 258,975 SV loci across 4151 HGDP and 1kGP samples
(Supplemental Fig. S4A). The frequencies of SVs were consistent
with Hardy–Weinberg equilibrium (Supplemental Fig. S4F), and
distributions matched expectations from previous cohorts with
the vast majority of SVs being rare (84.2% SVs at <1% allele fre-
quency among the population) (Supplemental Fig. S4C). Addition-
ally, SV size is inversely correlated with frequency (Sudmant et al.
2015; Collins et al. 2020; Byrska-Bishop et al. 2022), with the no-
table exceptions of peaks consistent with knownmobile elements,
including Alu, LINE-1, and SVA (Fig. 1C). In individual genomes,
we detected an average of 9301 SVs consisting primarily of dele-
tions (N=3646), duplications (N=1680), and insertions (N=
3485), as well as inversions (N=13) and complex SVs (N=109)
(Fig. 1B; Supplemental Fig. S4B). This data set showed comparable
sensitivity to the recent 1kGP (about 9679 SVs/genome) (Byrska-
Bishop et al. 2022) and gnomADv2 SV studies (about 7439 SVs/ge-
nome) (Collins et al. 2020). Consistent with SNVs and indels, we
observed a larger number of SVs in African populations compared
with others (Supplemental Fig. S5). The precision of our SV callsets
have been evaluated using 35 samples with both short-read and
long-read WGS data generated by the 1kGP and the Human Ge-
nome Structural Variation Consortium (HGSVC) (Ebert et al.
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2021; Byrska-Bishop et al. 2022), in
which 96.0% of the SVs overlapped ei-
ther a short-read or long-read variant in
the matched genome (Supplemental Ta-
ble S6). We observed differences in num-
ber SVs across samples from HGDP and
1kGP owing to technical data generation
differences, such as PCR status (Supple-
mental Fig. S6).

We examined global population ge-
netic variation using principal compo-
nent analysis (PCA) of the harmonized
HGDP and 1kGP resource (Fig. 2A,B). As
expected, we find PC1 differentiates
AFR and non-AFR populations, PC2 dif-
ferentiates EUR and EAS populations,
and PC3 and PC4 differentiate AMR
and CSA populations. Subcontinental
structure is also apparent in later PCs
and within geographical/genetic regions
(Supplemental Table S1; Supplemental
Figs. S9–S16). These results are recapitu-
lated with the likelihood model imple-
mented in ADMIXTURE, where K=2
identifies similar structure in PC1, K= 3
identifies similar structure in PC2, and
so on (Supplemental Fig. S7). The best-
fit value of K=6 shown in Figure 2C
was chosen based on fivefold cross-vali-
dation error (Supplemental Fig. S8).

Population genetic variation within and

between subcontinental populations

We investigated the ancestry composi-
tion of populations within harmonized
metadata labels (AFR, AMR, CSA, EAS,
EUR, MID, and OCE) (Supplemental
Table S1) using PCA and ADMIXTURE
analysis. Subcontinental PCA highlights
finer-scale structure within geographi-
cal/genetic regions (Supplemental Figs.
S9–S16). For example, within AFR, the
first several PCs differentiate South and
Central African hunter-gatherer groups
fromothers, and then differentiate popu-
lations from East and West Africa (Sup-
plemental Fig. S10). For AFR and AMR
populations, individuals cluster similarly
to the global PCA, reflecting some global
admixture present in these populations
(Supplemental Figs. S10, S14). The MID
and OCE populations are made up of
samples from the HGDP data set only as
1kGP did not contain samples from these
regions (Supplemental Figs. S15, S16).

We measured population genetic
differentiation using common variants
with Wright’s fixation index, FST (Fig.
3A), calculated using PLINK 1.9
(Chang et al. 2015). When populations
are clustered according to pairwise FST

A

B

C

Figure 1. Geographical locations and genetic variants across populations. (A) Global map indicating ap-
proximate geographical locations where samples were collected. Coordinates were included for each pop-
ulation originating from the Geography of Genetic Variants browser as well as metadata from the HGDP
(Marcus and Novembre 2017; Bergström et al. 2020). (B) Mean number of SNVs (top panel), indels (middle
panel), and SVs (bottom panel) per individual within each population. The bottom panel showing SVs has a
set of outlined bars in black that counts the subset of SVs called outside of highly repetitive genomic regions,
which decreases calling accuracy in short-read sequencing data (Zhao et al. 2021). The bars without the
outline indicate total SV counts regardless ofwhether they span repetitive regions. (A,B) Colors are consistent
with geographical/genetic regions as follows: (AFR) African, (AMR) admixed American, (CSA) Central/South
Asian, (EAS) East Asian, (EUR) European, (MID)Middle Eastern, and (OCE)Oceanian. (C) Sizes of SVs decay in
frequency with increasing size overall with notable exceptions of mobile elements, including Alu, SVA, and
LINE-1. (DEL) Deletion, (DUP) duplication, (CNV) copy number variant, (INS) insertion, (INV) inversion, and
(CPX) complex rearrangement.
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between groups, they largely cluster by geographical/genetic re-
gion labels with a few exceptions (Supplemental Fig. S18). For ex-
ample, three AMR populations are interspersed with other
populations, whereas the rest have a cluster of their own closer
to the EAS populations, consistent with their population history
and variable ancestry proportions that spanmultiple continents.
Additionally, MID populations are interspersed among the EUR
populations (Bedouin and Palestinian cluster together, whereas
Mozabite and Druze cluster by themselves). A CSA population,
Kalash, clusters among the EUR, and an EAS population,
Uygur, clusters among the CSA. The AFR populations Mbuti
and San cluster with the OCE. This mirrors their high divergence
with other AFR populations and the fact that heatmap correla-
tions are drawn from all pairwise FST estimates across popula-
tions, not just AFR. There are no interspersed populations
within the other AFR cluster, and no populations fromAFR are in-
terspersed among the other regions (Supplemental Table S7;
Supplemental Fig. S18).

We also compared FST versus geographical distance. We com-
puted great circle distances using the haversine formula (earth’s ra-
dius = 6371 km) and pairwise geographic distances using five
waypoints that reflect human migration patterns, recapitulating
previous work (Ramachandran et al. 2005). The linear relationship
between FST and geographical distance differs by project; specifi-
cally, HGDP has a steeper slope relating distance to FST (Fig. 3B),
likely reflecting the anthropological design intended to capture
more divergent populations compared with the samples in
1kGP, which reflect some of the largest populations.We compared
Pearson’s correlation and Mantel tests to assess the change in the
linear relationship between FST and geographical distance when

incorporating waypoints. The Pearson correlation coefficient and
Mantel statistic are both higher when waypoints are incorporated,
with the highest values being when both pairs of populations are
from HGDP with a correlation coefficient of 0.76 (P-value<2.2 ×
10−16) and Mantel statistic of 0.55 (P-value=0.01) (Supplemental
Table S8).

FST measurements require group comparisons and are only
based on common variants, which typically arose early in human
history. Hence, we also compared rare variant sharing via pair-
wise doubleton counts ( f2 analyses) (Fig. 3A). On average, pairs
of individuals within a population share 51.59 doubletons, al-
though this varies considerably as a function of demography.
For example, because of the elevated number of variants in indi-
viduals of African descent (Fig. 1), pairs of individuals within AFR
populations share, on average, 75.57 doubletons, whereas pairs
of individuals within out-of-Africa populations share 43.8 dou-
bletons. The individual pairs that shared the most doubletons
were largely from the San population, with the top 15 sharing be-
tween 14,715 and 24,429 doubletons. Very few doubletons are
shared among pairs of individuals across populations within a
geographical/genetic region (μ = 6.79, σ = 19.1), with the highest
doubleton count being 4130 between individuals from Bantu
South Africa and San, both AFR populations. Even fewer double-
tons are shared among pairs of individuals across populations
from different geographical/genetic regions (μ = 0.79, σ = 1.77)
with the highest doubleton count being 638 between a pair of in-
dividuals from CDX and BEB, which are EAS and CSA popula-
tions, respectively. f2 clustering tends to follow project
metadata labels by geographical/genetic region, with a few
exceptions.

C

BA

Figure 2. Global ancestry analysis of genetic structure in the HGDP and 1kGP resource. Regional abbreviations are as in Figure 1. (A,B) Principal compo-
nents analysis (PCA) plots for PC1 versus PC2 (A) and PC3 versus PC4 (B) showing global ancestry structure across HGDP+1kGP. Subsequent PCs separated
structure within geographical/genetic regions (Supplemental Figs. S9–S16). (C) ADMIXTURE analysis at the best-fit value of K = 6.
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A

B

Figure 3. Relationships between genetic differentiation measured from common variants (FST), rare variants ( f2), and geography. (A, lower triangle) FST
heatmap illustrating genetic divergence between pairs of populations. (Upper triangle) Heatmap of f2 comparisons of doubleton counts between pairs of
individuals. Column and row colors at the leaves of the dendrogram show colors corresponding to metadata geographical/genetic regions, and the top
right color bar indicates the number of doubletons shared across pairs of individuals, with more doubletons shared among individuals within the same
populations and geographical/genetic regions. Interspersals of populations by metadata labels are shown in Supplemental Figure S18 and
Supplemental Table S7. (B) Genetic divergence measured by FST versus geographical distance with five waypoints calculated using the haversine formula
(earth’s radius = 6371 km).
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A catalog of known versus novel genomic variation compared

with existing data sets

To show the added benefit of jointly calling these two data sets
compared with using each component data set alone, we have
compiled metrics that compare our harmonized data set with
each individual data set comprising it (Bergström et al. 2020;
Byrska-Bishop et al. 2022), the previous phase 3 1kGP data set
sequenced to lower coverage (The 1000 Genomes Project
Consortium 2015), and the widely used gnomAD data set (Chen
et al. 2024). This jointly called HGDP+1kGP data set contains
153,894,851 SNVs and indels that passed QC, whereas the phase
3 1kGP has 73,257,633. High-coverage WGS of the 1kGP (referred
to here as NYGC 1kGP based on where they were sequenced) has
119,895,186, high-coverage WGS of the HGDP (referred to here
as Bergstrom HGDP based on the publication) has 75,310,370,
and the gnomAD has 644,267,978 high-quality SNVs and indels
(Supplemental Table S10; Chen et al. 2024). Because gnomAD
now contains both HGDP and 1kGP, we built a synthetic subset
of gnomAD that removes allele counts contributed by HGDP
and 1kGP.When comparing the HGDP+1kGP data set to this syn-
thetic version of gnomAD that excludes HGDP+1kGP, we show
that variants unique to gnomAD are disproportionately rare (Fig.
4; Supplemental Table S12). In contrast, compared with the com-
prising data sets of HGDP only, NYGC 1kGP only, and phase 3
1kGP, the HGDP+1kGP data set contributes a sizable fraction
and number of variants spanning the full allele frequency spec-
trum, including both rare and common variants (Fig. 4).
Specifically, there are 84 million novel variants (53%) in HGDP+
1kGP compared with HGDP only, 43 million (27%) compared
with NYGC 1kGP only, and 83 million (53%) compared with
phase 3 1kGP (Supplemental Table S12). However, rare variants
are particularly enriched; in all of the comparison data sets aside
from gnomAD, the HGDP+1kGP data set contains the largest pro-
portion of rare variants. Few variants in the phase 3 1kGP data set
were not in theHGDP+1kGP data set or NYGC1kGP because sam-
ples are entirely overlapping, as reported previously (Byrska-
Bishop et al. 2022).

Phased haplotypes improve phasing and imputation accuracy and

flexibility compared with existing public resources

We next developed the HGDP+1kGP data set as a haplotype re-
source by phasing variants together using SHAPEIT5 (Hofmeister
et al. 2023), including information about trios (Methods). We first
evaluated the phasing switch error rate using 34 genomes that
overlappedwith 1kGPandhad fully phased genome assemblies in-
cluding long-read sequencing data in the Human Genome
Structural Variation Consortium, phase 2 (HGSVC2) (Ebert et al.
2021).We treated the HGSVC2 genomes as “truth” and then com-
pared statistical phasing with the HGDP+1kGP versus 1kGP refer-
ence panel. We find lower switch error rate when using HGDP+
1kGP versus 1kGP only in both SNPs (mean=0.00184, sd =
0.00145 in HGDP+1kGP vs. mean=0.00338, sd =0.00327 in
1kGP) and indels (mean=0.00899, sd =0.00627 in HGDP+1kGP
vs. mean=0.0148, sd =0.0112 in 1kGP) (Fig. 5A).

Wenext evaluated imputation accuracy with common genet-
ic data generation strategies. We used 93 down-sampled whole ge-
nomes sequenced as part of the NeuroGAP Project consisting of
East and South African participants to either (1) sites on relevant
and commonly used GWAS arrays (Illumina GSA, MEGA, and
H3Africa) or (2) lower depths of coverage (0.5×, 1×, 2×, and 4×),
as performed previously (Martin et al. 2021). We imputed GWAS
arrays using IMPUTE5 (Rubinacci et al. 2020) and low-coverage ge-
nomes using GLIMPSE (Rubinacci et al. 2021).With several haplo-
type reference panels, we compared average imputation accuracy
as a function of allele frequency estimated from gnomAD AFR fre-
quency given our small sample size. For arrays, we compared impu-
tation accuracy using NYGC 1kGP, HGDP+1kGP, and TOPMed
imputation panels (Kowalski et al. 2019). As expected with
GWAS arrays, HGDP+1kGP improves accuracy compared with
1kGP but not compared with the much larger TOPMed data (Fig.
5B). Because low-coverage genomes require individual-level haplo-
types for imputation that ideally operate on genotype likelihoods
rather than initial genotype calls (Rubinacci et al. 2021), we were
unable to compare the TOPMed panel. For low-coverage genomes,
we findmuchhigher imputation accuracies withHGDP+1kGP. At

Figure 4. Number of variants identified in this data set compared with commonly used existing data sets as a function of allele frequency. The number of
variants on a log scale is plotted by minor allele frequency bin within the harmonized HGDP+1kGP data set. We show variants found in the harmonized
HGDP+1kGP data set only (red), variants shared between the harmonized data set and each comparison data set (purple), and variants that are only found
in each comparison data set (blue). More information on exact numbers and comparisons by QCwithin and across data sets can be found in Supplemental
Tables S11 and S12.
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rarer variants, the imputation accuracy differences owing to the
reference panel used are almost as high as those owing to higher
depths of sequencing; for example, rare variants sequenced to 2×
depth and imputed with HGDP+1kGP are imputed almost as ac-
curately as rare variants sequenced to 4× depth and imputed
with 1kGP, thus highlighting the utility of the larger sample size
and diversity in this resource (Fig. 5C).

Facilitating broad uptake of HGDP+ 1kGP as a public resource via

development of detailed tutorials

In an effort to increase accessibility of this data set, we have made
publicly available tutorials of our analyses implemented primarily
inHail (https://hail.is). Hail is an open source, Python-based, scalable
tool for genomics that enables large-scale genetic analyses on the
cloud. Tutorials can be accessed through GitHub via iPython note-
books (https://github.com/atgu/hgdp_tgp/tree/master/tutorials),
and all underlying data sets are publicly available in requester-pays
Google Cloud Platform buckets.

These tutorials cover various aspects of QC and analysis, in-
cluding sample, variant, and genotype QC; visualizing distribu-
tions of QC statistics by metadata labels across diverse
populations; filtering variants using LD, allele frequency, and
missingness information; inferring relatedness; running PCA to
infer ancestry; computing descriptive statistics including variant
counts and coverage metrics; conducting population genetic anal-
yses; and intersecting external data sets withHGDP+1kGP as a ref-
erence panel to apply ancestry models and infer metadata labels
(Fig. 6). For example, we intersected the publicly available
Gambian Genome Variation Project (GGVP) sequenced to low
coverage with the HGDP+1kGP resource, trained a random forest
on HGDP+1kGP geographical/genetic region metadata labels,
and then applied thismodel to the GGVP data to determine ances-
try labels, which were all inferred to be AFR (Supplemental Fig.
S17). When intersecting external data sets to apply ancestry labels,
an important consideration is how many variants must overlap
and howmuchmissingness is tolerated to project external samples
into the same PCA space as the reference panel and to assign

A

B

C

Figure 5. Phasing and imputation accuracy are improved across data generation strategies compared with existing reference panels. (A) Switch error
rates for SNPs and indels in a truth set of 34 HGSVC2 genomes when using HGDP+1kGP versus 1kGP reference panels for phasing. (B,C) Imputation per-
formance as a function ofminor allele frequency (MAF) for AFR in gnomAD v3.1 data using TOPMed, HGDP+1kGP, and 1kGP reference panels in SNP array
(B) and low-coverage sequencing data (C). Aggregate r2, which is the correlation between the imputed dosages and high-coverage “truth” genotype calls,
was computed in MAF bins and averaged across Chromosomes 1–22. The validation set is composed of 93 AFR individuals sequenced at 30× coverage
(Martin et al. 2021).
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metadata labels given PCA shrinkage (Dey and Lee 2019). We find
that <5%missingness is typically required to accurately assign an-
cestry labels (Supplemental Fig. S20; Supplemental Table S13). In
addition to all these analyses, we anticipate that there will be addi-
tional uses of this resource not documented in these tutorials, such
as for phasing and imputation. To facilitate these uses, we have
phased the HGDP+1kGP data set and released phased haplotypes
that others can use to support phasing and imputation in their
own data sets. We have also developed computational pipelines
implemented in GWASpy that use these phased reference haplo-
types, and tested them by applying phasing and imputation to
diverse samples genotyped as part of other ongoing work.

Discussion

The 1kGP and HGDP were landmark efforts to increase the unre-
stricted public availability of genomic data from a geographically
and ancestrally diverse set of individuals. These resources have
been widely used across research efforts for decades, including as
reference panels for ancestry inference, phasing, imputation, ge-
notype refinement, and investigations into population history
and demography. However, these data sets have historically been
discrete, leading to suboptimal intersections when a combined
analysis of all samples is required.

The harmonized variant processing, quality control, and im-
proved coverage of variants across the allele frequency spectrum in
this jointly called resource will facilitate the improved study of
diverse populations. The callset formally released here has already
been used as a resource of global diversity in the gnomAD (Chen
et al. 2024), the Pan-UK Biobank Project (Karczewski et al. 2024),
the Global Biobank Meta-Analysis Initiative (GBMI) (Zhou et al.
2022), and the COVID-19 Host Genetics Initiative (COVID-19
Host Genetics Initiative 2021). A primary use of these data is as a
global reference for PCA; SNV loadings are freely shared so that
user cohorts can be aligned to the same PC space as this reference
panel. In GBMI, harmonizing ancestry analysis with this resource
served as a QCmeasure to ensure that ancestral groupings were ap-
plied consistently and that control for population stratification
was performed adequately (Zhou et al. 2022). Building on this ap-
proach and given the critical need for greater diversity in genomic
studies, sequencing centers can use this resource to build dash-
boards that continuously monitor the diversity of samples being
sequenced in real time.

This callset is also phased for use as a haplotype resource, po-
tentially providing higher phasing and imputation accuracy, par-
ticularly for underrepresented populations. Although resources
such as the Haplotype Reference Consortium (HRC) and
TOPMed Imputation Panel are already useful (McCarthy et al.
2016; Kowalski et al. 2019), they either provide individual-level
data but lack diversity (HRC) or are very large with significant
diversity but do not share individual-level data (TOPMed). This
limits the application of new methods, such as those needed to
support low-coverage sequencing, which is receiving growing in-
terest as it is comparable in cost to many genotype arrays and is es-
pecially beneficial to underrepresented populations (Martin et al.
2021). Combinations of high-coverage exome and low-coverage
genome sequencing are also of growing interest and could be
uniquely supported by this resource. It is also being used for devel-
oping computational and analytical tools for genotype refinement
and imputation, conducting dataQC across varying depths of cov-
erage, and evaluating technical biases. For example, we observed
fewer SVs in the HGDP genomes than in 1kGP genomes among
similar ancestry groups, which was primarily explained by PCR+
and PCR-free sequencing libraries.

Although this resource is more globally representative than
most public data sets, certain geographic areas and ancestries are
still underrepresented. HGDP, designed over two decades ago
alongside theHumanGenomeProject, was one of the earliest stud-
ies of its kind and therefore faced some ethical controversies that
remain relevant today (Greely 1999; Resnik 1999). For example,
challenging issues of individual versus collective consent particu-
larly among Amerindigenous communities parallel those current-
ly being navigated by the All of Us Research Program; although
criticisms have been raised, consensus has not been reached.
HGDP responded to similar criticisms at the time and developed
the model ethical protocol, whose principles still guide all major
genetic research projects to date (Weiss et al. 1997). The risk and
beneficence of ongoing massive-scale efforts such as All of Us,
whosemission is “to accelerate health research andmedical break-
throughs, enable individualized prevention, treatment, and care
for all of us” must be wrestled with to minimize risks and ensure
adequate representativeness such that all can benefit from geno-
mics research and ultimately precision medicine.

As genetically diverse data sets continue to grow to massive
scales, it will be invaluable for researchers to be equipped with
tools and resources that facilitate scalable, efficient, and equitable

Figure 6. Overview of tutorials that use cloud computing to conduct common genetic data analyses. We have developed five iPython notebooks with
tutorials for conductingmany of themost common genetic analyses, includingQCof sequencing data, relatedness inference and PCA, calculating statistics
by population, analyzing genetic divergence, and applying ancestry analysis to a new data set using HGDP+1kGP as a reference panel.
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analysis, including allele frequency information, which informs
variant deleteriousness (Karczewski et al. 2017). In the service of
this goal, we concurrently release a series of detailed tutorials, de-
signed to be easily accessible in iPythonnotebooks, showingmany
common genomic analytic techniques as implemented in the
cloud-native Hail software framework, which allows for flexible,
computationally efficient, and parallelized analysis of big data.
The release of this resource on GRCh38, along with these detailed
tutorials, reduce barriers acknowledged by clinical laboratories
that have not yet migrated to the latest genome build, citing that
they donot feel the benefits outweigh the time andmonetary costs
and/or that they lack sufficient personnel to shift (Lansdon et al.
2021). The tutorials also provide a code bank for researchers to con-
duct a variety of analyses, including conducting QC of WGS data,
calculating variant and sample statistics within groups, analyzing
population genetic variation, and applying ancestry labels from a
reference panel to their own data. Overall, resources like this are es-
sential for empowering genetic studies in diverse populations.

Methods

Genetic data sets

HGDP

HGDP genomes sequenced and described previously (Bergström
et al. 2020) were downloaded from http://ftp.1000genomes.ebi
.ac.uk/vol1/ftp/data_collections/HGDP/. Because the publicly
available gVCFs were not the output of GATK HaplotypeCaller
and were incompatible with joint calling, we reprocessed these ge-
nomes and conducted joint variant calling as part of gnomAD v3
(Chen et al. 2024). Most HGDP genomes were PCR-free (N=760),
but some included PCR before sequencing (N=169). They were
also sequenced at different times, for example, as part of the
Simons Genome Diversity Project (SGDP, N=120) or later at the
Sanger Institute (N=801). More details are available from the
source studies (Mallick et al. 2016; Bergström et al. 2020).

1kGP

1kGP genomes have been sequenced as part of multiple efforts,
first to mid-coverage as phase 3 of the 1kGP (The 1000
Genomes Project Consortium 2015) and more recently to high
coverage (≥30×) at the New York Genome Center (NYGC)
(Byrska-Bishop et al. 2022). We used the phase 3 1kGP genomes
only for comparison to previous releases. The phase 3 1kGP data
set was downloaded from https://hgdownload.soe.ucsc.edu/
gbdb/hg38/1000Genomes/. The high-coverage 1kGP genomes
sequenced at the NYGC were downloaded from http://ftp
.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_
high_coverage/working/20201028_3202_raw_GT_with_annot/, and
were harmonized with HGDP genomes to generate the
HGDP +1kGP callset.

HGSVC

The HGSVC generated high-coverage long-read WGS data and ge-
nomic variant calls from 34 samples in the 1kGP project (Ebert
et al. 2021). We have evaluated precision of the SV callset by com-
paring against the long-read SV calls using these 34 genomes. The
long-read SV calls were collected from http://ftp.1000genomes.ebi
.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v1.0/integrated
_callset/.

gnomAD

We compared the HGDP+1kGP resource to gnomAD v3.1.2,
which includes both HGDP and 1kGP high-coverage whole ge-
nomes, to quantify the extent of novel variation across the allele
frequency spectrum contributed by these genomes. To generate al-
lele counts and numbers in gnomAD that would be consistent
with a fully nonoverlapping set of genomes, we subtracted allele
counts and allele numbers in the gnomAD variant callset that
were contributed specifically by the 1kGP and HGDP genomes, ef-
fectively creating a synthetic version of gnomAD without these
genomes.

GGVP

As part of tutorials that showhowwe can intersect an external data
set with HGDP+1kGP and assign metadata labels, we intersected
the HGDP+1kGP genomes with 394 GGVP genomes that are pub-
licly available through the IGSR (http://ftp.1000genomes.ebi.ac
.uk/vol1/ftp/data_collections/gambian_genome_variation_projec
t/data), as described previously (Malaria Genomic Epidemiology
Network 2019). We first downloaded GGVP CRAM files and used
GATK HaplotypeCaller (Poplin et al. 2018) to run variant calling
in GVCFmode on the 394 Gambian genome BAM files. After gen-
erating per-sample gVCFs, the single-sample gVCFs were com-
bined into a multisample Hail sparse MatrixTable (MT) using
Hail’s run_combiner() function (https://hail.is). The GGVP sparse
MT was then combined with the HGDP+1kGP sparse MT using
Hail’s vcf_combiner (https://hail.is) to create a unique sparse MT.
Note that the Hail sparse MT has since been replaced by the Hail
VariantDataset (VDS).

Initial variant calling

The gnomAD Consortium aggregated and called variants across
153,030 individuals, which included the HGDP+1kGP genomes
as part of a larger project described previously (Karczewski et al.
2020; Chen et al. 2024). Briefly, using BWA-MEM0.7.15.r1140, ge-
nomes were mapped to the GRCh38 version hs38DH, which in-
cludes decoy contigs and HLA genes (FASTA located at https://
console.cloud.google.com/storage/browser/gcp-public-data‐‐broad
-references/hg38/v0/). Reads were then processed using GATK best
practices (DePristo et al. 2011) to produce gVCFs, specifically
GATK4 for all modules except HaplotypeCaller (GATK3.5).
Variants from all samples in gnomAD were called jointly using
the Hail combiner (Hail v0.2.62, https://hail.is) and converted to
a VDS, whichwas then densified into a denseMTused for analysis.
The gnomAD team then developed and used an updated pipeline
of sample, variant, and genotype QC as described previously
(Chen et al. 2024).Wemademinormodifications to theseQC pro-
cedures for the extracted subset of HGDP+1kGP, as described in
the Sample and Variant QC section below.

Sample and variant QC

QC of samples was conducted according to procedures used in
gnomAD, which include hard filtering with BAM-level metrics,
sex inference, and ancestry inference described in greater depth
previously (Supplemental Table S9; Chen et al. 2024). However,
we modified some filtering procedures to relax some gnomAD
sample QC filters new to v3 in especially diverse or unique ge-
nomes, specifically, the filters starting with “fail_”. These filters in-
dicate whether samples are outliers in the number of variants after
regressing out principal components, which can indicate a sample
issue. However, we identified whole continental groups and popu-
lations that were removed solely owing to SNV and indel residual
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filters, especially those that were most genetically unique (San,
Mbuti, Biaka, Bougainville, Papuan Sepik, and Papuan
Highlands) (Supplemental Fig. S19). Additional individuals from
the LWK, Bantu Kenya, and Bantu South Africa populations were
also removed solely on the basis of the fail_n_snp_residual filter,
so we removed the gnomAD “fail_” filters that quantify variant
count residuals after regressing out PCs.

The raw data set includes 189,381,961 variants (SNVs and
indels) and 4150 samples. We further filtered samples and variants
according to gnomAD filters. Specifically, we excluded samples
that failed gnomAD’s sample QC hard filters and kept variants
that were flagged as passing in the gnomAD QC pipeline
(Supplemental Table S9). gnomAD applied an allele-specific version
of GATK variant quality score recalibration (VQSR) trained on the
following allele-specific features: FS, SOR, ReadPosRankSum,
MQRankSum, and QC for SNPs and indels, as well as MQ for
SNPs. In addition to filtering on VQSR PASS status and gnomAD
sample QC filters, we also applied genotype QC filters using a func-
tion imported from gnomAD, as described previously (Chen et al.
2024); removed two contaminated samples; and removed mono-
morphic variants. This reduced the number of variants to
159,339,147 and removed33 samples in total. As part of ourQCpro-
cess, we also updated HGDP population labels and some geograph-
ical coordinates as recommended previously (Bergström et al. 2020;
Byrska-Bishop et al. 2022).

Following QC, we conducted global and subcontinental PCA
within and among metadata geographical/genetic region labels
(AFR, AMR, CSA, EAS, EUR, MID, and OCE) and identified 23 an-
cestry outliers that deviated substantially in PC space from others
with the same metadata label along the first 10 PCs (these were
identified visuallywhenone to a few individuals defined the entire
PC). After removing those individuals, 153,894,851 SNVs and
indels in 4094 individuals remained.

We calculated per-sample QC metrics such as the number of
SNVs and call rate using the sample_qc() method in Hail. Because
singletons are especially sensitive to variation in sample size per
population, which is substantial across HGDP and 1kGP, we com-
pared singleton counts by randomly down-sampling to four unre-
lated samples, the minimum number of unrelated individuals per
population, and then removed monomorphic variants. We com-
puted coverage data using the BAM metrics field from gnomAD.
We then calculated the mean of these metrics per individual with-
in a population using Hail’s hl.agg.stats() method (https://hail.is).

Relatedness

We computed relatedness among 4117 samples using the KING-
robust algorithm (Manichaikul et al. 2010) implemented in Hail
(https://hail.is). Specifically, we considered SNVs with MAF be-
tween 0.05 and 0.95 and missingness < 0.1% and performed LD
pruning within a 500-kb window, restricting to variants with r2 <
0.1. Then, for sample-pairs with kinship greater than 0.05, we re-
stricted to a maximally independent set of unrelated individuals.
This resulted in 200,403 SNVs and partitioned the data set into
3419 unrelateds and 698 relateds for PCA analysis.

PCA and ADMIXTURE

We computed 20 PCs across global populations as well as
within each continental ancestry group according to the
“Genetic.region” project metadata label harmonized across
HGDP and 1kGP as shown in Supplemental Table S1. After com-
puting relatedness on the QCed, filtered, and LD pruned data set
as described above, we ran PCA both globally and withinmetadata
labels (AFR, AMR, CSA, EAS, EUR, MID, and OCE) in unrelated in-

dividuals using Hail’s hwe_normalized_pca() function (https
://hail.is).We then projected related individuals into that PC space
using a pc_project() function used in gnomAD and implemented
in Hail. PC plots were then generated using R (R Core Team 2022).

The filtered data set was also used to run ADMIXTURE
(Alexander et al. 2009) across populations and geographical re-
gions for values of K =2 through K=10 using the command “ad-
mixture {bed_file} {1–10}”. We conducted 10 runs for each value
of K and performed a fivefold cross-validation error for the first
run of each K by adding “‐‐cv=5” to the command. Pong (Behr
et al. 2016) was used to visualize ADMIXTURE results. We selected
K=6 as the best-fit value of K based on a reduction in the rate of
change of our fivefold cross-validation, as seen in Supplemental
Figure S8. The best-fit value of K shows a low cross-validation error
compared with other K values.

FST versus geographical distance

For each population pair that had an FST value, we calculated geo-
graphical distance using the haversinemethod (geosphere package
in R) (https://CRAN.R-project.org/package=geosphere) with the
earth’s radius of 6371 km. This method of calculation did not ac-
count for humanmigration patterns so we additionally recalculat-
ed the pairwise geographical distances by incorporating five
waypoints—Istanbul, Cairo, Phnom Penh, Anadyr, and Prince
Rupert—and set predetermined paths that go through certainway-
points depending on the geographical/genetic region towhich the
population pairs belong (Ramachandran et al. 2005). For example,
to calculate the geographical distance between AMR and AFR pop-
ulations, the path would go through Prince Rupert, Anadyr, and
Cairo. In this example, the total distance between the pair would
be the sum of the distances between the starting population and
the first waypoint, pairs of waypoints in order (i.e., first to second
and then second to third), and the thirdwaypoint and the destina-
tion population. The distance between points was calculated using
the haversine. We compared correlations between genetic diver-
gence and geographical distance with and without waypoints us-
ing Pearson’s correlation and Mantel tests.

Structural variants

Initial SV discovery and pruning

We applied GATK-SV (Collins et al. 2020), a public repository at
GitHub (https://github.com/broadinstitute/gatk-sv), to integrate
and genotype SVs from the HGDP and 1kGP samples. Briefly,
the HGDP samples were split into four equivalent sized batches,
each consisting of about 190 samples, based on their initial cohort,
PCR status, sex chromosome ploidy, and sequencing depth of the
libraries (Supplemental Fig. S3). Raw initial SVs were detected per
sample by Manta (Chen et al. 2016), Wham (Kronenberg et al.
2015), MELT (Gardner et al. 2017), cnMOPs (Klambauer et al.
2012), and GATK-gCNV (see the “GatherSampleEvidence” and
“GatherBatchEvidence” functions of GATK-SV) (Babadi et al.
2023) and then were clustered across each batch (see the
“ClusterBatch” function of GATK-SV) and filtered through an
initial random forest machine learning model to remove poten-
tial false-positive SVs (see the “GenerateBatchMetrics” and
“FilterBatch” functions of GATK-SV). The same methods were ap-
plied for SV discovery from the 1kGP samples, with details de-
scribed previously (Byrska-Bishop et al. 2022). We then
concatenated SVs from both the HGDP and 1kGP samples to
form a nonredundant set of unique SV sites (see the
“MergeBatchSites” function of GATK-SV) and genotyped them
across all HGDP+1kGP samples (see the “GenotypeBatch” func-
tion of GATK-SV). Overlapping SVs that indicate potential
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complex formats of SVs were clustered and resolved into complex
events (see the “MakeCohortVcf” function of GATK-SV). We ob-
served mosaicism resulting from gain or loss of X and Y
Chromosomes for several samples (Supplemental Table S5), likely
owing to a cell line artifact from passaging. Although mosaic loss
of the Y Chromosome is the most common form of clonal mosai-
cism (Thompson et al. 2019), the noncanonical sex chromosome
ploidies observed are not unique to these samples and have been
previously observed in other data sets (Collins et al. 2020;
Byrska-Bishop et al. 2022).

SV refinement and annotation

A series of refinements have been applied to improve the precision
of SV calls while maintaining high sensitivity. First, two machine
learning models have been developed and applied to prune false-
positive SVs. A lightGBM model (Byrska-Bishop et al. 2022) has
been trained on the nine 1kGP samples that have been deep se-
quenced with long-read WGS data by the HGSVC (Chaisson
et al. 2019; Ebert et al. 2021), and applied to all SVs except for large
biallelic CNVs (>5 kb). Meanwhile, a minGQ model (Collins et al.
2020) has been trained using the inheritance information among
trio families to filter biallelic CNVs that are ≥5 kb. Genomes that
failed themachine learningmodels were assigned a null genotype,
and the proportion of null genotypes among all sampleswas calcu-
lated as an “no call rate” (NCR) score. SV sites that have a ≥10%
NCR were labeled as low-quality variants and removed from
further analyses. Then,we examined the distribution of SVs per ge-
nome to identify potential outlier samples that carry significantly
more SVs than average, and also compared the frequency of SVs
across each batch to identify SVs that showed significant bias
(i.e., batch effects). The resulting SV callset was annotated with
their frequency by their ancestry.

Data set comparisons

All of the comparison data sets used GRCh38 as their reference
genome except for phase 3 1kGP, which was on hg19. Phase 3
1kGP phased haplotypes on GRCh38 were provided by the
International Genome Sample Resource (IGSR).The comparison
data sets consisted of phase 3 of the 1kGP (The 1000 Genomes
Project Consortium 2015), gnomAD v3.1.2 (Chen et al. 2024),
high-coverage HGDP whole-genome sequences (Bergström et al.
2020), and the NYGC 1kGP (Byrska-Bishop et al. 2022). All of these
data sets were sequenced to high coverage (≥30×) aside from the
phase 3 1kGP, which is an integrated callset composed of array,
exome, and whole-genome data with the whole genomes se-
quenced to 4×–8× coverage. The NYGC 1kGP data set includes all
of the original 2504 samples from the phase 3 1kGP as well as an
additional 698 related samples. The NYGC data set and the
BergströmHGDP data set were the only two data sets that contained
multiallelic variants, and multiallelic variants were split before con-
ducting the comparison. The synthetic gnomAD data set was gener-
ated by filtering to samples only included in the gnomAD release,
excluding samples that were in HGDP+1kGP but not in gnomAD.
The allele count, allele number, and MAF were then calculated on
this synthetic gnomAD data set to obtain those metrics for
samples that were only in gnomAD. The variant annotations for
the X and Y Chromosomes for the NYGC 1kGP and the
Bergstrom HGDP data sets differed from those of the autosomes.
Because this prevented them from being read intoHail, we removed
the X and Y Chromosomes from all data sets before conducting
the comparison. In addition, each of the comparison data sets
was filtered using the INFO section of their respective VCFs as
imputed by the hail import_vcf() method (https://hail.is).

For Bergström HGDP, those filters were excess heterozygosity
(ExcHet) and LOW_VQSLOD, which removed 4,278,530 total
variants. NYGC 1kGP has the VQSRTrancheINDEL99.00to100.00
and VQSRTrancheSNP99.80to100.00 filters, which removed
10,909,291 variants. Phase 3 1kGP did not have any filters listed
in the info field. The gnomAD data set had 115,034,289 total vari-
ants removed by the following filtering: allele count is zero after fil-
tering out low-confidence genotypes (AC0), failed allele-specific
variant quality score recalibration (AS_VQSR), and inbreeding coef-
ficient (InbreedingCoeff) <−0.3. Counts for the number of variants
removed by comparison data set filters can be found in
Supplemental Table S10. Variant comparison was performed using
MAF, which was calculated for each comparison data set apart
from gnomAD using Hail’s variant_qc() method (https://hail.is)
and taking the minimum value of the allele frequency array. A
MAF table was created for each of the comparison data sets contain-
ing counts of the number of variants in each MAF bin. To generate
these tables, we first removed anymissing variants.We then created
a flag, in_comparison, whichwas true if a variant in the comparison
data set at [locus, alleles] was also in the HGDP+1kGP data set. The
HGDP+1kGP data set used for every comparison aside from
gnomADwas the post-QC version. This version excludes PCA outli-
ers and has gnomAD sample, variant, and genotype QC applied, as
described in the Sample andVariant QC section. Because of the syn-
thetic version of the gnomAD data set used for comparison, the
post-QC HGDP+1kGP comparison data set included PCA outliers,
as some of themmay have been in gnomAD.MAF bins were created
containing the counts of variants fromHGDP+1kGP in each of the
MAF categories. Once the bins were generated, we used the in_com-
parison flag to see which alleles in the data set were shared and in
HGDP+1kGP only. In the comparison data set, we created a flag,
not_in_hgdp_1kg, which was true if the variants in the comparison
data set were not present in HGDP+1kGP. We appended the count
of true values for that flag onto the table as the 0% MAF bin to
denote variants that were only in the comparison data set and there-
fore have a MAF of 0% in HGDP+1kGP. The final bar plot was gen-
erated from the data in the MAF tables using R. To investigate why
some variants were missing in the HGDP+1kGP data set compared
with the comprising data sets, we looked at pre- and post-QC counts
of SNPs and indels for these variants, finding that there are fewer
variants missing from HGDP+1kGP after QC filters were applied
to the comparison data set (Supplemental Table S11). For all of
the data sets aside from NYGC 1kGP, we used the included annota-
tions of SNV or indel to calculate the numbers. NYGC 1kGP did not
have allele type information, so we manually classified indel and
SNVs based on length of alleles. The phase 3 1kGP phased data set
did not contain any indels. For the gnomADdata set, there were ad-
ditionally variants labeled as complex, which we excluded from
these counts. Alleles labeled as deletion and insertion were com-
bined to create one indel label. To calculate the SNV and indel
counts, we took the intersection of variants thatwere in the compar-
ison data set but not in the HGDP+1kGP data set, as with the main
comparison described above, additionally counting variants in pre-
and post-QC data sets.We did this four times to obtain all combina-
tions of pairwise pre- and post-QC comparisons and then counted
the number of variants in the pre- and post-QC HGDP+1kGP
data set.

Phased haplotypes and imputation accuracy evaluation

To create a haplotype reference panel that can be used for phasing
or imputation, we first constructed a pedigree file with familial re-
lationships between first-degree relatives in the QCed harmonized
data set to improve phasing accuracy. We ran additional related-
ness checks using the PC-Relate algorithm (Conomos et al. 2016)

Koenig et al.

806 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278378.123/-/DC1
https://hail.is
https://hail.is
https://hail.is
https://hail.is
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278378.123/-/DC1
https://hail.is
https://hail.is
https://hail.is
https://hail.is
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278378.123/-/DC1


implemented in Hail (https://hail.is). The PC-Relate results were
filtered to sample pairs with a kinship statistic between 0.248
and 0.252. We then cross-checked the filtered PC-Relate results
with the publicly available NYGC 1kGP pedigree file (Byrska-
Bishop et al. 2022) and found that all parent–child relationships
estimated by PC-Relate are reported in the 1kGP pedigree file. Of
602 previously reported trios, nine samples failed QC (six owing
to gnomAD sample QC, three owing to ancestry outliers). In total,
we therefore included 599 families, six of whichwere duos and the
remaining 593 of which were trios. To investigate if there are any
possible duplicate samples/monozygotic twins within or across
projects, we filtered the PC-Relate results to sample pairs with
kin statistic > 0.35 and found five pairs of samples, of which three
have been reported before (Mountain and Ramakrishnan 2005).
To verify if the five sample-pairs are indeed possible duplicates
and/ormonozygotic twins, we ran Identity-By-Descent (ref) as im-
plemented inHail (https://hail.is) and found that each sample-pair
shared almost all alleles (IBS2). One sample from each of the five
pairs was filtered out from the data set.

As recommended by the SHAPEIT5 documentation
(Hofmeister et al. 2023), we applied additional QC filters to the
data set before phasing the haplotypes, keeping only variants
with (1) HWE≥1 ×10−30, (2) F_MISSING≤0.1, and (3) ExcHet≥
0.5&&ExcHet≤1.5. Commonvariants (MAF≥0.1%)were phased
in large chunks of 20-cM length using the phase_common pro-
gram in SHAPEIT5 (Hofmeister et al. 2023). The common variants
chunks were then ligated together to create a haplotype scaffold
containing partially phased haplotypes for each autosome (Chr
1–22). Using the partially phased scaffolds as input, rare variants
(MAF<0.1%)were then phased in small chunks of 4-cM length us-
ing the phase_rare program in SHAPEIT5 (Hofmeister et al. 2023).
Lastly, the fully phased chunks were then concatenated into chro-
mosomes and indexed using BCFtools (Danecek et al. 2021). To
improve the quality of phasing, pedigree information was used
when phasing both common and rare variants.

To evaluate phasing accuracy, we used the “switch” utility of
SHAPEIT5 (Hofmeister et al. 2023) to compute switch error rate,
treating the HGSVC2 genomes as “truth” and statistically phased
genomes as a test set. To evaluate imputation accuracy, we
used a filtering and down-sampling strategy to simulate GWAS ar-
rays and 93 whole genomes sequenced at various depths from pre-
viously sequenced high-coverage whole genomes from the
Neuropsychiatric Genetics of African Populations-Psychosis
(NeuroGAP-Psychosis) study, as previously (Martin et al. 2021).
Briefly, these genomes were from participants in Ethiopia,
Kenya, South Africa, and Uganda. Ethical and safety consider-
ations are being taken acrossmultiple levels, as described in greater
detail previously (Stevenson et al. 2019). TheGWAS arrays we eval-
uated included the widely used Illumina Global Screening Array
(GSA) designed to increase scalability and improve imputation ac-
curacy in European populations, the Multi-Ethnic Genotyping
Array (MEGA) designed to improve performance across globally
diverse populations, and the H3Africa array specialized for higher
genetic diversity and smaller haplotype blocks inAfrican genomes.
We previously down-sampled reads randomly to an average of
0.5×, 1×, 2×, and 4× using the GATK DownsampleSam module
(Poplin et al. 2018), which retains a random subset of reads and
their mate pairs deterministically. More details on the down-sam-
pling strategy are previously described (Martin et al. 2021).

Software availability

Code is available at GitHub (https://github.com/atgu/hgdp_tgp)
and as Supplemental Code.

Data access

All data from this study are freely available and described in
more detail at https://gnomad.broadinstitute.org/news/2020-10-
gnomad-v3-1-new-content-methods-annotations-and-data-
availability/#the-gnomad-hgdp-and-1000-genomes-callset.

The gnomAD HGDP+1kGP callset can be found at https://
gnomad.broadinstitute.org/downloads#v3-hgdp-1kg. Note that
files ending with .bgz can be viewed using zcat on the command
line.

Computational tutorials for conducting many of the most
common genetic analyses including those implemented on this
data set are available at GitHub (https://github.com/atgu/
hgdp_tgp/tree/master/tutorials).

Data sets used in the tutorials are located at https://gnomad
.broadinstitute.org/downloads#v3-hgdp-1kg-tutorials (Supple-
mental Documents).

Phased haplotypes are available as BCFs on Google Cloud at
the following path: gs://gcp-public-data‐‐gnomad/resources/
hgdp_1kg/phased_haplotypes_v2/ (Supplemental Documents).

More details can be found at https://docs.google.com/
document/d/1LCx74zREJaJwtN0MzonSv1QB3UahVtgTfjkepXaQ
Uxc/edit.

Data sets found on the Downloads page of the gnomAD
browser are released on the Google Cloud Platform, Amazon
Web Services, and Microsoft Azure. Instructions on how to down-
load them can be found at https://gnomad.broadinstitute.org/
downloads.
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