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Large-scale genomic initiatives, such as the Earth BioGenome Project, require efficient methods for eukaryotic genome an-

notation. Here we present an automatic gene finder, GeneMark-ETP, integrating genomic-, transcriptomic-, and protein-de-

rived evidence that has been developed with a focus on large plant and animal genomes. GeneMark-ETP first identifies

genomic loci where extrinsic data are sufficient for making gene predictions with “high confidence.” The genes situated

in the genomic space between the high-confidence genes are predicted in the next stage. The set of high-confidence genes

serves as an initial training set for the statistical model. Further on, the model parameters are iteratively updated in the

rounds of gene prediction and parameter re-estimation. Upon reaching convergence, GeneMark-ETP makes the final pre-

dictions and delivers the whole complement of predicted genes. GeneMark-ETP outperforms gene finders using a single

type of extrinsic evidence. Comparisons with gene finders MAKER2 and TSEBRA, those that use both transcript- and pro-

tein-derived extrinsic evidence, show that GeneMark-ETP delivers state-of-the-art gene-prediction accuracy, with themargin

of outperforming existing approaches increasing in its application to larger and more complex eukaryotic genomes.

[Supplemental material is available for this article.]

Massive sequencing of eukaryotic genomes, for example, the Earth
BioGenome Project (Lewin et al. 2022), should be complemented
with fast and accurate automatic tools of genome annotation. The
development of such tools remains an active area of research. One
of the long-standing challenges is to achieve optimal integration
of the intrinsic evidence of protein-encoding by a nucleotide se-
quence with the extrinsic evidence of gene presence provided by
endogenous RNA or known cross-species protein sequences.
Gene-finding methods developed before the transition to massive
genomic sequencing powered by high-throughput sequencing
have been focused on using intrinsic evidence in the form of the
Markov chain models reflecting the k-mer frequency patterns,
probabilistic models of functional sites controlling translation
and splicing, intron/exon length distributions, etc. All these prob-
abilistic models served as elements of a generalized HMM
(GHMM), for example, Genie (Kulp et al. 1996), GENSCAN
(Burge and Karlin 1997), and GeneID (Parra et al. 2000). The bot-
tleneck of the application of the early methods was a tedious prep-
aration of the supervised species-specific training sets. The training
automationwas first made inGeneMark-ES, an ab initio gene find-
er implementing a hierarchical procedure of iterative unsupervised
training (Lomsadze et al. 2005; Ter-Hovhannisyan et al. 2008). The
accuracy of gene predictions made by GeneMark-ES in compact
fungal and protist genomes has been high and is still difficult to
improve even by adding currently available extrinsic evidence.
Since the advent of high-throughput sequencing, the rapid accu-
mulation of RNA and protein information has opened ample op-
portunities for the addition of extrinsic evidence (Guigo et al.

2006; Coghlan et al. 2008; Goodswen et al. 2012; Scalzitti et al.
2020). This addition proved to be critically important for increas-
ing gene-prediction accuracy in large plant and animal genomes
having low gene density. The accuracy improvement of fully auto-
matedmethods is a twofold problem It concerns improvements of
both training and prediction steps.

One kind of extrinsic evidence comes from known cross-spe-
cies proteins. These proteins may guide predictions of the genes
encoding proteins from the same family in a novel genome. Con-
fident spliced alignment of a cross-species protein to a locus in the
novel genome gives an excellent starting point for delineation of
the full exon–intron structure of the true gene. Spliced alignments
have been used in several gene finders, for example, in exonerate
(Slater and Birney 2005), GenomeThreader (Gremme et al.
2005), and ProSplign (Kiryutin et al. 2007). Sequencing of ex-
pressed endogenous RNA provides another type of external evi-
dence. Cufflinks (Trapnell et al. 2010), StringTie (Pertea et al.
2015; Kovaka et al. 2019), PsiCLASS (Song et al. 2019), etc. map
short RNA-seq reads to the genome to identify exon/intron borders
of the genes having detectable levels of expression. Notably, a
method leveraging any type of extrinsic evidence is useful only
for finding a subset of genes for which such evidence exists.

The goal of improving integration of intrinsic and extrinsic
evidence has continued tomotivate the creation of new gene-find-
ingmethods formore than two decades, for example, GAZE (Howe
et al. 2002), Combiner (Allen et al. 2004), JIGSAW (Allen and
Salzberg 2005), Evigan (Liu et al. 2008), EVidenceModeler (Haas
et al. 2008), MAKER2 (Holt and Yandell 2011), IPred (Zickmann
and Renard 2015), GeMoMa (Keilwagen et al. 2018), LoReAn
(Cook et al. 2019), GAAP (Kong et al. 2019), FINDER (Banerjee
et al. 2021), BRAKER1 (Hoff et al. 2016), BRAKER2 (Brůna et al.
2021), and TSEBRA (Gabriel et al. 2021).
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GeneMark-ETP takes several steps of integration. First,
GeneMarkS-T, the GHMM-based ab initio gene finder for tran-
scripts (Tang et al. 2015), is used to predict protein-coding regions
(CDSs) in transcripts assembled from RNA-seq reads by StringTie2
(Kovaka et al. 2019). Second, the predicted CDSs are validated or
modified, if the protein level evidence suggests so, by the module
that we call GeneMarkS-TP. Next, the CDSs predicted in the tran-
scripts aremapped to the genome.We show that the resulting gene
models have distinctly high Precision (Pr) and call them high-con-
fidence genes (HC genes). The set of HC genes is used as an initial
training set for the genomicGHMMused byGeneMark-ETP to pre-
dict genes situated in genomic regions between the HC genes. The
extrinsic information (hints from spliced aligned proteins and
mapped RNA-seq reads) is plugged in at this step into the Viterbi
algorithm. The rounds of genome-wide gene prediction andmodel
parameters estimation continue until convergence.

For benchmarking, we selected seven eukaryotic genomes,
both GC-homogeneous and GC-inhomogeneous: Arabidopsis
thaliana, Caenorhabditis elegans, Drosophila melanogaster, Solanum
lycopersicum, Danio rerio, Gallus gallus, and Mus musculus. Along
with GeneMark-ETP we tested GeneMark-ET; GeneMark-EP+; the
pipelines BRAKER1, BRAKER2, and MAKER2; and TSEBRA. The
tests showed the state-of-the-art performance of GeneMark-ETP,
whose margin of improvement over other gene finders increased
with the increase in the genome length.

Results

Introductory comments

Here, we introduce definitions of several terms used throughout
the text. The goal of gene-finding algorithms is to predict pro-
tein-coding genes that may have several alternative transcripts.
Upon RNA transcripts assembly (by StringTie2), transcripts repre-
senting one and the same gene (alternative RNA transcripts) are de-
termined. The alternative mRNA transcripts may have identical
CDS sequences but may differ in the UTR regions. We are con-
cerned only with the protein (CDS) isoforms.

We measure gene-prediction accuracy at two levels, the gene
level and the exon level. A protein-coding
gene prediction is considered to be cor-
rect if at least one of the predicted CDS
isoforms matches one of the annotated
CDS isoforms. A protein-coding exon is
predicted correctly if it matches exactly
an annotated exon.

Most previous publications on
gene-finding methods and their bench-
marking have used the term “specificity”
(Sn) for the measure defined as
#TP/(#TP + #FP), where #TP is the num-
ber of true positives and #FP is the num-
ber of false positives. However, in the
related and fast-growing field of machine
learning, the term “specificity” has the
meaning of true-negative rate defined as
#TN/(#TN + #TP), where #TN is the
number of true negatives. To unify the
designations, because of the request of
the Genome Research editors, we have
switched here to the term “precision”
(Pr) for #TP/(#TP + #FP).

Thus, we characterize the prediction accuracy (at a gene or an
exon level) by sensitivity (Sn), Sn = #TP/(#TP + #FN), and Pr,
Pr = #TP/(#TP + #FP), where #TP and #FP are defined above, and
#FN is the number of false-negative predictions.

As a single accuracy measure, we use the F1 score, the
harmonic mean of Sn and Pr, F1=2× Sn×Pr/(Sn+Pr) or
F1 = #TP/(#TP + (#FN + #FP)/2). For convenience, the F1 score is
multiplied by 100. Note that the latter formula for F1 is not equiv-
alent to the former one if Sn and Pr are computed using different
sets of positive examples (annotated CDSs). Therefore, to avoid
ambiguities, we use the former formula in all the computations.

Integration of extrinsic evidence in GeneMarkS-TP

At the first step of the GeneMark-ETP pipeline (Fig. 1;
Supplemental Figs. S1–S6), short RNA-seq reads were assembled
into transcripts by StringTie2 (Kovaka et al. 2019). Next, iterative
unsupervised training of GHHM of GeneMarkS-T was performed
on these assembled transcripts using the rounds of model param-
eter estimation and ab initio gene predictions (Tang et al. 2015).

Running GeneMarkS-T is the first step in the GeneMarkS-TP
module (Fig. 2). The CDSs predicted byGeneMarkS-T in assembled
transcripts were translated, and the amino acid sequences were
aligned with homologous cross-species proteins found by a data-
base search. The alignments served as guides for corrections of
the initially predicted CDSs (see Methods). The magnitudes of
changes in Sn and Pr upon the corrections depended on the size
of the protein database used by GeneMarkS-TP (Table 1).
Corrections in initially predicted CDSs increased the Pr values,
on average, by 25 percentage points, reaching close to or even
higher than 90%. Thus, the refined CDSs were dubbed high-confi-
dence CDSs (HC CDSs) (Table 1; Supplemental Table S1).

We saw that both the numbers of GeneMarkS-T predictions
(the HC CDS candidates) and the numbers of HC CDSs predicted
byGeneMarkS-TP correlatedwith the numbers of the RefSeq anno-
tated CDSs (Table 1; Supplemental Fig. S7). The HC CDSs could
give accurate predictions of exon–intron structure coordinates
for up to 60% of protein-coding genes present in the RefSeq ge-
nome annotations (Table 1).

Figure 1. High-level diagram of the GeneMark-ETP processing of genomic, RNA-seq, and protein se-
quences. For more details, see Figure 2 and Supplemental Figures S1 through S6.
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The numbers of HC CDSs predicted with the larger “species
excluded” databases did not differ significantly from the numbers
of HC CDSs predicted with the use of the smaller “order excluded”
databases (Table 1; Supplemental Fig. S7). Also, the Pr values of the
HC CDSs did not change significantly upon transition from the
“order excluded” to the “species excluded” database.

At the step preceding the generation of the final set of gene
predictions, we have had a large set of gene candidates. The gene
candidates could be divided into groups with different level of ex-
trinsic support: (1) those with full extrinsic support, having all the
exon borders supported by high-scoring hints; (2) those with par-
tial extrinsic support, having high-scoring hints for some but not
all exon borders; (3) those that were predicted ab initio and had an
a posteriori detected match to a low-scoring hint of at least one
exon border; and (4) those predicted ab initio and had no match
to any extrinsic hints. Importantly, theHCCDSs belong to the first
two categories. The meaning of an “a posteriori detected match to
low-scoring hints” is that such hintswere not used in the gene-pre-
diction algorithm.

Now, to focus solely on results, we must skip further details
related to the description of the pipeline (see Methods) (Figs. 1,
2; Supplemental Figs. S1–S6).

One could see that for all seven genomes, the Pr values of the
candidate genes decreased significantly upon a decrease in the lev-
el of extrinsic support, thus indicating an increase in false-positive
rates (Table 2).

In the genomes of D. rerio, G. gallus, andM. musculus, having
the largest average length of introns and intergenic regions among
the seven genomes, the gene candidates of category 4 had Pr values
at the gene level <1.5%, thus indicating an exceedingly high false-
positive rate. For these three large genomes, as well as for the ge-
nome of S. lycopersicum, an exclusion of gene candidates of catego-
ry 4 led to a 21-percentage-point increase, on average, in the gene-
level Pr, with a simultaneous 0.3-percentage-point decrease in Sn
(Supplemental Table S2). On the other hand, such a pruning of
the gene candidates generated in the analysis of the three
compact genomes, A. thaliana, C. elegans, and D. melanogaster,
would increase, on average, the gene-level Pr by 3.7 percentage
points and decrease Sn by 1.7 percentage points. These observa-
tions suggest that when sufficiently long eukaryotic genomes
(e.g., genomes >300 Mb) are considered, the gene candidates of

category 4 should not be included into the lists of predicted genes
(CDSs).

Yet another observation is that the numbers of predicted
genes are close to the numbers of annotated genes, whereas the to-
tal numbers of predicted CDSs (including alternative CDSs) are
consistently and significantly smaller than those in annotation
(Table 3). Indeed, alternative CDSs are predicted in relatively small
numbers on the whole-genome scale, because they are predicted
only as CDS isoforms of the HC genes.

Assessment of the gene-prediction accuracy

The accuracy of previously developed gene-finding tools shows a
consistent decline with the increase in the length of eukaryotic
genome. This pattern is because of the increasing difficulty of ac-
curately finding protein-coding sequences constituting a dimin-
ishing fraction of the whole genome, whereas noncoding
regions are taking larger and larger genomic space. Indeed, for
compact genomes, the values of gene-prediction Sn and Pr of the
tools developed earlier and those developed later, including
GeneMark-ETP, are relatively close and change incrementally
(Fig. 3; Supplemental Fig. S8). However, for the large genomes,
GeneMark-ETP makes significant improvements both for GC-ho-
mogenous S. lycopersicum andD. rerio and, especially, for GC-inho-
mogeneousG. gallus andM.musculus, for whichwe see the double-
digit improvements of Sn and Pr (Fig. 4; Supplemental Fig. S8;
Supplemental Tables S3, S4).

The results of comparison with the gene finders using a sin-
gle type of extrinsic evidence were as follows. Over GeneMark-ET
(using RNA-seq reads mapping to augment the training process),
the gene-level F1 was improved, on average, by 19.6, 47.8, and
66.3 points for the groups of compact, large homogeneous, and
large inhomogeneous genomes, respectively. Over GeneMark-
EP+ (using spliced aligned cross-species proteins), the increases
in F1 were, respectively, 14.2, 33.9, and 55.7 points, noticeably
lower numbers than the ones related to GeneMark-ET
(Supplemental Table S3). GeneMark-ETP also showed improve-
ments in F1 scores over BRAKER1 and BRAKER2, the pipelines
containing GeneMark-ET and GeneMark-EP+, respectively. In
comparison with BRAKER1, for the same three groups of ge-
nomes, the increases in F1 were, on average, by 9.7, 29.2, and

Table 1. Statistics characterizing the GeneMarkS-T initial gene predictionsmade in assembled transcripts as well as the HC genes predicted by the
GeneMarkS-TP module

Species
No. of genes initially predicted

by GeneMarkS-T
Sn/Pr of GeneMarkS-T-

predicted genes

Order excluded DB Species excluded DB

No. of HC
genes

Sn/Pr of HC
genes

No. of HC
genes

Sn/Pr of HC
genes

C. elegans 14,746 46.8/63.4 8062 35.7/88.4 11,399 51.7/90.6

A. thaliana 17,589 51.2/79.9 16,008 56.7/97.3 16,551 58.8/97.6

D. melanogaster 10,163 59.6/81.8 8109 55.0/94.7 9223 63.7/96.3

S. lycopersicum 19,526 68.0/78.4 17,231 75.1/95.3 17,489 75.8/95.2

D. rerio 22,992 59.6/59.9 16,918 67.0/88.5 16,573 66.9/90.4

G. gallus 17,381 49.6/47.0 12,473 74.4/89.1 12,564 74.0/88.4

M. musculus 15,819 49.6/63.2 13,057 63.5/93.2 12,965 63.9/94.5

Two versions of a reference protein database were used for each species: the “species excluded” and the “order excluded” (see section “Data sets”).
Refinement made by GeneMarkS-TP reduced the number of initial predictions and produced a significant increase in Pr. In most of the genomes, there
was also a positive change in Sn, especially in large inhomogeneous genomes of G. gallus and M. musculus. Additional data are provided in
Supplemental Table S1.
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58.5 points. In comparison with BRAKER2, the F1 average im-
provements were 11.2, 21.9, and 47.6 points. The better perfor-
mance of BRAKER2 in comparison with BRAKER1 is in line
with the observed better performance of GeneMark-EP+ in com-
parison with GeneMark-ET, both of which are important parts of
BRAKER2 and BRAKER1, respectively.

Next, we have considered gene predictions in which two
sources of extrinsic evidence are accounted for. First, three combi-
nations of the sets of gene predictions made separately by
GeneMark-ET and GeneMark-EP+ could be constructed (see
Methods). Still, GeneMark-ETP outperformed even the “best”
combination of GeneMark-ET and GeneMark-EP+ gene predic-
tions. For the D. melanogaster genome, taken as an example,
GeneMark-ETP improved Sn by 7.5 percentage points and Pr by
13 percentage points over the “best” combination, in which Sn
and Pr correspond to a “diamond” point (see Fig. 5). The gene-level
F1 scores were improved by GeneMark-ETP over the F1 scores of
the “best” combination of gene predictions by 10.1, 18.0, and

56.6 points for genomes of D. melanogaster, S. lycopersicum, and
G. gallus, respectively.

Next, the comparisons were madewith TSEBRA (Gabriel et al.
2021) and MAKER2 (Holt and Yandell 2011). TSEBRA combines
predictions made independently by BRAKER1 and BRAKER2 and
filters out less reliable predictions from the union of the sets of
genes predicted by the two pipelines. The gene-level F1 values of
GeneMark-ETP and TSEBRAwere comparable in the group of com-
pact genomes. However, the average F1 values of GeneMark-ETP
were better by 8.2 points for the two large GC-homogeneous ge-
nomesandwerebetterby39.0points for the two largeGC-inhomo-
geneous genomes, respectively (Figs. 3, 4; Supplemental Table S4).

The MAKER2 pipeline runs AUGUSTUS, SNAP, and
GeneMark-ES. As extrinsic evidence, MAKER2 uses transcript and
protein data. The experiments performed with the genomes of D.
melanogaster,D. rerio, andM. musculus representing compact, large
GC-homogeneous, and GC-inhomogeneous genomes showed, re-
spectively, 23.3-, 21.7-, and27.8-point improvements in gene-level

Table 2. Distribution of the gene-prediction candidates among the four groups that differ by the level of extrinsic support

Species Support for predicted gene candidates

Order excluded DB Species excluded DB

No. of candidates Precision % No. of candidates Precision %

C. elegans Fully extrinsic 7676 88.9 10,778 91.6

Partially extrinsic 4804 56.4 5417 54.4

Match to low-scoring hints 4020 54.7 1548 45.2

No extrinsic match 1298 24.9 778 18.0

A. thaliana Fully extrinsic 16,445 97.2 18,083 97.5

Partially extrinsic 4825 64.4 5807 55.7

Match to low-scoring hints 1794 50.2 1360 30.1

No extrinsic match 2964 27.9 1128 9.4

D. melanogaster Fully extrinsic 8059 95.1 9952 96.8

Partially extrinsic 2328 49.3 2751 44.9

Match to low-scoring hints 1043 57.1 165 44.9

No extrinsic match 1369 41.6 377 15.9

S. lycopersicum Fully extrinsic 17,639 95.2 18,420 95.0

Partially extrinsic 5174 47.3 5813 44.3

Match to low-scoring hints 1577 38.4 1484 29.7

No extrinsic match 4714 14.8 3703 9.2

D. rerio Fully extrinsic 15,691 89.8 15,501 92.6

Partially extrinsic 10,905 16.6 11,769 16.6

Match to low-scoring hints 1973 11.4 1663 7.3

No extrinsic match 12,534 0.8 11,879 0.3

G. gallus Fully extrinsic 11,856 89.3 11,547 89.9

Partially extrinsic 4857 19.6 5337 20.1

Match to low-scoring hints 527 8.9 579 7.1

No extrinsic match 11,332 0.4 11,352 0.3

M. musculus Fully extrinsic 13,556 94.6 13,769 96.2

Partially extrinsic 7376 20.6 7606 19.6

Match to low-scoring hints 957 10.1 1155 7.3

No extrinsic match 20,711 1.2 19,666 0.5

In the “match to low-scoring hints” category, we placed the candidates that were predicted fully ab initio, whereas in a posteriori analysis, a match
of at least one exon border to a low-scoring extrinsic hint was detected. The category “no extrinsic match” contains the ab initio predictions that
have no match to any extrinsic hints (see text). Average gene-level Pr values are listed for each group. Protein databases are described in the section
“Data sets.”

Brůna et al.

760 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.278373.123/-/DC1


F1, made by GeneMark-ETP (Supplemental Table S5). All the gene
finders used in MAKER2 were run with parameters that, arguably,
corresponded to the best-case scenario of training (see Methods).
We used specially designed reduced-size databases of the cross-
species proteins as the runtime of MAKER2 with our minimal size
“order excluded” databases turned out to be prohibitive (see
Supplemental Methods, Sec. S5). Change to the smaller databases
brought the F1 of GeneMark-ETP down in comparison with its
runwith “order excluded” databases by about 5.0 points forD.mel-
anogaster andM. musculus but did not change F1 score for D. rerio.

Applicability of the BUSCO scores for assessment of the gene-prediction

accuracy

To address possible questions about using the BUSCO scores
(Manni et al. 2021) for assessment of gene-prediction accuracy,
we computed the BUSCO completeness scores both for
GeneMark-ETP predictions and for the RefSeq annotations
(Supplemental Table S6). The BUSCO scores have reached >90%
for all seven genomes, whereas the gene-level Sn, Pr, and the F1
scores have shown much broader distributions of scores and
much larger deviations from the perfect 100 sealing (Figs. 3, 4;
Supplemental Tables S3, S4). These results are not unexpected
because the BUSCO technique does not expect “identity” between

the predicted proteins and the BUSCO proteins that represent a
subset of all the proteins in a species proteome. The rules we use
in the assessment of the accuracy of gene prediction aremore strin-
gent; they require exactmatches of predicted and annotated CDSs.
Although BUSCO scores are overly optimistic if used for assess-
ment of gene-prediction quality, they are certainly helpful for
the coarse evaluation of completeness of genome assembly and an-
notation (Huang and Li 2023).

Discussion

The GeneMark-ETP features

The GeneMark-ETP algorithm is using several previously devel-
oped concepts and approaches, such as the construction of an-
chored exon borders (GeneMark-ET), generation of external
hints from multiple protein spliced alignments (GeneMark-EP+),
and unsupervised iterative training of GHMM (GeneMark-ES,
GeneMark-ET, GeneMark-EP+). However, a distinct feature of
GeneMark-ETP is the integration of transcript and protein infor-
mation in the GeneMarkS-TP module that generates a set of
high-confidence CDS predictions. The predicted HC CDSs are
not changed in the subsequent steps of the algorithm when it
makes iterative training and prediction of the CDSs in genomic re-

gions between the HC genes.
We showed that the predicted HC

genes had much higher Pr than the ini-
tial set of gene candidates (Table 1;
Supplemental Fig. S7). The number of
HC gene predictions made in each ge-
nome with the “order excluded” data-
base did not differ significantly (except
C. elegans) from the number of HC genes
predictedwith the “species excluded” da-
tabase (Table 1; Supplemental Fig. S7).
Also, the Pr values did not change signif-
icantly upon transition from the “order
excluded” to the larger, “species exclud-
ed” databases. These observations indi-
cated that more distant proteins carry
significant information for refinements
of the HC gene candidates. If for a novel
genome, there is a limited number of
sequenced and annotated genomes of

Table 3. Numbers of the predicted and annotated genes as well as individual CDSs (including all alternative CDSs)

Species

GeneMark-ETP RefSeq annotation

No. of protein-coding
genes

No. of predicted genomic
CDSs

No. of protein-coding
genes

No. of annotated genomic
CDSs

C. elegans 18,820 19,806 19,969 28,544

A. thaliana 26,449 27,708 27,445 40,827

D. melanogaster 12,850 14,138 13,951 22,395

S. lycopersicum 24,420 26,341 25,158 31,911

D. rerio 28,608 31,961 25,610 42,929

G. gallus 17,275 21,433 17,279 38,534

M. musculus 23,956 27,686 22,405 58,318

Note that the genomic CDSs and the corresponding transcript CDSs are supposed to be identical in sequence. The “order excluded” reference data-
bases were used by GeneMark-ETP (see section “Data sets”).

Figure 2. The diagram illustrates the work of the GeneMarkS-TP module generating the CDSs and
genes predicted with high confidence (see also Supplemental Figs. S1–S3).
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closely related species, then the accuracy estimates made for gene
predictions with the “order excluded” databases would bemore re-
alistic than the estimates obtained with the “species excluded”
databases.

Gene-prediction Sn also changed in transition from the HC
gene candidates to the HC genes. The pattern of change depended
on the size of the protein database. For instance, if the “order ex-
cluded” databases were used, then among all the seven genomes
only the HC genes predicted in theC. elegans orD.melanogaster ge-
nomes had a lower Sn in comparison with the ones of the HC gene
candidates. However, the HC genes predicted with the larger “spe-
cies excluded” database had a higher Sn than the HC gene candi-
dates in all the seven genomes (Table 1).

Among groups of gene candidates segregated by the level of
extrinsic support, we observedmuchhigher Pr in the group having
full extrinsic support than in the group having partial extrinsic
support (Table 2). In the three compact genomes and in the toma-
to genome, the magnitude of the difference in Pr was 30–40 per-
centage points, whereas in the genomes of D. rerio, G. gallus, and
M. musculus, the difference in Pr was more than 50 percentage
points. The Pr values in the second and the third groups of gene
candidates decreased as the size of the protein database increased
(Table 2). This change is explained by themove ofmany gene can-
didates from these two groups to the group with full extrinsic sup-
port, when the “order excluded” database was changed to the
“species excluded” one.

Another new feature was application of the two GHMMs: (1)
the transcript level model used for gene prediction in assembled
transcripts and (2) the genomic level one used for gene prediction
in genomic DNA. The training of the transcript level GHMM did
follow the path described for GeneMarkS-T (Tang et al. 2015).
However, the training process of the genomic GHMM was orga-
nized differently in comparison with GeneMark-ES, -ET, -EP+.
For those three tools, the initial values of parameters of genomic
GHMMwere defined by the functions approximating dependence
of the k-mer frequencies on genomic GC content (Lomsadze et al.
2005, 2014; Brůna et al. 2020). In GeneMark-ETP, the training of
genomic GHMM is preceded by identification of the HC genes
by GeneMarkS-TP (see Methods). Thus, the sequences of the loci

containing the HC genes are used as an initial training set for
the genomic GHMM with subsequent iterations over the rounds
of gene predictions in the non-HC segments and GHMM parame-
ter re-estimation (see Methods) (Supplemental Fig. S5). In our ex-
perience, the genomic GHHM model derived from the set of HC
genes would not change significantly in further iterations if
more than 4000 HC genes were identified by GeneMarkS-TP.

The genomicGHMMtraining implemented inGeneMark-ES,
-ET, and -EP+ used step-by-step unfreezing of the subsets of the
GHMMparameters over the iterations. For instance, the transition
probabilities between hidden states, that is, intron, exon, etc., as
well as distributions of durations of hidden states, were fixed dur-
ing the initial iterations, whereas the values of emission probabil-
ities, derived from the k-mer frequencies, were free to change. In
the last iterations, all the parameters were made free. Such a grad-
ual unfreezing of the parameter set was shown to be unnecessary
for GeneMark-ETP; all the GHMM parameters were estimated al-
ready in the first iteration.

Comparisons with other gene finders

As expected, in all the tests, GeneMark-ETP performed better than
the tools using only a single type of extrinsic evidence: GeneMark-
ET, GeneMark-EP+, BRAKER1, and BRAKER2 (see Results; Figs. 3,
4). One could notice that GeneMark-EP+, even running with the
smaller “order excluded” database, outperformed GeneMark-ET.
This observation was in part because GeneMark-ET uses RNA-
seq-derived hints only in training but not in the prediction step.
On the other hand, GeneMark-EP+ has amechanism for enforcing
high-scoring protein-derived external hints into gene predictions
made by the Viterbi algorithm.

Themagnitudes of improvement that GeneMark-ETP shows in
the gene-level F1 scores in comparison with the best F1 among
GeneMark-ET andGeneMark-EP+ follow already cited patterns of in-
crease from shorter to longer genomes (Figs. 3, 4; Supplemental Table
S3). F1 was improved by 11–19 points for compact genomes and by
26–60 points for large genomes, with themaximum for theG. gallus
genome. The gaps in F1 values between GeneMark-ETP and
GeneMark-EP+ are smaller when the larger “species excluded”

Figure 3. Gene-level Sn and Pr of GeneMark-ETP and six other gene finders were computed for the three compact genomes: C. elegans, A. thaliana, and
D.melanogaster. The dashed lines correspond to constant levels of (Sn + Pr)/2. The true positives were definedwith respect to the complete set of annotated
genes (either in RefSeq or Ensembl, which had identical annotations of these genomes). The “order excluded” protein databases were used.
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database was used in comparison with the gaps observed upon the
use of the “order excluded” database (Supplemental Table S3).

Certainly, the new features implemented in GeneMark-ETP,
as discussed in the previous section, were significant additional
factors behind the better performance of GeneMark-ETP in com-
parison with GeneMark-ET, GeneMark-EP+, BRAKER1, and
BRAKER2, especially for the four large genomes (Figs. 3, 4;
Supplemental Table S4).

The TSEBRA pipeline selects a subset of all predictions made
by either BRAKER1 or BRAKER2 by rules that attempt to increase
Pr without compromising Sn (Gabriel et al. 2021). For compact ge-
nomes, A. thaliana, C. elegance, andD. melanogaster TSEBRA shows
comparable performance with GeneMark-ETP, with TSEBRA hav-
ing higher gene-level F1 for the first two species (by 1.5 and four
points) and lower F1 (by 0.5 points) for the last one. However,
for the larger genomes: S. lycopersicum, D. rerio, G. gallus, and M.
musculus GeneMark-ETP improves F1 over TSEBRA by 6.4, 9.0,
45.6, and 29.4 points, respectively (Supplemental Table S4). The
double digits of improvements in F1 are observed for the GC-inho-
mogeneous genomes G. gallus and M. musculus. All the above-
mentioned novel features of GeneMark-ETP contributed to the im-
provement of the prediction accuracy, especially in the large ge-
nomes. Additionally, it should be stated that for large GC-
inhomogeneous genomes, BRAKER1 and BRAKER2 use a single
species-specific GHMM trained in a fashion that effectively makes
GHMM for an average genome-specific GC content. GeneMark-
ETP constructs three GC-specific models for each GC-inhomoge-

neous genome (see Methods). Also, GeneMark-ETP integrates the
extrinsic RNA and protein informationupon individual prediction
of each gene, whereas in BRAKER1 and BRAKER2, these two chan-
nels of extrinsic information are disjointed.

The same novel features of GeneMark-ETP are behind the
double-digit improvements in gene-level F1 compared with
MAKER2 (Supplemental Table S5). Besides, a number of tools in-
cluded into the MAKER2 pipeline have been improved since
2011 when MAKER2 was released. Thus, an update of the
MAKER2 architecture by transition to more recently developed
components would be quite useful.

Methods

Data sets

For computational experiments, we selected genomes of seven eu-
karyotic species. Among them were three model organisms, A.
thaliana, C. elegans, and D. melanogaster, having well-studied GC-
homogeneous and compact-in-size genomes. The larger genomes
of S. lycopersicum and D. rerio were GC-homogenous, whereas the
other large genomes of G. gallus and M. musculus were GC-inho-
mogeneous. In all cases, sequences of organelles, as well as contigs
without chromosome assignment, were excluded (Table 4;
Supplemental Table S7).

To generate the reference sets of proteins used as a source of
extrinsic evidence, we used the OrthoDB v10.1 protein database
(Kriventseva et al. 2019). For each of the seven species, we built

Figure 4. Gene-level Sn and Pr of gene predictionsmade byGeneMark-ETP and five other gene finders in the four large genomes: S. lycopersicum,D. rerio,
G. gallus, andM.musculus. The Sn and Pr values for each genomewere defined with respect to subsets of genes present in the RefSeq and Ensembl genome
annotations (the intersections and the unions of annotations; see text). For these genomes, gene candidates lacking extrinsic support did not make it into
the GeneMark-ETP list of predicted genes (see text). The “order excluded” protein databases were used.
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an initial protein database (PD0) containing proteins from the
kingdom, the phylum, or the class segment of OrthoDB, in which
the given species belongs (Supplemental Table S8). For each spe-
cies, we created two reference databases by removing from PD0 ei-
ther (1) proteins of the species in question and its strains, that is,
the database called “species excluded,” or (2) proteins of all the
species from the same taxonomic order, that is, the database called
“order excluded” (see also Brůna et al. 2020). These “order exclud-
ed” and “species excluded” databases were supposed to mimic
practical scenarios when a species of interest would appear at ei-
ther a larger or a smaller evolutionary distance from the species pre-
sent in the protein database. The number of proteins in the
databases created in our study ranged from 2.6 million to 8.3 mil-
lion (Supplemental Table S8).

Data sets of RNA sequences, the sets of Illumina paired short
reads, were selected from the NCBI Sequence Read Archive (SRA;
https://www.ncbi.nlm.nih.gov/sra). The read length varied be-
tween 75 and 151 nt. The total volume of the selected RNA-seq col-
lections varied from 9 Gb for D. melanogaster to 83 Gb for M.
musculus (Supplemental Table S9).

Algorithm overview

In the earlier-developed GeneMark-ES, -ET, and -EP+, the estima-
tion of the parameters of GHHMswas performed by iterative unsu-
pervised training (Lomsadze et al. 2005, 2014; Brůna et al. 2020).
The final set of parameters was used in the final round of gene pre-
diction. The model training and gene prediction are organized dif-
ferently in GeneMark-ETP, which is also an automatic self-training
tool (Fig. 1; Supplemental Methods).

GeneMarkS-TP: generation of HC gene predictions

The wealth of current RNA and protein sequence information pre-
cipitates development of a new algorithmic component of a
whole-genome gene finder, the component conducting gene pre-
diction in assembled transcripts with cross-species protein sup-
port. This component of GeneMark-ETP, named GeneMarkS-TP,
is constructed as a pipeline built from several tools. HISAT2 (Kim
et al. 2019) splice-aligns the short reads from the selected RNA-
seq libraries to the species’ genome. StringTie2 (Kovaka et al.
2019) uses these data for transcript assembly. After filtering out
the low-abundance transcripts, the assembled transcripts are
merged by StringTie2 into a nonredundant set.

Initial gene predictions in transcripts and genomic DNA

A transcriptmay contain a protein-coding region (CDS) alongwith
5′ and 3′ UTRs. The predictions of the borders of a CDS sequence in
a transcript are made by self-training GeneMarkS-T (Tang et al.
2015). Converting the predicting CDS sequence into a chain of
protein-coding exons in the genomic DNA, known as genomic
CDS, is efficiently performed by using data on RNA-seq reads
anchored to the genome. This information is generated by
StringTie2 upon the transcript’s assembly. The genomic CDS is
predicted by combining the coordinates of CDS identified in a
transcript with the genomic coordinates of introns produced by
StringTie2. The values of Sn and Pr for the set of predicted genomic
CDSs, whose inference started with the identification of transcript
CDSs by GeneMarkS-T, are shown in Table 1.

Refinement of gene predictions

The GeneMarkS-T predictions of complete CDSs in the RNA tran-
scripts were shown to be quite accurate (Tang et al. 2015). On
the other hand, predictions of 5′ incomplete CDSs (5′ partial genes)
could be less precise. The 5′ partial gene predictions are refined in
the GeneMarkS-TP module using protein data.

A 5′ partial CDS is supposed to start from the first nucleotide of
a transcript. However, a true complete CDSmay reside inside this 5′

partial CDS. To distinguish between the two possibilities,
GeneMarkS-TP proceed as follows. Translations of the predicted 5′

partial CDS as well as the longest complete ORF having the same
stop of translation as 5′ partial CDS serve as queries in the similarity
searchbyDIAMOND (Buchfink et al. 2015). The protein target com-
mon for both searches (E-value<10−3) is aligned to both queries.
The strengths of sequence conservation along the pairwise align-
ments are analyzed (Supplemental Methods, condition S1). The 5′

partial CDS is confirmed if condition S1 is fulfilled. Otherwise, the
predicted 5′ partial CDS is replaced by the shorter complete CDS
(see Supplemental Methods, Sec. S1.1; Supplemental Table S10).

Selecting HC CDS candidates: CDSs with uniform protein similarity support

Complete and partial CDSs with uniform protein similarity sup-
port are selected from the set of CDSs predicted in assembled tran-
scripts. A complete CDS is said to have uniform protein support if a
pairwise alignment of the predicted protein to a known protein
satisfies condition S2 (see Supplemental Methods). A complete

Table 4. The table shows total numbers of protein-coding genes as well as individual CDSs (including alternative isoforms) annotated in the
seven genomes (the annotation sources are described in Supplemental Table S7)

Species Genome length (Mb)

Reference annotation statistics

No. of protein-coding
genes No. of CDSs Introns per gene

C. elegans 100 19,969 — 28,544 — 4.8 —

A. thaliana 119 27,445 — 40,827 — 4.0 —

D. melanogaster 138 13,951 — 22,395 — 2.8 —

S. lycopersicum 807 25,158 (15,138) 31,911 (15,150) 4.4 (4.3)

D. rerio 1345 25,610 (17,893) 42,929 (19,975) 8.4 (8.4)

G. gallus 1050 17,279 (10,736) 38,534 (12,733) 9.0 (9.2)

M. musculus 2723 22,405 (16,531) 58,318 (20,708) 6.0 (8.6)

The numbers of genes and individual CDSs in the intersections of the NCBI RefSeq and the Ensembl annotations are given in parentheses (see
Methods). Annotations of the C. elegans, A. thaliana, and D. melanogaster genomes are identical between RefSeq and Ensembl; therefore, the intersec-
tion sets have the same numbers of genes and CDSs as in the RefSeq annotation.
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CDS with uniform protein similarity support is a candidate for
complete HC CDS.

One more candidate may be present in the same transcript if
it is possible to extend the predicted CDS to the “longest” ORF. If
the protein product of this longest ORF has a uniform protein sim-
ilarity support (Supplemental Fig. S9, condition S2), then the ex-
tended CDS is yet another candidate for complete HC CDS, likely
to be an alternative isoform of the same gene.

The uniform protein similarity support could also be found
for a predicted 5′ partial CDSs. If a condition like condition S2 is ful-
filled for a pairwise alignment of the C-terminal of the protein
translation of the 5′ partial CDS with a database protein
(Supplemental Figs. S10, S11), then the 5′ partial CDS becomes a
candidate for a partial HC CDS.

Selecting HC CDS candidates: CDSs without uniform protein

similarity support

Some genes that do not have uniform protein similarity support
may still be qualified as HC CDS candidates. If a predicted complete
CDS satisfies all the following conditions—(1) the length of the
CDS is >299nt, (2) the 5′ UTRcontains an in-frame stop codon trip-
let, and (3) the exonsmapped to genomicDNAdonot create a con-
flict with the ProtHint hints (see Supplemental Methods, see Sec.
S2)—then the CDS is designated as a candidate HC CDS. Notably,
if a CDS lacks a stop codon, it cannot be an HC CDS candidate.

Selection of HC CDSs and HC genes from the candidates; generating

GeneMarkS-TP output

Alternative transcripts of individual genes are identified by
StringTie2, which segregates the whole set of assembled tran-
scripts, complete and incomplete, into groups associated with in-
dividual protein-coding genes. We note that a protein-coding
gene is defined here as a set of alternative CDSs coming from the
same locus. Alternative mRNA transcripts of a gene may encode
identical proteins and have differences only in UTRs. Such alterna-
tive transcripts are not considered.

If a gene has only onemRNA transcript (no alternatives), then
the HC CDS candidate becomes an HC CDS, and the gene is called
an HC gene. If more than one alternative transcript with an HC
CDS candidate exist, then we follow the procedure described in
Supplemental Methods, Sec. S3 to select HC CDSs from the candi-
dates, and the gene in question becomes the HC gene with the se-
lected set ofHCCDS isoforms. Finally, the set ofHCgenes thatmay
consist of several alternative HC CDSs, either complete or partial,
represents the output of GeneMarkS-TP. This set of HC genes
was shown to have a significantly higher Pr than the set of
initial gene predictions made by GeneMarkS-T (Supplemental
Table S10).

The genomic GHMM training

Single-step GHMM training

An initial training set for the genomic GHMM is constructed from
the set of predicted HC genes. This set, in a GC-inhomogeneous
genome, may have significant variation in GC content. To charac-
terize a genome as GC-homogenous, we check if there exists a 9%
wide interval of the GC content distribution that would contain at
least 70% of the HC genes selected for training. If there is no such
interval, which is a sign that the genomic GC content distribution
is wide, the genome is characterized as GC-inhomogeneous
(Supplemental Fig. S12).

In a GC-homogeneous genome, the sequences of the predicted
HC genes are extended by 1000 nt in both the 5′ and 3′ directions

(making a set of the HC loci). If an HC gene has alternative iso-
forms, the one with the longest CDS is selected for the training
set. The extended sequences, including introns and segments of
intergenic regions, are used for the initial estimation of the geno-
mic GHMM parameters. In a GC-inhomogeneous genome, the se-
quences of the HC loci are split into three bins: low GC, mid GC,
and high GC. The mid GC bin (with the default width of 9%)
(see Supplemental Fig. S12) is defined by the 9% GC interval
that contains the largest number of the HC loci sequences selected
for training. Setting up the mid GC interval immediately deter-
mines the borders of the low and high GC bins. The sets of the
HC loci assigned to the three bins are used to train the GC-specific
GHMMs. Note that GeneMarkS-T was developed for gene predic-
tion in GC-inhomogeneous transcriptomes. This tool is using a
set of GC-specific models (Tang et al. 2015).

Extended GHMM training for a genome with homogeneous GC

The logic of extended training of the genomic GHMM is similar
but not identical to iterative training used in GeneMark-ET and
GeneMark-EP+ (Lomsadze et al. 2014; Brůna et al. 2020).

In a GC-homogeneous genome, the initial GHMM parameters
derived from the sequences of the HC loci are used for the first
round of gene predictions. The predictions made in the genomic
sequences situated between the HC genes, the non-HC segments,
are of special interest (Supplemental Figs. S5, S6). These predic-
tions could be refined in subsequent iterations, whereas the pre-
dicted HC genes would not change.

The gene predictions made in the non-HC segments are used
in ProtHint to generate protein-based hints, as in GeneMark-EP+
(Brůna et al. 2020). An additional set of hints comes from RNA-
seq reads mapped to genome by HISAT2 (Kim et al. 2019). All
over, there are the following categories of hints: (1) RNA-seq-
and ProtHint-derived hints to intron borders that agree with
each other, (2) high-score ProtHint hints to intron borders, (3)
RNA-seq-based hints to intron borders that may or may not coin-
cide with the intron borders predicted ab initio, and (4) hints rep-
resenting partial HC genes that could be extended into the non-HC
segments. Note that partial HC genes can appear only at the bor-
ders of non-HC segments, and technically, we consider partial
HC genes to belong to non-HC segments.

The hints of the first three categories point to elements of a
multiexon gene without indication that these elements may or
may not belong to the same gene. Hints of the fourth category rep-
resent “chains” of introns that should belong to the same gene.
The requirement of corroboration of RNA-seq hints of category 3
by ab initio predictions allows to filter out the “false-positive” in-
tron hints mapped from expressed noncoding RNA. The whole
set of selected hints is now ready for enforcement in a run of
GeneMark.hmm. The hints are enforced in the gene predictions
made in the non-HC segments. The predicted genes are included
in the updated training set. The iterations stop when the identity
of the training sets in two consecutive iterations reaches 99%. The
number of iterations observed in our experiments was rarely more
than three. Frequently, the convergence had been reached in the
second iteration. If the number of HC genes is large (more than
4000), then, based on our experience, a single iteration is sufficient
for convergence. The set of genes predicted in the non-HC seg-
ments alongwith the set of the HC genesmade the final set of genes
predicted by GeneMark-ETP.

Extended GHMM training for a genome with inhomogeneous GC

The extended GHMM training for GC-inhomogeneous genomes
works as follows. The three initial GC-specific GHMMs are trained
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on the sequences of the HC loci from the corresponding bins.
These GHMMs are used to predict genes in the non-HC segments
associated with the same GC bin as the GC-specific model. From
this point on, the extended training of the three GC-specific
GHHMs is performed on the non-HC segments segregated into
the three bins. These trainings are conducted separately following
the logic described for the GC-homogeneous case. The GC-specific
GHMMs are used in the rounds of iterative gene prediction and pa-
rameters estimation that occur until convergence (Supplemental
Fig. S6). If the number of the HC genes in a bin is large (more
than 4000), then a single iteration is sufficient for parameter esti-
mation of the GHMM associated with this bin.

In general, GeneMark-ETP could be run in the “GC-inhomo-
geneous” mode on any genome. However, for a “true” GC-homo-
geneous genome, this choice would increase runtime and
sometimes even decrease gene-prediction accuracy owing to split-
ting the overall training set into smaller subsets. Therefore, the de-
gree of GC-heterogeneity is assessed before the GHMM training.

Processing of repetitive elements

Transposable elements (TEs), particularly families of retrotranspo-
sonswith thousands of copies of similar TE sequences, occupy sub-
stantial portions of eukaryotic genomes. Errors in gene prediction
may be caused by the presence of repetitive elements with a com-
position similar to that of protein-coding regions (Yandell and
Ence 2012; Tørresen et al. 2019). Identification of the repetitive se-
quences is performed independently fromgene finding.We gener-
ate species-specific repeat libraries de novo using RepeatModeler2
(Flynn et al. 2020). Repetitive sequences are then identified in ge-
nomic sequence by RepeatMasker (https://www.repeatmasker
.org). Some of the predicted repeats may overlap with protein-cod-
ing genes (Bayer et al. 2018). To conduct gene finding in genomic
sequence with “soft masked” repeats, a bonus function with a spe-
cies-independent parameter was introduced (Stanke et al. 2008).
For a sequence designated as repetitive by a repeat finder, this func-
tion increased the likelihood of emission from noncoding state.
Here, we have introduced a species-specific penalty function to
decrease the likelihood of a sequence emission from a protein-cod-
ing state inside a region identified as a repetitive one (Equation 1).
The parameter of this function, q, is defined (trained) for each ge-
nome. Technically, we introduce a state for an overlap of a repeat
and CDS and compute the probability of a sequence (of length n)
to be emitted from such a state:

P(seq|coding state overlapping repeat) = P(seq|coding state)
qn

(1)

The genome-specific parameter q is estimated after obtaining the
set of HC genes in the first round of the GHMM training (see
Supplemental Methods; Supplemental Fig. S13; Supplemental
Table S11).

Computation of accuracy measures

Assessment of the gene-prediction accuracy in each genome was
performed as follows. The test set for computing the Sn values
was the set of genes having identical annotations in NCBI
RefSeq and in Ensembl, the intersection set (Table 4). To compute
the Pr values, we used the union of genes annotated by NCBI
RefSeq and Ensembl. In all the tests, regions of annotated pseudo-
genes were excluded from consideration. Because annotations of
the A. thaliana, C. elegans, and D. melanogaster genomes were the
same at NCBI and Ensembl, then, for each of them, the union
and the intersection sets coincided with each other and with the
full complement of annotated genes.

GeneMark-ET, GeneMark-EP+, and combinations of their sets of gene

predictions

The gene finders GeneMark-ET and GeneMark-EP+ were designed
to use a single source of extrinsic support, either RNA-seq reads or
protein database. Theywere run to get reference points onwhat ac-
curacy could be achieved with a single source of evidence. We also
considered combinations of the sets of genes predicted separately
by GeneMark-ET and GeneMark-EP+.

The union of the two sets of gene predictions would have in-
creased Sn and decreased Pr. The intersection of the two sets would
have increased Pr and decreased Sn (the case of D. melanogaster)
(Fig. 5). The “best” combination of the members of the two sets
could be made by removing false positives from the union set or
adding true positives made by either method to the intersection
set. When the union set is changed by taking away the incorrect
predictions, the point for theUnion in Figure 5moves horizontally
to the right. If one adds correct predictions made by one of the
tools but not the other to the intersection set, the Intersection point
in Figure 5 moves up vertically. The crossing of the two lines cor-
responds to the “best” combination of the members of the two
sets of predicted genes in terms of (Sn+ Pr)/2 (Fig. 5). The described
changes cannot be madewhen a gene finder is running on a novel
genome because information on the true and false positives is not
immediately available. Nevertheless, such modifications could be
made for gene predictions in genomes with known annotations.

Running BRAKER1, BRAKER2, TSEBRA, and MAKER2

To make comparisons with the transcript-supported BRAKER1
(Hoff et al. 2016) and protein-supported BRAKER2 (Brůna et al.
2021), we ran BRAKER1 and BRAKER2 with the same RNA-seq li-
braries and the same protein databases, respectively, as the ones
used in experiments with GeneMark-ETP. Also, we ran TSEBRA
(Gabriel et al. 2021), which selects a subset of all the gene predic-
tions made separately by BRAKER1 and BRAKER2 and filters out
less reliably predicted genes. TSEBRAwas shown to achieve higher
accuracy than either BRAKER1 or BRAKER2 running alone.

The execution ofMAKER2 has some degree of freedom as the
rules of training AUGUSTUS, SNAP, and GeneMark.hmm are not
precisely specified in the MAKER2 publication (Holt and Yandell

Figure 5. Gene-level Sn and Pr of the gene predictions in the D. mela-
nogaster genome. The gene predictions were generated by GeneMark-
ET (green), GeneMark-EP+ (orange), and GeneMark-ETP (red). We also
show the Sn and Pr values for the Union (square) and the Intersection (tri-
angle) of the sets of GeneMark-ET and GeneMark-EP+ gene predictions
and the “best combination” of these two gene-prediction sets (diamond).
The true positives were defined with respect to the annotation of the D.
melanogaster genome. The “species excluded” database was used for
the GeneMark-EP+ and GeneMark-ETP runs.
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2011). Therefore, we wanted to present the accuracy figures that
would, arguably, correspond to the upper limit achieved by the
optimal training of MAKER2. The selected models for
AUGUSTUS and SNAP were either the models provided by the
code developers (available with the respective software distribu-
tion) or themodels generated by supervised training on the genes
annotated by NCBI (RefSeq). As an exception, SNAP training was
performed on the Ensembl-annotated D. rerio genome. Both
MAKER2 and GeneMark-ETP use the GeneMark.hmm gene-find-
ing algorithm. MAKER2 uses models for GeneMark.hmm self-
trained by GeneMark-ES using no extrinsic evidence. We as-
sumed that more precise models would be obtained if extrinsic
evidence was also used in the training. Therefore, we trained
the GeneMark.hmm models on a set of the HC genes (deter-
mined by GeneMark-ETP). To get the accuracy figures, the gene
predictions made for the genomes of D. melanogaster, D. rerio,
and M. musculus by MAKER2 were processed in the same way as
the gene predictions made by GeneMark-ETP or other gene find-
ers. The repeat coordinates and RNA-seq data sets were the same
for MAKER2 and GeneMark-ETP (see Supplemental Materials).
We compiled reduced-size protein databases for running the ex-
periments with MAKER2 because the runtime of MAKER2 sharp-
ly increases with the increase in the volume of protein data. The
minimal size of the “order excluded” database used in the exper-
iments described for the seven genomes was 2.5million proteins.
Themaximum size database that was used in the experiments for
comparison of GeneMark-ETP with MAKER2 was about 300,000
proteins (see Supplemental Methods, Sec. S5). The same reduced-
in-size protein sets were used for both GeneMark-ETP and
MAKER2. It should be noted that for a GC-inhomogeneous ge-
nome of M. musculus GeneMark-ETP used the models with the
GC-specific parameters. In MAKER2, by design, the GC-specific
parameters were used in AUGUSTUS but not in SNAP or
GeneMark.hmm.

Runtime of GeneMark-ETP

The runtime of GeneMark-ETP depends linearly on the genome
size and is comparable to that of GeneMark-EP+. The runtime de-
pendence on the size of protein database is also linear. The size of
RNA-seq libraries is critical for the HISAT2 runtime but not for the
rest of the GeneMark-ETP operations with RNA sequences. We do
not include the runtimes of HISAT2 and StringTie2 into the run-
time of GeneMark-ETP. To give examples of absolute runtimes,
on a machine with 64 CPU cores, GeneMark-ETP finished opera-
tions on the genomes of D. melanogaster, D. rerio, andM. musculus
in 3, 12, and 18 hr, respectively. In these experiments, we used the
“order excluded” protein databases and RNA reads sets described
in Supplemental Tables S8 and S9.

Software availability

GeneMark-ETP is available at https://exon.gatech.edu/GeneMark/
license_download.cgi and as Supplemental Software. All scripts
and data used to generate figures and tables in this paper are avail-
able at GitHub (https://github.com/gatech-genemark/GeneMark-
ETP-exp) and as Supplemental Code. GeneMark-ETP was included
in the recently developed pipeline BRAKER3 (Gabriel et al. 2024).
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