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Response eQTLs, chromatin accessibility, and 3D chromatin 
structure in chondrocytes provide mechanistic insight into 
osteoarthritis risk
Nicole E Kramer1,2, Seyoun Byun1, Philip Coryell2, Susan D’Costa2, Eliza Thulson3, HyunAh Kim2, Sylvie M 
Parkus2, Marielle L Bond3, Emma R Klein1, Jacqueline Shine2, Susanna Chubinskaya4, Michael I Love1,5,6,, Karen 
L Mohlke5, Brian O Diekman2,7,+, Richard F Loeser2,8,+, Douglas H Phanstiel1,2,3,9,10,+

Highlights
 ɥ Comprehensive analysis of sex- and age-related global gene expression in human chondrocytes revealed differences that 

correlate with osteoarthritis
 ɥ First response eQTLs in chondrocytes treated with an OA-related stimulus
 ɥ Deeply sequenced Hi-C in resting and activated chondrocytes helps connect OA risk variants to their putative causal genes
 ɥ Colocalization analysis reveals 13 (including 10 novel) putative OA risk genes

Abstract
Osteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide associ-
ation studies (GWAS) have identified over 100 OA-associated loci, translating these findings into therapeutic targets 
remains challenging. Integrating expression quantitative trait loci (eQTL), 3D chromatin structure, and other genomic 
approaches with OA GWAS data offers a promising approach to elucidate disease mechanisms; however, compre-
hensive eQTL maps in OA-relevant tissues and conditions remain scarce. We mapped gene expression, chromatin 
accessibility, and 3D chromatin structure in primary human articular chondrocytes in both resting and OA-mimicking 
conditions. We identified thousands of differentially expressed genes, including those associated with differences in 
sex and age. RNA-seq in chondrocytes from 101 donors across two conditions uncovered 3782 unique eGenes, includ-
ing 420 that exhibited strong and significant condition-specific effects. Colocalization with OA GWAS signals revealed 
13 putative OA risk genes, 10 of which have not been previously identified. Chromatin accessibility and 3D chromatin 
structure provided insights into the mechanisms and conditional specificity of these variants. Our findings shed light 
on OA pathogenesis and highlight potential targets for therapeutic development. 

Introduction
steoarthritis (OA) affects over 500 million individ-
uals globally and is a leading cause of disability 
in the US1; however, treatment options have been 

elusive in large part because the mechanisms driving OA 
remain poorly understood. Genome-wide association stud-
ies (GWAS) have identified over one hundred OA-associat-
ed loci2,3. Translating these loci into new knowledge and 
actionable therapeutic targets requires identification of 
the genes affected at each GWAS locus, which has proven 
challenging for multiple reasons. Linkage disequilibrium 
between nearby variants makes it difficult to identify the 
causal variant(s) at each locus. Further, most disease-risk 
variants alter non-coding regulatory sequences, which can 
affect gene expression over distances exceeding 1 million 

base pairs, often via 3D chromatin structures that bring 
those regulatory loci into close physical proximity with 
their target genes. Finally, these regulatory mechanisms are 
dynamic across cell types and biological conditions4,5; there-
fore, understanding the functional impact of risk variants 
in the relevant cellular context is essential. Despite these 
challenges, coupling genomic and genetic technologies to 
the appropriate disease models can overcome these hur-
dles and reveal disease-risk genes for further research and 
therapeutic development.

Expression quantitative trait loci (eQTL) mapping is a 
powerful technique for identifying the genes mediating dis-
ease risk at each GWAS locus as it directly connects genetic 
variants to differences in gene expression across a cohort 
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of donors6,7. Once mapped, colocalization of these eQTLs 
with GWAS data can reveal the gene expression changes 
that likely influence disease risk8. The integration of colo-
calized eQTLs with other genomic datasets including Hi-C 
and ATAC-seq can provide further support and mechanistic 
insight into the disease-causing mechanisms at these loci9. 
The power of QTL mapping has fueled large consortiums 
to generate QTLs for a broad array of tissues10 and led to 
breakthroughs in our understanding of several diseases, in-
cluding Alzheimer’s disease11 and various immune-related 
diseases12–14. Notably underrepresented from these studies 
are maps of eQTLs in human chondrocytes, which are the 
only cell type in cartilage, the most OA-relevant tissue in the 
body15. To the best of our knowledge, only one eQTL study 
has been performed in human chondrocytes which used 
tissue from donors with advanced OA undergoing joint re-
placement. This study successfully identified 4 colocalized 
eQTL/GWAS signals and 1 pQTL/GWAS signal pointing to 
5 putative OA risk genes16. This was a breakthrough study 
for OA but leaves a large portion of the 100 OA-associated 
loci unexplained.

It has become increasingly clear that to understand hu-
man disease, it is critical to map QTLs in the correct cell 
type and biological context17. OA risk variants are likely to 
impact chondrocyte function since cartilage degradation 
and loss is a central feature of OA and OA risk variants are 
enriched in chondrocyte regulatory elements. We have 
previously shown that OA GWAS variants are enriched 
in chondrocyte regulatory regions suggesting that many 
OA risk variants likely impact chondrocyte function18. To 
understand the mechanisms that contribute to OA, we 
have previously established an ex vivo model of the OA 
chondrocyte phenotype using primary human articular 
chondrocytes. Chondrocytes isolated from normal carti-
lage obtained from cadaveric human tissue donors19 are 
grown in culture and treated with physiological levels of a 
fibronectin fragment (FN-f), a cartilage matrix breakdown 
product, found in OA cartilage and synovial fluid, that trig-
gers changes in cell signaling and gene expression that are 
characteristic of changes observed in chondrocytes isolated 
from OA tissue20–22. This system is ideal for dissecting OA 
GWAS signals because (1) it uses primary human cells that 
are representative of the disease process, (2) studying the 
response to a controlled stimulus found in OA decreases 
variability found in OA tissue and allows for the study of 
earlier stages of the disease, and (3) the ex vivo nature of the 
system allows for functional follow up experiments.

We mapped gene expression, chromatin accessibility, 
and 3D chromatin structure in primary human chondro-
cytes treated for 18 hours with either PBS (control) or a 
purified recombinant fibronectin fragment (FN7-10) that 
binds to and activates the α5β1 integrin23. We identified sex-
, age-, and treatment-related changes in chondrocyte gene 
expression, and intersected those with changes observed in 
OA tissue providing new insights into how these risk factors 

influence the OA phenotype. We performed eQTL analysis 
in both PBS and FN-f-treated conditions revealing thou-
sands of eSNP-eGene pairs, hundreds of which were specific 
to only one of the two conditions. Colocalization of these 
signals with OA GWAS data revealed 13 putative OA risk 
genes, 10 of which had not been implicated by prior eQTL 
studies. We mapped chromatin accessibility to prioritize 
putative causal variants within these loci and 3D chromatin 
structure to offer further support and mechanistic insight 
for several of these colocalized signals. One gene implicated 
by these analyses was PAPPA, which was upregulated in OA 
tissue, upregulated in response to FN-f, upregulated with 
age, and is characterized by a chromatin loop that connects 
its promoter to GWAS variants over 400 Kb away. This study 
is a critical step forward for OA as it has identified 10 novel 
putative OA risk genes for further research and therapeutic 
development.

Results
FN-f induces OA-like transcriptional changes in prima-
ry human chondrocytes. To determine how FN-f impacts 
transcription in human chondrocytes, we performed 
RNA-seq on chondrocytes from 101 donors. We isolated 
postmortem human articular chondrocytes from deceased 
human tissue donors through enzymatic digestion of carti-
lage tissue, and treated cells for 18 hours with either PBS or 
with 1µM recombinant FN-f within one week of isolation23. 
We performed high-quality RNA-seq to an average depth 
of 101.8 million stranded paired-end reads per library (Fig 
S1A,B). Sample gene expressions clustered primarily by 
treatment after principal component analysis (PCA) (Fig 
S1C). We performed technical replicates on 3 donors and 
demonstrated a higher correlation between replicates than 
between different donors (Fig S1D). Differential expression 
comparing FN-f to PBS-treated samples revealed 1850 and 
2076 up and downregulated genes, respectively (DESeq224, 
adjusted p < 0.05, absolute log2 fold change > 1), including 
more stringently defined sets of 857 and 578 up and down-
regulated genes,  respectively, that exhibited the largest and 
most significant changes (Fig 1A, Table S1; DESeq224, ad-
justed p < 0.01, absolute log2 fold change > 2). Upregulated 
genes were enriched for GO terms and KEGG pathways con-
sistent with an OA phenotype including “collagen catabolic 
process”, “acute inflammatory response”, and “NF-kappa B 
signaling pathway” (Fig 1B, Table S2). Upregulated genes 
included many that have been previously implicated in OA 
including IL1B, MMP13, and NFKB. The promoters of up-
regulated genes were also enriched for transcription factor 
(TF) binding motifs for proteins implicated in OA including 
NFKB and members of the AP-1 complex (Fig 1C left; HO-
MER25, p < 0.001). The members of those transcription fac-
tor complexes showed concordant changes with the motif 
enrichment analyses (Fig 1C right), which further supports 
the role these TFs play in the transcriptional response to 
FN-f. Genes that had previously been shown to be up and 
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downregulated in OA tissue showed the same directional 
changes in response to FN-f suggesting that our ex vivo 
system is a reasonable model of the OA phenotype (Fig 1D; 
Wilcox test, p < 0.01).

Genes with sex- and age-dependent expression pat-
terns include OA-related genes. OA is characterized by 
sex-related differences in disease risk and severity26. These 

differences could be driven in part by sexual dimorphism 
in chondrocyte gene expression, either at baseline levels or 
in response to cartilage matrix damage. Previous studies 
have investigated sex differences in chondrogenic progen-
itor cells27 and human chondrocytes 28,29 from OA tissue, 
but a comprehensive analyses of sex-related differences in 
chondrocytes from non OA tissue or in response to cartilage 
matrix damage have not be conducted. To determine how 
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Fig 1 | FN-f induces OA-like transcriptional changes in primary human chondrocytes. (A) Heatmap depicting the stringent set of 1435 genes differen-
tially expressed between chondrocytes treated with either PBS or FN-f (DESeq2, adjusted p < 0.01, absolute log2 fold change > 2). A subset of the differential 
genes is listed to the right of the heatmap with upregulated genes colored in yellow and downregulated genes colored in blue. (B) Barplots depicting select 
GO terms and KEGG pathways enriched in sets of genes that are up (yellow) or downregulated (blue) in response to FN-f. (C) Names and transcription 
factor motif logos (left) of transcription factors whose motifs are enriched at the promoters of genes that were up or downregulated in response to FN-f. 
Violin plots (right) depicting the RNA log2 fold change of members of each transcription factor complex exhibit good agreement with the motif analyses. (D) 
Boxplots (left) show that genes that are up or downregulated in OA tissue show the same trends in chondrocytes treated with FN-f. * indicates Wilcox test 
p-value < 0.01. Donor-level RNA log2 fold change boxplots highlight examples of genes upregulated (top right) or downregulated (bottom right) in OA tissue.
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sex impacted chondrocyte gene expression and if any of 
these differences corresponded to changes seen in OA tis-
sue, we identified differential expression between sexes in 
PBS and FN-f-treated samples, while controlling for differ-
ences in age and genetic ancestry. We identified 108 genes 
that differed significantly between sexes (Fig 2A, Table S3; 
DESeq2; adjusted p < 0.01). Most, but not all of these genes 
were located on chromosomes X and Y (Fig S2A). The ma-
jority (70%) of sex-related differences in expression were 
only identified in one condition (Fig S2B) and the genes that 
exhibited sex-related expression differences in both condi-
tions all showed the same direction of effect. Comparison 
to sex-related expression differences previously identified 
across 44 tissues from the GTEx consortium30 revealed that 
29.6% of the sex differences that we observed were unique 
to chondrocytes (Fig 2B, left, Table S4). Interestingly, these 
included the genes that showed the largest fold changes be-
tween sexes (Fig 2B, right). 35 sex-related genes observed in 

chondrocytes were also previously shown to be differential-
ly expressed in OA tissue which could provide clues into the 
sex-related differences in the prevalence and phenotypic 
presentation of OA (Table S3). Examples of sex-related 
genes either upregulated or downregulated in OA tissue 
(SERPINE2 and RARRES2) are shown in Fig 2C. SERPINE2 
has been shown to inhibit MMP13 in IL1α-treated human 
chondrocytes31. In response to FN-f its expression is higher 
in male vs female donors, suggesting a stronger protective 
role in males consistent with the higher prevalence of OA 
in females29,32.

Age is one of the biggest risk factors for OA, and age-re-
lated gene expression in various tissues profiled by the 
GTEx project has revealed enrichments for genes related 
to a number of human diseases33; however, to the best of 
our knowledge, there has not been a high-powered analysis 
of age-dependent RNA-seq-derived gene expression in hu-
man chondrocytes. We identified 196 genes that exhibited 
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Fig 2 | Genes with sex- and age-dependent expression patterns include OA-related genes. (A) Heatmap depicting the 108 genes that exhibit sex-biased 
expression in human chondrocytes. (B) Heatmap depicting genes that exhibit sex-biased expression in human chondrocytes and whether or not they exhibit 
sex-biased expression across 44 other cell lines and tissues analyzed by the GTEx consortium (left). Boxplots depicting the fold-changes (M vs F) of sex-biased 
genes that are specific to chondrocytes or shared with at least one other tissue (right). (C) Boxplots depicting RNA log2 fold change of two genes (SERPINE2 
and RARRES2) that exhibit sex-biased expression in human chondrocytes and are differentially expressed in OA tissue. Stars indicate significance (adjusted 
p-value < 0.01) and are colored by male-biased (blue) or female-biased (pink) expression. (D) Heatmap depicting the 196 genes that exhibit age-related ex-
pression changes in human chondrocytes. (E) GO and KEGG terms that are enriched in genes that show increased (gold) or decreased expression (turquoise) 
with age in human chondrocytes. (F) Boxplots depicting RNA log2 normalized counts of two genes (EDA2R and IRS1) that exhibit age-related expression 
changes in human chondrocytes and are differentially expressed in OA tissue. Stars indicate significance (adjusted p-value < 0.05) and are colored by genes 
that are up with age (gold) and down with age (turquoise).
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age-related changes in chondrocyte gene expression (Fig 
2D, Table S5; DESeq2; adjusted p < 0.05). These genes were 
enriched for several GO terms and KEGG pathways that are 
relevant to OA including “cartilage condensation” and “type 
1 interferon-mediated signaling pathway” (Fig 2E, Table S6; 
HOMER, p < 0.01). The majority (80%) of age-related chang-
es in gene expression were detected in only one condition 
(Fig S2C), and comparison to age-related gene expression in 
a subset of GTEx tissues33 showed that 99 out of 196 (50.5%) 
age-related genes were only identified in chondrocytes (Fig 

S2D). 80 of these genes were also previously shown to be 
differentially expressed in OA vs non-OA tissue, including 
EDA2R and IRS1 (Fig 2F). EDA2R is a member of the TNF 
receptor superfamily, and the pro-inflammatory TNF path-
way has been previously implicated in OA34. An increased 
expression of EDA2R in older donors is consistent with “in-
flammaging” that may contribute to OA pathogenesis35. IRS-
1 is a mediator of IGF signaling, which has been shown to be 
reduced in articular chondrocytes in an age-related manner 
contributing to reduced anabolic activity in cartilage.36
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Genetic differences impact gene expression in resting 
and activated chondrocytes. To determine the impact of 
genetic differences on chondrocyte gene expression, we 
performed expression QTL analysis on both PBS- and FN-
f-treated samples and tested the association of each gene’s 
expression with genetic variants within ± 1Mb from the 
transcription start site (TSS). After hierarchical multiple 
testing correction with the Storey-Tibshirani q-value37 (qval 
< 0.05), we identified 3782 unique eGenes (Fig S3).  We then 
used a conditional analysis (see methods) to identify genes 
with multiple independent signals and identified 2988 
conditionally independent eQTL signals corresponding to 
2707 unique eGenes in PBS-treated chondrocytes and 3065 
distinct eQTL signals corresponding to 2746 unique eGenes 
in FN-f-treated chondrocytes (Table S7). 267 PBS eGenes 
and 305 FN-f eGenes had two or more independent signals, 
including the matrix metalloproteinase MMP16 (Fig S4). 
Our results captured the majority (64.6%) of the eGenes 
identified by Steinberg et al.16 and increased the total num-
ber of eGenes by more than two-fold (3782 vs 1569; Fig S5A, 
Table S8). The effect sizes of the eQTLs for shared eGenes 
between our study and the lead eQTLs from Steinberg et 
al. exhibited a strong correlation (mean R2 = 0.84; Fig S5B). 
The majority (55.8%) of identified lead eGene-eSNP pairs 
were only identified in one condition, highlighting the value 
of mapping eQTLs in specific biological conditions (Fig 3A, 
Fig S3C). By explicitly testing for the interaction between 
condition and genotype, we identified 696 lead eQTLs with 
a stronger genetic effect in PBS-treated cells and 856 lead 
eQTLs that exhibited a stronger genetic effect in FN-f treated 
cells (i.e. response eQTLs; Fig 3A). We further filtered these 
eQTLs for those that were only identified in one condition, 
had at least 5 donors with each variant genotype, and had a 
beta difference of at least 0.2 between conditions, thus pro-
ducing a refined list of high-confidence PBS-specific eQTLs 
and FN-f response eQTLs (Fig 3B-D, Table S9). Several of 
these response eQTLs marked genes with known roles in 
OA including DIO2 (Fig 3B), whose increased expression has 
been shown to disturb cartilage matrix homeostasis38, and 
SMAD3, which, along with the TGF-β signaling pathway, is 
required for repressing chondrocyte hypertrophic differen-
tiation39,40. Several KEGG pathways that are enriched in our 
set of condition-specific eGenes (Table S10) are relevant to 
OA including apelin signaling and FoxO signaling. Apelin 
is an adipokine that has been shown to activate catabolic 
signaling and promote OA progression in preclinical models 
of OA41,42. The FoxO family of transcription factors, includ-
ing FoxO1, 3, and 4, promote cartilage homeostasis while a 
decline in FoxO signaling seen in aging and OA is thought 
to promote cartilage damage43.   

Chromatin accessibility supports response eQTLs and 
refines lists of putative causal variants. To gain insight 
into the possible mechanisms via which eQTLs exert their 
effect, we mapped chromatin accessibility using ATAC-seq 

in chondrocytes from 3 individuals treated with either PBS 
or FN-f. We identified 217,039 chromatin accessibility peaks, 
27,799 of which differed between conditions (DESeq2, ad-
justed p < 0.01, absolute log2 fold-change > 1; Table S11). Of 
320,986 distinct eSNPs from either condition, 6.41% of them 
(20,579) overlapped a chromatin-accessible region. 270 of 
379 (71.2%) chromatin-accessible regions that overlapped 
FN-f-specific lead variants and LD proxies (r2 > 0.8) exhibited 
increased accessibility in FN-f -treated cells (Fig S6A) and 
were enriched for the binding motifs of transcription factors 
with known roles in chondrocyte matrix damage response 
including AP-1 (Fig S6B). These results further support the 
validity of our response eQTLs, provide a refined list of vari-
ants that might be driving the eQTLs, and point to possible 
mechanisms through which these variants may act.

3D chromatin structure supports distal eSNP-eGene con-
nections. Many of the eSNP-eGene connections we identi-
fied suggested long-range regulatory contacts as 24.5% of 
the lead eSNPs were more than 100 Kb from the nearest 
promoter of their corresponding eGene (Fig S7A) and 44.5% 
of eSNP-eGene connections ‘skipped’ at least one closer 
gene (Fig S7B). To map potential regulatory connections 
and determine if 3D chromatin architecture could explain 
these distal eSNP-eGene pairs, we performed in situ Hi-C 
in primary human chondrocytes from four donors treated 
with either PBS or FN-f. We identified 9,099 loops, including 
53 that exhibited a significant change in contact frequency 
between conditions (DESeq2, adjusted p < 0.1; Table S12), all 
of which were increased in contact frequency in response 
to FN-f. Genes at the anchors of these gained loops includ-
ed many key players in chondrocyte response to matrix 
damage and OA including JUN, IL6, and MMP13 (Fig 4A-C). 
Genes at the anchors of gained loops also exhibited signif-
icant increases in expression in response to FN-f (median 
fold-change = 3.7, Fig 4D) and were enriched for OA-relevant 
GO terms including ‘regulation of inflammatory response’, 
‘reactive oxygen species metabolic process’, ‘extracellular 
matrix disassembly’, and ‘regulation of catabolic process’ 
(Fig 4E). Lead eSNPs exhibited stronger contact frequency 
with their associated eGenes than distance-matched genes 
(Fig 4F) providing a possible mechanism for the distal regu-
lation. Condition-specific eSNP-eGene pairs were associated 
with stronger contact frequency in the condition associated 
with the eQTL (Fig 4G), suggesting that some of the condi-
tion-specific effects could be explained by changes to 3D 
chromatin structure. Figure 4H shows an example of one 
distal eSNP-eGene pair that is supported by a chromatin 
loop. SNPs that are in moderate to high LD (r2> 0.6) with 
lead eSNP rs10453229 are linked to eGene LPAR1 via a 400 
Kb chromatin loop. LPAR1 codes for the lysophosphatidic 
acid (LPA) receptor. Previous work has shown that LPAR1 
signaling is required for development of collagen-induced 
arthritis in mouse models44 and LPA was associated with 
neuropathic pain in a rat OA model45. These data provide 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2024. ; https://doi.org/10.1101/2024.05.05.592567doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.05.592567
http://creativecommons.org/licenses/by-nd/4.0/


7

A

0

100 PBS

FN−f

AT
AC

PBS

FN−f

RN
A

PBS

FN−f

LINC01135 LINC01358

JUN HSD52LINC02777

+
−

chr158,680,000 bp 59,250,000 bp

B

0

140 PBS

FN−f

PBS

FN−f

PBS

FN−f

IL6STEAP1B−AS1

STEAP1B IL6−AS1
chr722,460,000 bp 22,830,000 bp

C

0

150 PBS

FN−f

PBS

FN−f

PBS

FN−f

MMP13 DCUN1D5
chr11102,850,000 bp 103,170,000 bp

D

genes at static
loop anchors

genes at gained
loop anchors

0.0

0.1

0.2

0.3

0.4

0.5

−10 −5 0
RNA log2(FN-f/PBS)

5 10 15

de
ns

ity

E

interleukin−8 production

extracellular matrix disassembly

regulation of CD40 signaling pathway

regulation of response to stress

regulation of catabolic process

reactive oxygen species metabolic process

immune system process

negative regulation of bone resorption

regulation of inflammatory response

macrophage activation

0 1 2 3 4

GO Terms
F

pval = 0.00466

0

5

10

20

40

80

160

co
nt

ac
t f

re
qu

en
cy

G
pval = 0.0177 pval = 0.00415

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

PBS−
specific

distal 
eQTLs

and 
eGenes

shared
distal
eQTL
and

eGenes

FN−f−
specific

distal
eQTLs

and 
eGenes

co
nt

ac
t f

re
qu

en
cy

 lo
g 2(F

N-
f/P

BS
)

H

0
2
4
6
8

10
12

−l
og

10
(p

−v
al

ue
) PBS eQTL

0
2
4
6
8

10
12

−l
og

10
(p

−v
al

ue
) FN−f eQTL rs10453229

0

175

AT
AC

PBS

FN−f

RN
A PBS

FN−f

MUSKLOC124902247

LPAR1SVEP1

+
−

chr9110,292,572 bp 111,192,572 bp

contact
between

distal lead SNP
and

eGene

contact
between
lead SNP

and
distance−

matched gene–log10pval

0.0 − 0.2
0.2 − 0.4
0.4 − 0.6
0.6 − 0.8
0.8 − 1.0
r2

Fig 4 | 3D chromatin structure supports distal eSNP-eGene connections. (A–C) Hi-C, ATAC-seq, and RNA-seq reveal gained enhancer-promoter looping 
and increased gene expression with FN-f at three OA-associated genes—JUN, IL6, and MMP13. Arrows point to FN-f-gained loops. (D) A density plot of log2 
RNA fold-change shows that genes whose promoter overlaps a loop that is gained in response to FN-f also exhibit increases in gene expression. (E) A barplot 
depicting GO terms that are enriched in the set of genes whose promoters overlap gained loop anchors. (F) A boxplot shows that lead eSNP-eGene pairs 
exhibit higher contact frequency than distance-matched pairs of lead eSNPs and genes. P-value was calculated with a Wilcox test. (G) A boxplot shows that 
condition-specific eQTLs were associated with directionally concurrent changes in Hi-C contact frequency suggesting that changes in 3D chromatin structure 
could account, in part, for the conditional specificity of the eQTLs. P-values were calculated with a Wilcox test. (H) eQTL association plots colored by LD 
relative to FN-f lead variant rs10453229, a mega Hi-C heatmap, and ATAC-seq and RNA-seq signal tracks depicting an example of a distal FN-f-specific eQTL for 
LPAR1 that is supported by a chromatin loop.

Table 1 | Colocalizations between PBS and FN-f eQTL and OA GWAS signals. OA, osteoarthritis; GWAS, Genome-wide association study; THR, Total Hip 
Replacement; PP4, value of posterior probability 4 from coloc in the associated eQTL condition.
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a mechanistic explanation for distal eSNP-eGene pairs and 
further support condition-specific eQTLs.

Shared genetic architecture between eQTLs and GWAS 
variants reveals novel putative OA risk genes. To de-
termine if any of our identified eQTLs could explain OA 
risk loci, we performed colocalization analysis between 
our eQTLs and 100 independent OA GWAS loci described 
by Boer et al.2 who mapped risk variants for 11 OA-related 
phenotypes including finger OA, thumb OA, hand OA, total 
hip replacement (THR), hip OA, all OA, knee-hip OA, knee 
OA, spine OA, total joint replacement (TJR), and total knee 
replacement (TKR). We identified 14 colocalized signals cor-
responding to 13 unique eGenes covering 6 different OA 
phenotype subtypes (Table 1, Table S13; coloc46; posterior 
probability (PP4) > 0.7). We identified 3 of the 5 previously 
reported chondrocyte e/pQTL/OA GWAS colocalized genes 
and added 10 novel colocalized eQTL signals. Only 1 of these 
colocalizations was identified as an eQTL in both conditions 
with 69.2% (9 of 13) and 23.1% (3 of 13) detected in only PBS 

or FN-f treated conditions, respectively. We performed co-
localization analysis for all eQTL signals in both conditions 
regardless of whether or not they were detected as an eQTL 
in that condition. For several signals we observed colocal-
ization even if the eQTL analysis did not meet our cutoffs 
for statistical significance (see TGFA below). Examples of 
colocalizations that were shared, PBS-specific, or FN-f-spe-
cific are highlighted in Figure 5A-C. The risk allele for the 
OA GWAS variant rs3771501 was associated with decreased 
expression of TGFA in PBS-treated chondrocytes (Fig S8A) 
and while the trend appeared the same in FN-f treated 
cells, the adjusted p-value (q-value = 0.057) did not reach 
our cutoff for statistical significance. Nevertheless it was 
identified as a colocalized signal in both conditions. In con-
trast, the risk alleles of the OA GWAS variants rs56132153 
and rs9396861 were associated with decreased expression 
of PIK3R1 and RNF144B, respectively, in their specific condi-
tions (Fig S8B-C). These results underscore the importance 
of mapping eQTLs in a disease-relevant condition as well as 
a matched control for assessing risk before disease onset.
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Fig 5 | Examples of PBS-specific, FN-f-specific, and shared eQTLs that colocalize with OA GWAS signals. (A) eQTLs for TGFA are shared in both conditions 
and colocalize with an All OA GWAS signal with index variant rs3771501. eQTL signals are colored by LD relative to PBS lead variant rs3755381. (B) A distal 
eQTL signal for PIK3R1 is specific to PBS-treated chondrocytes and colocalized with a Total Hip Replacement (THR) GWAS signal with index variant rs56132153. 
eQTL signals are colored by LD relative to PBS lead variant rs7726943. (C) An FN-f-specific eQTL signal for RNF144B colocalizes with a Finger OA GWAS 
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Many of the colocalized eGenes exhibited multiple lines 
of evidence linking them to a role in OA. Of the 13 colocal-
ized eGenes (Table 1), 6 exhibited differential expression in 
response to FN-f (2 up and 4 down), 2 exhibited increased 
expression with age, and 5 were previously shown to exhib-
it expression changes in OA tissue43,47,48(2 up and 3 down). 
None of them exhibited sex-biased gene expression. Gene 
ontology and pathway enrichment analysis did not reveal 
any significant GO terms or pathways enriched in our set of 
13 eGenes, which could be due to the low power associated 
with small (i.e. 13) sets of genes or could suggest that these 
genes influence OA risk through multiple distinct processes. 
Indeed the proteins coded by ABCA10, ABCA5, and ABCA9 
are all members of the ATP-binding cassette (ABC) trans-
porter family, and TGFA and SMAD3 encode proteins that 
regulate gene transcription and cellular proliferation.

One of the colocalized eGenes with multiple lines of sup-
port is the metalloproteinase pappalysin 1 (PAPPA). PAPPA 
was previously found to be upregulated in OA tissue47 and 
here we show that PAPPA exhibits increased expression in 
FN-f-treated cells (Fig 6A) and in older donors (Fig 6B). The 
lead GWAS risk variant (rs1321917) was identified with an 

odds ratio of 1.10 and is associated with increased expres-
sion of PAPPA in our eQTL analysis (Fig 6C). This locus was 
identified as an eQTL in both PBS and FN-f-treated chon-
drocytes and was colocalized with the OA GWAS signal for 
Total Hip Replacement (THR) in both conditions as well (Fig 
6D, Fig S9). None of the GWAS variants at this locus (r2 > 0.6) 
overlap the promoter or gene body of PAPPA and the locus 
was assigned to ASTN2 based on the nearest gene approach 
in Boer et al2. The lead GWAS variant is 409 Kb downstream 
of the PAPPA promoter and even the closest GWAS variant 
(LD r2 > 0.6) is 351 Kb downstream of the PAPPA promoter. 
However, a chromatin loop connects the promoter of PAP-
PA to lead variants at the GWAS locus, which provides a pos-
sible mechanistic basis for this long-range regulation. This 
loop was recently described by Bittner et al., who provided 
further support for long-range communication at this locus 
by demonstrating that this GWAS signal colocalizes with 
a methylation QTL for a methylation site near the PAPPA 
promoter49,50. The PAPPA locus provides a model example 
of how a multi-omic approach can provide insight into the 
putative genes and mechanisms responsible for the contri-
butions of particular genetic regions to OA risk.
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Fig 6 | Multiple lines of evidence support PAPPA as an OA risk gene. The matrix metalloproteinase PAPPA has previously been found to have increased 
expression in OA tissue. (A) A boxplot depicting increased PAPPA log2 normalized expression counts in response to FN-f treatment (log2 fold change = 3.14). 
(B) PAPPA shows increased expression in older donors. Star indicates significance (adjusted p-value < 0.05). (C) The OA risk allele (C, bolded) of variant 
rs1321917 is associated with higher expression of PAPPA in chondrocytes in both PBS (blue) and FN-f (yellow). (D) The colocalized PBS eQTL signal for 
PAPPA does not overlap with the promoter or the gene body but is connected to the promoters via a 420 Kb chromatin loop which supports this distal eQTL. 
Total Hip Replacement GWAS is colored by LD relative to the GWAS index rs1321917 according to the 1000 Genomes European reference panel. Gray bars 
highlight the genomic regions of loop anchors. 
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Discussion
By mapping expression, chromatin accessibility, and 3D 
chromatin structure across individuals and conditions we 
provided critical new insights into the mechanisms driving 
genetic risk for OA. We identified thousands of genes that 
are differentially expressed in chondrocytes responding to 
FN-f, an OA-related stimulus that models cartilage matrix 
damage. These expression changes correlated with those 
seen in OA tissue supporting the use of this system to study 
OA-related chondrocyte gene regulation. We provided com-
prehensive, highly-powered characterizations of human 
chondrocyte gene expression differences related to age and 
sex, two important risk factors for OA. We then mapped 
eQTLs and response eQTLs to reveal how common genetic 
variation contributes to chondrocyte gene expression both 
in resting and activated conditions. We mapped changes in 
3D chromatin architecture in chondrocytes responding to 
FN-f and found gained loops and increased expression at 
many key OA risk genes including JUN, NFKB, and MMP13. 
Many of these loops and changes in chromatin structure 
provided mechanistic insight and explanation for our distal 
and condition-specific eQTLs. Finally, we colocalized our 
eQTLs with 11 OA GWAS phenotypes revealing 13 puta-
tive OA risk genes, 76.9 percent of which have not been 
described by previous chondrocyte QTL studies.

Our eQTLs included 4 of the 5 e/pQTLs previously colocal-
ized to OA GWAS signals identified from UK Biobank data3. 
This included three of the four previously colocalized16 
chondrocyte eQTLs. Two of those (SMAD3 and SLC44A2) 
were also colocalized with OA GWAS variants in our analy-
sis. The third eQTL (NPC1) was not identified as colocalized 
in our analysis but only because that locus was no longer 
significant in the updated OA GWAS study that we used (Fig 
S10A). Our colocalized eQTLs also identified a colocalized 
eQTL that was previously identified16 as a colocalized pQTL 
(ALDH1A2). Only one of the previously identified colocal-
ized QTLs (FAM53A) was not identified in our analyses (Fig 
S10B), which we suspect is due to differences between our 
study designs, where we used healthy tissue treated with 
FN-f and the previous study used primary OA tissue.

Characterization of our 13 colocalized eGenes both inde-
pendently and collectively provides important insights into 
the genetic basis of OA and possible strategies for therapeu-
tic development. Some of these genes have known roles in 
OA or are involved in processes relevant to OA pathology 
while the function of others is less clear. SMAD3 is a key 
transcriptional regulator in the TGF-B signaling pathway 
and SMAD3 disruption has been shown to cause an OA-like 
phenotype in mouse models39. ALDH1A2 is involved in ret-
inoic acid synthesis and low ALDH1A2 in chondrocytes has 
been previously associated with increased expression of in-
flammatory genes that are also un-regulated in response to 
articular cartilage injury51. SLC44A2 is a choline transporter 
whose role in OA is not well understood. 

Importantly, this study revealed 10 novel eGenes (ABCA5, 

9, and 10, CARF, MAP2K6, PAPPA, PIK3R1, RNF144B, TGFA, 
and TRIOBP) that colocalized with OA GWAS signals, pro-
viding new insights into the etiology of OA. ABCA5, 9, and 
10 are genes that cluster on chromosome 17q24.3 and code 
for members of the ATP binding cassette (ABC) subfamily, a 
group of proteins that serve to transport a variety of mole-
cules across membranes52. A role for this transporter family 
in cartilage biology or OA has not been investigated. CARF 
codes for a calcium responsive transcription factor which 
also has not been previously investigated in the context of 
OA. MAP2K6, also known as MEK6, is a member of the MAP 
kinase signaling family and phosphorylates p38, which is 
a mediator of catabolic signaling in cartilage that includes 
signaling activated by FN-f and cytokines such as IL-153. 
Inhibition of p38 in vitro can inhibit cartilage degrada-
tion53 although genetic inhibition of p38 in transgenic mice 
expressing a dominant negative p38 construct resulted in 
more severe OA at 1 year of age54.  PIK3R1 is a regulatory 
subunit of the PI-3 kinase. The role of PI-3 kinase signal-
ing in cartilage biology and OA is complex. PI-3 kinase is 
a positive mediator of chondrocyte anabolic activity and 
cell survival but is also activated by pro-inflammatory cy-
tokines including IL-1 and oncostatin M which promote cat-
abolic signaling55. RNF144B codes for a ring finger protein 
that regulates ubiquitin-protein transferase activity. It can 
inhibit LPS-induced inflammation56 which may be relevant 
to inflammation in OA57. The role of TGFα and its activation 
of the EGF receptor in OA is also complex. TGFα has been 
shown to induce chondrocytes to produce catabolic factors 
such as MMP1358, but in contrast the intra-articular injec-
tion of nanoparticles delivering TGFα reduced the severity 
of surgically-induced OA in mice59. TRIOBP is the TRIO and 
F-actin binding protein which stabilizes F-actin structures. 
TRIOBP was recently found to co-localize with eQTLs from 
human osteoclast-like cells generated from isolated human 
peripheral blood mono-nuclear cells60 but its role in carti-
lage biology and OA has not been studied. 

Among the novel colocalized eGenes, PAPPA is partic-
ularly interesting. PAPPA is a zinc metalloproteinase that 
cleaves IGF binding proteins including IGFP-4 and -561. It 
exhibits increased expression in OA tissue, in older donors, 
and in response to FN-f. The shared GWAS and eQTL signal 
is over 400 Kb away from the promoter of PAPPA but as 
we (and others49) have shown, these variants are connected 
to the promoter of PAPPA via a chromatin loop. A recent 
study pinpointed PAPPA as the most consistent mediator 
of senescence induction in sirtuin-deficient human induced 
pluripotent stem cells62. Of note, the authors identified a 
loop with an enhancer locus 416 Kb downstream of the 
PAPPA promoter as emerging in response to knockout of 
sirtuins 1 and 5 (a sirtuin deficiency-sensitive genomic re-
gion), which overlaps the eQTL/GWAS region we identified 
in chondrocytes. In vitro and in vivo studies support a role 
for PAPPA secretion in amplifying senescence63 and limiting 
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median lifespan64. Given the importance of IGF signaling in 
cartilage homeostasis and repair65, as well as the potential 
role for senescence to drive joint dysfunction66, alterations 
in PAPPA expression or function could potentially influence 
the balance between anabolic and catabolic processes in the 
joint. Further functional studies are required to delineate 
PAPPA’s exact role in OA risk and whether modulation of 
PAPPA has any therapeutic potential.

Interestingly, the identified genes are not clearly en-
riched in any specific pathways or biological processes 
which could indicate a number of different things. First, the 
GWAS data describes 11 different phenotypes ranging from 
finger OA to total hip replacement. Different OA subtypes 
and phenotypes measured by these GWAS may be driven 
by distinct mechanisms and involve distinct biological 
pathways. Second, OA is a polygenic disease influenced 
by a number of environmental factors. It is possible, even 
likely, that OA risk is driven by genetic influences on a num-
ber of different pathways and processes that act across a 
diverse array of developmental time points and biological 
conditions. As such, one would not expect to see enriched 
ontologies or pathways until a larger set of risk genes was 
identified.  

Despite the success of this project it is important to high-
light several limitations. First, while this study successfully 
identified 13 putative OA risk genes, eQTLs alone are not 
well suited to pinpointing the exact causal variants at each 
locus. Other genomic methodologies including chromatin 
accessibility QTL mapping and massively parallel reporter 
assays could be useful in defining causal variants. Second, 
while we more than doubled the number of colocalized 
eQTLs and OA risk variants, many OA GWAS loci remain 
unexplained. Increasing our sample size will increase our 
power and likely lead to more colocalized eGenes (particu-
larly those controlled by distal regulatory elements). While 
much of the genetic contribution to OA risk is thought to be 
mediated via chondrocyte function, some variants surely 
impact other cell types and other components of the joint. 
Mapping eQTLs in additional  cell types including fibro-
blasts, macrophages, and other cell types present in the 
joint will likely increase the number of colocalized signals. 
Moreover, while many of the variants are likely to impact 
resting or FN-f-activated chondrocytes, some may impact 
chondrocytes during development or in response to other 
stimuli. Finding ways to interrogate the genetic influence 
on gene expression across other conditions may also reveal 
putative risk genes. Finally, while colocalized eQTLs pro-
vide strong support for causal associations, final proof of 
this causal effect and assessment of therapeutic potential 
will require focused functional studies.

This study represents a major breakthrough for OA re-
search by providing potential explanations for 13 OA GWAS 
risk loci. The next critical steps are to functionally charac-
terize the role that these genes play in the OA phenotype 
and determine if modulating their expression or activity 

can alleviate or even reverse OA-related symptoms. In 
parallel, it will be important to continue generating simi-
lar data sets across multiple cell types and conditions with 
increased sample sizes to improve our power to detect OA 
risk genes.  

Methods
Sample collection and treatment
Chondrocytes from human talar cartilage of deceased tis-
sue donors with no known history of arthritis (see Table 
S14 for donor characteristics) were isolated via enzymatic 
digestion and cultured in monolayer using protocols as 
previously described19. Chondrocytes were given 4 days of 
recovery from digestion and maintained in cell culture me-
dium consisting of DMEM/F12 supplemented with 10% FBS 
(VWR Seradigm; #97068-085) before experiments. For DNA 
experiments, cultured chondrocytes were first collected as 
cell pellets via trypsinization and stored at -80° until DNA 
isolation. For FN-f treatment and RNA isolation, serum-con-
taining media was first removed, and the cells washed twice 
with PBS before being serum-starved in DMEM/F12 for 2 
hrs. Chondrocytes were then treated with 1 µM purified 
recombinant human FN-f (FN7-10), prepared as previously 
described and stored as aliquots at -80 degrees C in PBS23, 
or treated with PBS alone as a control for 18 hours. The 
media was then removed, and the cells washed once with 
PBS before lysis using RNeasy Lysis Buffer (Qiagen). Lysates 
were stored at -80° until RNA isolation and purification.

DNA extraction
Genomic DNA was extracted from chondrocytes using the 
QIAamp DNA mini kit (Qiagen, #51304) according to the 
manufacturer's instructions. Samples were quantified with 
Qubit High Sensitivity assay kit (Thermo Fisher Scientific 
#Q32854) and absorbance values were obtained using Nan-
oDrop. DNA was submitted to the Mammalian Genotyping 
Core at University of North Carolina to be genotyped using 
the Infinium Global Diversity Array-8 v.10 Kit (Illumina 
#20031669).

Genotype processing and quality control
SNP genotypes were exported into PLINK format with the 
Illumina software GenomeStudio. Quality control and filter-
ing was performed with PLINK (v1.90b3.45)67. We filtered 
out SNPs with missing genotype rate > 10% (--geno 0.1), 
deviations from Hardy-Weinberg equilibrium at a p-value 
< 1 x 10e-6 (--hwe 10^-6), and minor allele frequency < 1% 
(--maf 0.01). Samples with sex discrepancies from PLINK 
–check-sex comparison between reported sample sex and 
sex assigned from heterozygosity on the X chromosome 
were omitted. To assess relatedness of samples, identity 
by descent (IBD) was calculated with PLINK. Samples were 
retained if their inferred relationship type was either UN 
(unrelated) or OT (other) with PI_HAT (proportion IBD) < 
0.2. To estimate the population structure of our samples, we 
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combined our data with overlapping data from the 1000 Ge-
nomes Project68 and used EIGENSTRAT (v8.0.0)69 to conduct 
principal component analysis (PCA) optimized for popula-
tion-related analyses. Prior to imputation, we filtered our 
dataset for autosomes, flipped the alleles of SNPs that were 
not on the reference strand as identified by snpflip70, and 
converted PLINK files into VCF files separated by chromo-
some. Data was imputed using the version R2 on GRC38 
TOPMed reference panel with Eagle2 (v2.4) phasing71 on 
the TOPMed Imputation Server72. Following imputation, we 
followed similar QC filtering steps as before imputation and 
retained SNPs with missing genotype rate < 10%, p-value 
of Hardy-Weinberg equilibrium > 1 x 10e-6, minor allele 
frequency > 1%, and sufficient imputation quality (R2 > 
0.3). The resulting final dataset contained approximately 
9.7 million autosomal SNPs.

RNA isolation 
RNA was extracted using the RNeasy kit (Qiagen #74104) 
according to the manufacturer's recommendation. On-col-
umn DNase digestion was performed during the extraction. 
Samples were quantified with the Qubit RNA High sensitivi-
ty assay kit (Thermo Fisher Scientific #Q32582) and RNA in-
tegrity number (RIN) was obtained using the Agilent TapeS-
tation 4150. RNA was submitted to the New York Genome 
Center for RNA-seq library preparation and sequencing.

RNA-seq processing and quality control
RNA-seq libraries were sequenced at the New York Genome 
Center to an average read depth of approximately 101 mil-
lion paired end reads (2 x 100 bp) per sample. FASTQ files 
sequenced on multiple flow cells but were from the same 
library were merged. After trimming low quality reads and 
adapters with TrimGalore! (v0.6.7)73, we performed quality 
control of each library with FastQC (v0.11.9)74. Trimmed 
FASTQs were aligned against the GENCODE.GRCh38.p13 ref-
erence genome with STAR aligner (v2.7.10a)75 and obtained 
transcript-level quantifications with salmon (v1.10.0)76 with 
–gcBias and –seqBias flags and the ENSEMBL version 97 
(GRCh38.p12) hg38 cDNA assembly. To conduct differen-
tial gene expression analysis, transcript-level quantifica-
tions for each sample were summarized and converted to 
gene-level scaled transcripts in R with tximeta77. Individ-
ual donor RNA signal tracks were created with deepTools 
(v3.5.1)78 and then merged by condition. 

Evaluation of sample swaps and sample contamination 
was performed with VerifyBamID (v1.1.3)79. Genotyping 
sample swaps (n = 2) were corrected. Samples with FREE-
MIX and CHIPMIX scores > 0.2 after attempting to fix sample 
swaps were omitted.

MultiQC (v1.11)80  aggregated QC results from FastQC, 
STAR, salmon, and VerifyBamID. Samples with > 10% un-
mapped short reads, samples without a corresponding QC’d 
genotyping sample (see below), and donors without both a 
PBS RNA-seq sample and FN-f RNA-seq sample that passed 

QC were omitted. By all these criteria, the final datasets 
included 101 individual donors, corresponding to 202 RNA-
seq samples (101 PBS and 101 FN-f).

Replicate correlation
Technical replicates (n=2 for PBS and n=3 for FN-f) were 
performed for the RNA-seq analysis using chondrocytes 
cultured from three donors. For each treatment, VST-nor-
malized gene expression counts were used to calculate Pear-
son’s correlations between libraries from the same donors 
and between libraries across different donors. Correlation 
coefficients were transformed with Fisher’s z. Significance 
of difference between donor-self libraries and donor-other 
libraries was tested with an unpaired, two-sided Wilcox test.

Differential analysis of FN-f-induced transcriptional 
changes
Differential analysis between FN-f samples and PBS sam-
ples was conducted in R with DESeq224 using summarized 
gene-level scaled transcripts. A design of ~Donor + Condition 
was used to adjust for donor variability while calculating 
changes between PBS and FN-f conditions. Before modeling, 
lowly expressed genes were omitted by requiring at least 10 
counts in 10% of samples. Shrunken log2 fold change values 
were calculated using the “apeglm” method of lfcShrink81. 
Genes were considered differential with an FDR-adjusted 
p-value < 0.05 (Wald test) and shrunken absolute log2 fold 
change > 1. These genes were further filtered for the largest 
and most significant threshold using an FDR-adjusted p-val-
ue < 0.01 and absolute log2 fold change > 2.

GO term, KEGG pathway, and transcription factor motif 
enrichment of differential FN-f genes
Filtered high-significance differential FN-f genes (padj < 
0.01 and absolute log2 fold change > 2) were split based 
on direction of effect. findMotifs.pl in the HOMER software 
suite (v4.11)25 was used on these groups to identify signifi-
cantly enriched GO Terms (p < 0.01), KEGG pathways (p < 
0.01), and transcription factor motifs (p < 0.01). GO terms 
were reduced based on semantic similarity using rrvgo 
(v1.14.2)82.

Comparison to publicly available OA gene expression 
datasets
Differential expression data in OA tissue was used from 3 
published studies as a comparison to our datasets. Microar-
ray gene expression results between OA and preserved 
cartilage were downloaded from the RAAK study47 and 
filtered for genes with p-value < 0.05. The list of all genes 
detected in an RNA-seq analysis comparing normal and OA 
knee cartilage was obtained from Fisch et al. (2018)43 and 
filtered for genes with an adjusted p-value < 0.05. Since a 
supplementary list of differential gene expression results 
was not readily accessible, the non-normalized count ma-
trix from Fu et al. (2021)48 was downloaded from GEO under 
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accession number GSE168505 and analyzed with DESeq224. 
Genes with at least 10 counts in 1 sample were included in 
the analysis. Since no additional covariate information was 
available, differential expression between OA and normal 
cartilage was tested using a design of ~Condition. Shrunken 
log2 fold change values were calculated using the “apeglm” 
method of lfcShrink81 and results were filtered for differ-
ential genes with an FDR-adjusted p-value < 0.05. A final 
set of differential OA genes was defined as genes that were 
significant and showed the same direction of effect in all 3 
studies. A Wilcox test was used to determine if the FN-f in-
duced log2 fold change of upregulated and downregulated 
OA genes were significantly higher or lower, respectively, 
than genes not found in this set. 

Sex-specific gene expression analysis
Summarized gene-level transcript results were separated 
based on condition and analyzed for sex-specific effects us-
ing DESeq224. A design of ~Ancestry + Age_group + Sex was 
used to control for donor genetic ancestry (as determined 
from principal component analysis with 1000 Genomes 
samples using EIGENSTRAT with 1000 Genomes-defined 
superpopulations; AFR, AMR, EAS, EUR, or SAS) and donor 
age group (31-40, 41-50, 51-60, 61-70, 71-80, or 81-90) while 
assessing differences in sex-related expression. lfcShrink81 
was used to calculate shrunken log2 fold change values 
using the “apeglm” method. Genes were considered sig-
nificantly sex-specific with an FDR-adjusted p-value < 0.01. 
A union of sex-specific genes found in either PBS or FN-f 
samples was used for downstream analyses. Sex-specific 
genes were considered differentially expressed in OA tissue 
if the gene was significant (adjusted p-value < 0.05) in any 
of the 3 OA studies described above.

Comparison of sex-specific genes to GTEx sex-biased 
gene expression
To compare human chondrocyte sex-specific gene expres-
sion to other sex-biased expression in other tissues, sum-
mary statistics of GTEx sex-biased genes in 44 tissues30 was 
downloaded from the GTEx portal (https://gtexportal.org/
home/datasets). Datasets were compared based on ENSEM-
BL gene ID.

Identifying genes with age-dependent expression pat-
terns
DESeq224 was used to identify genes with age-related ex-
pression patterns in summarized gene-level transcripts 
separated by condition. A likelihood ratio test (LRT) was 
used to test dependence of counts on a smooth function of 
age, by modeling age with natural cubic splines with five 
degrees of freedom83. To control for donor sex and donor 
genetic ancestry, the full model was ~Sex + Ancestry + 
splines::ns(Age, df = 5) and the reduced model was ~Sex + 
Ancestry where Ancestry was determined from principal 
component analysis with 1000 Genomes samples using EI-

GENSTRAT with 1000 Genomes-defined superpopulations 
(AFR, AMR, EAS, EUR, or SAS). Genes were considered sig-
nificantly age-related if the adjusted p-value of the LRT was 
< 0.05. k-means clustering of centered fitted spline curves 
with a k of 2 was used to assign to gene clusters exhibiting 
increased expression with age and decreased expression 
with age. GO term enrichment for each of these clusters was 
performed using findMotifs.pl in the HOMER software suite 
(v4.11)25. GO terms were reduced based on semantic simi-
larity using rrvgo (v1.14.2)82 and considered significant with 
p < 0.01.  Age-related genes were considered differentially 
expressed in OA tissue if the gene was significant (adjusted 
p-value < 0.05) in any of the 3 OA studies described above.

Comparison of age-related genes to GTEx age-related 
gene expression changes To compare age-related genes 
in human chondrocytes to other tissues, aging-related sta-
tistics for genes in nine human tissues was downloaded 
from Yang et al. (2015)33. For consistency with Yang et al., 
Thyroid and Skin tissues were omitted from the dataset and 
genes were considered significantly age-associated with an 
FDR-adjusted p-value < 0.05. Datasets were compared based 
on ENSEMBL gene ID.

ATAC-seq library preparation
Chondrocytes were treated with FN-f or PBS for 18 hours 
as described above, media was aspirated and cells were 
washed with PBS. To avoid changes associated with tryp-
sinization, cells were directly lysed in the well as previously 
described84. Briefly, cells were washed twice with cold PBS 
followed by one wash with cold ATAC-seq resuspension 
buffer (RSB). Cells were lysed in RSB containing 0.1% 
NP40, 0.1% Tween-20, and 0.01% digitonin for 10 min at 
4C. After lysis the remainder of the Omni-ATAC protocol 
was performed85. Following washes and  transposition 
with Tagment DNA TDE1 Enzyme (Illumina #20034197) re-
actions were cleaned up with DNA clean and concentrator 
kit (Zymo Research #D4014). Samples were preamplified 
using High-Fidelity 2X PCR Master Mix (New England Bio-
labs, #M0541L) and adapters (Illumina Nextera XT Index kit 
#FC-131-1001). The number of additional cycles was deter-
mined by quantitative PCR. Following a double-sided AM-
Pure XP bead cleanup (Beckman Coulter #A63881), libraries 
were quantified using Qubit. Library quality and fragment 
distribution was visualized by Agilent TapeStation 4150. 
Prior to pooling, libraries were quantified with the KAPA 
library quantification kit (Roche #07960298001). Libraries 
were sequenced on Illumina NextSeq 500 sequencer (75-bp 
paired-end reads, high output kit Illumina #20022907) at the 
CRISPR core, University of North Carolina.

ATAC-seq data processing
Adaptors and low-quality paired-end reads were processed 
using Trim Galore! (v0.6.7)73. Reads were then aligned to 
the UCSC hg38 human genome reference using BWA-MEM 
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(v0.7.17)86. We removed duplicate alignments with Picard 
(v2.10.3)87 and excluded mitochondrial reads via samtools 
(v1.17)88. Quality assessment of ATAC-seq data, including 
total read counts, duplicate rates, transcript start site en-
richment scores, and the fraction of reads in called peak re-
gions, was conducted using R package ATACseqQC (v3.18)89. 
All samples met the ENCODE project's standards as of July 
2020. We eliminated reads mapping to ENCODE blacklist re-
gions (Accession ID: ENCFF356LFX) using bedtools (v2.30)90. 
To adjust for the Tn5 transposase binding bias, we applied 
a Tn5 shift correction with alignmentSieve from deep-
Tools (v3.5.1)78. Peak calling was performed with MACS3 
(v3.0.0)91, utilizing the following parameters: 'callpeak -f 
BAM --call-summits -B -q 0.01 --nomodel --shift -100 --extsize 
200 --keep-dup all'. We merged peaks identified under two 
different conditions using bedtools (v2.3.0)90.

Differential ATAC peak analysis, chromatin accessible 
region overlap with eQTLs, and transcription factor 
motif enrichment
To identify ATAC peaks that were differentially accessible 
between FN-f and PBS samples, we used DESeq224 with peak 
read counts described above using a design of ~Donor + 
Condition to adjust for donor variability. Prior to testing, 
we filtered for peaks with at least 10 counts in 2 samples. 
Shrunken log2 fold change values were calculated with the 
“apeglm” method of lfcShrink81. Peaks were considered dif-
ferentially accessible with globally adjusted p-value < 0.01 
and shrunken absolute log2 fold change > 1.

We overlapped all called peaks in either condition with 
high confidence PBS-specific lead eQTLs, shared lead eQTLs, 
and high confidence FN-f-response lead eQTLs and variants 
in high LD (r2 > 0.8) with these groups with findOverlaps 
from the GenomicRanges R package92. To test for enrich-
ment of condition-specific accessibility of condition-specific 
eQTLs, we performed a Wilcox test comparing the peak log2 
fold change values of peaks overlapping condition-specific 
eQTLs to peaks that overlapped any lead eQTL or variant 
in high LD (r2 > 0.8). An alternative hypothesis of “less” was 
used for testing peaks overlapping PBS-specific eQTLs and 
an alternative hypothesis of “greater” was used for testing 
peaks overlapping FN-f-specific eQTLs.

Transcription factor motif enrichment of peaks over-
lapping high confidence condition-specific PBS eQTLs and 
peaks overlapping high confidence FN-f-response eQTLs 
was performed using findMotifsGenome.pl in the HOMER 
software suite (v4.11)25. Enrichment was calculated against 
a background of any peak that overlapped any lead eQTL or 
variant in high LD (r2 > 0.8) in either condition.

In situ Hi-C library preparation
4 donor plates of 8 million chondrocytes were cultured in 
DMEM/F-12 media, serum-starved for 2 hours, and treated 
with PBS or FN-f. After 18 hours of treatment, the media was 
removed from the plate. Cells in each plate were crosslinked 

in 10% formaldehyde in DMEM/F-12 media and incubated 
for 10 minutes on a rocker. To quench, 2M Glycine was 
added as a final concentration of 0.2M and incubated for 5 
minutes on the rocker. The supernatant was removed, the 
cells were resuspended with 10mL cold PBS, collected into a 
15mL tube, and spun down at 2500 rpm, 4°C for 5 minutes. 
The pellets were resuspended with 1mL PBS, transferred to 
1.5mL microcentrifuge tube, and spun down at 900g, 4°C for 
5 minutes. The pellets (~8 million cells) were flash frozen in 
liquid nitrogen and stored at -70 °C. The cells were thawed 
and in situ Hi-C was performed as described in Rao et al. 
(2014).4

Hi-C data processing
Hi-C data was processed using the modified Juicer pipeline 
(https://github.com/EricSDavis/dietJuicer)  with default 
parameters, as previously described93. Reads were aligned 
to the hg38 human reference genome with bwa, and MboI 
was used as the restriction enzyme. A total of 3,170,331,152 
Hi-C read pairs were processed from PBS-treated chondro-
cyte cells, resulting in 1,949,761,524 Hi-C contacts (61.5%). 
Similarly, 2,925,877,690 Hi-C read pairs were processed 
from FNF-treated chondrocyte cells, yielding 1,836,062,944 
Hi-C contacts (62.75%). Hi-C matrices were constructed in-
dividually for each of the two technical replicates across 
four biological replicates. Subsequently, the Hi-C mega map 
was merged with all replicates about each condition (PBS 
or FNF-treated chondrocytes).

Loops were identified at 5 kb resolution with Signifi-
cant Interaction Peak (SIP) caller (v1.6.2)94 and Juicer tools 
(v2.13.07) using the replicate-merged mapq >30 filtered hic 
file with the following parameters: '-norm SCALE -g 2.0 -min 
2.0 -max 2.0 -mat 2000 -d 6 -res 5000 -sat 0.01 -t 2000 -nbZero 
6 -factor 1 -fdr 0.05 -del true -cpu 1 -isDroso false'.

Differential loop analysis
DESeq224 Wald testing was used for differential analysis 
of loops using a model of ~Condition + Donor + replicate. 
Shrunken log2 fold change values were calculated with the 
“apeglm” method of lfcShrink81. Loops were considered 
differential with a globally adjusted p-value < 0.1. We iden-
tified protein-coding gene promoters that overlapped either 
anchor of differential or static loops using the GENCODE 
Release 44 hg38 (GRCh38.p14) reference genome and find-
Overlaps function92. GO term enrichment analysis of these 
genes at differentially gained loop anchors was conducted 
using findMotifs.pl in the HOMER software suite (v4.11)25 
against a background of genes at static loop anchors.

Contact frequency between distal eSNPs and eGenes
We considered the range of an eQTL signal to span the min-
imum and maximum range of variants in moderate LD (r2 > 
0.6) with the index variant to maximize capturing the entire 
signal width and any plausible putative variants. We inves-
tigated long-range contacts between SNPs and their eGenes 
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by defining distal eQTL signals as those with the minimum 
or maximum signal range at least 50 Kb away from either 
end of the entire eGene. Connections between signals and 
eGene promoters via a chromatin loop (differential or stat-
ic) were identified using the linkOverlaps function from 
InteractionSet95 with loop anchors expanded to 30 Kb.

Contact frequency count data between lead SNPs and 
gene promoters according to hg38 were extracted from PBS 
and FN-f mega map Hi-C files at 5 Kb resolution with SCALE 
normalization with pullHicPixels from the mariner R pack-
age96. The matchRanges function from nullranges97 was 
used to generate a null distribution of distance-matched 
SNP-gene pairs for testing contact frequency between lead 
SNPs and their assigned eGenes. A Wilcox test was used 
to determine if the contact frequency between SNPs and 
their eGenes was higher compared to the contact frequency 
between distance-matched SNP-gene pairs.

Contact frequency count data between eGenes and 
high-confidence PBS-specific, shared, and high-confidence 
FN-f-specific eQTLs and variants in high LD (r2 > 0.8) were 
also extracted at 5 Kb resolution and SCALE normalization 
with pullHicPixels from mariner. A log2 fold change in con-
tact frequency was calculated for these pixel counts between 
the FN-f and PBS conditions. A Wilcox test was used to test 
for enriched contact frequency of condition-specific eQTLs 
with their associated eGenes in their associated condition. 

Condition-stratified cis eQTL mapping
Prior to eQTL mapping, we filtered out lowly expressed 
genes and only considered protein-coding genes that had at 
least 10 counts in more than 5% of all samples (11 samples). 
Samples were normalized using the “TMM” method from 
edgeR98. Gene expression data was then normalized sepa-
rated by condition with an inverse normal transformation 
across each gene. The transcription start site (TSS) of each 
gene was defined as the start of the most upstream tran-
script according to the GENCODE Release 44 hg38 (GRCh38.
p14) genome build.

Genetic variants were selected for testing with at least 
10 counts of the minor allele and at least 5 heterozygote 
donors using GATK VariantFiltration99. For each gene, we 
considered variants within a 1 Mb window in either direc-
tion of the defined TSS.

Principal component analysis was performed on geno-
typing data with QTLtools pca100. The kneedle algorithm101 
was used to identify the “elbow” of principal components 
versus percent variance explained to determine the number 
of genotyping principal components to include as covari-
ates in our linear model. To infer technical confounders, 
we applied probabilistic estimation of expression residuals 
(PEER)102 to the condition-separated inverse-normalized 
gene expression results. To identify the number of PEER 
factors to include as covariate in each model, we generated 
PEER factors from 1-50 and performed QTL mapping with 
QTLtools (v1.3.1)100. A permutation-based analysis was per-

formed with the QTLtools cis permutation pass with 1000 
permutations. Adjusted empirical p-values were adjusted 
globally using the Storey-Tibshirani q-value37. eGenes, or 
genes with at least one significant eQTL, were defined with a 
q-value < 0.05 (an equivalent p-value of 8.64e-24 in PBS and 
5.95e-21 in FN-f). We selected the final number of PEER fac-
tors to include in the model that yielded the most significant 
eGenes before a plateau in the number of significant eGenes 
with a successive increase in PEER factors. The final eQTL 
model for PBS samples was expression ~ SNP + 4 genotyping 
PCs + 20 PEER factors + Donor Sex and the final eQTL model 
for FN-f samples was expression ~ SNP + 4 genotyping PCs + 
22 PEER factors + Donor Sex. eQTL nominal p-values were 
calculated with the QTLtools cis nominal pass.  For each 
eGene, we obtained the local nominal threshold by calculat-
ing a p-value as the mean of the smallest p-value above the 
q-value threshold and the highest p-value above the q-val-
ue threshold and using the beta distribution (qbeta) with 
shape1 and shape2 parameters defined from the QTLtools 
permutation analysis, as described by FastQTL103. PBS eGene 
nominal thresholds ranged from 5.03e-6 to 3.39e-4 and FN-f 
eGene nominal thresholds ranged from 5.96e-6 to 4.19e-4.

To identify independent signals for each significant 
eGene, we performed conditional analysis with the 
QTLtools cis conditional pass using the above eGene nom-
inal p-value thresholds and same set of covariates as the 
original eQTL models. rsIDs for independent variants were 
assigned based on position and allele-matching relative to 
the GRCh38.p14 build 156 dbSNP reference. After isolating 
conditionally distinct lead eQTL-eGene pairs, conditional 
signals for eGenes with more than 1 independent signal 
were isolated by re-running QTLtools cis nominal pass and 
conditioning on the lead variant(s) of the eGene’s other 
distinct signal(s).

Comparison to existing cartilage eQTLs
High-grade and low-grade cartilage eQTLs from Steinberg 
et al. (2021)16 were downloaded from the Musculoskeletal 
Knowledge Portal (https://msk.hugeamp.org/) and were lift-
ed over to hg38 with UCSC liftOver104 for compatibility with 
our dataset. To determine effect sizes of shared eGenes, we 
used the lead variant identified by Steinberg et al. The beta 
values of shared variants were adjusted so they were all in 
reference to the minor allele. 

Condition-specific and response eQTLs
Condition-specific and response eQTLs were identified by 
testing significant (q-value < 0.05) PBS and FN-f eGenes for 
the significance of an interaction term between genotype 
and condition. The R package lme4105 was used to compare 
the following two linear mixed models for all lead eSNP-
eGene pairs:
H0: expression ~ SNP + covariates + condition + (1|Donor) 
H1: expression ~ SNP + covariates + SNP:condition + (1|Do-
nor)
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where covariates are the same covariates used in standard 
eQTL mapping, condition = 0 or 1 (PBS or FN-f, respective-
ly), and (1|Donor) accounts for any donor-specific random 
effects. Interaction p-values were calculated using ANOVA. 
eQTLs with an interaction p-value < 0.05 were considered 
significant. We further filtered this list for a set of high-con-
fidence PBS-specific and FN-f-response eQTLs by filtering 
for eQTLs that were only found in one condition, had at 
least 5 donors with each variant genotype, and had a beta 
difference of at least 0.2 between conditions. KEGG pathway 
enrichment for these eGenes was performed using findMo-
tifs.pl in the HOMER software suite (v4.11)25

Colocalization between eQTLs and OA GWAS
To test for colocalization between independent eQTL signals 
and OA GWAS, we used summary statistics for 11 OA pheno-
types from Boer et al. (2021)2. Data was downloaded from 
the Musculoskeletal Knowledge Portal (https://msk.huge-
amp.org/) and lifted over to hg38 coordinates with UCSC 
liftOver104. LD proxies (r2 > 0.8) of 100 lead variants (omitting 
sex-specific and early-onset OA phenotypes) were identified 
using the 1000 Genomes European reference panel since 
11 of 13 GWAS cohorts were of European descent.  PLINK 
(v1.90b3.45)67 –ld was used to calculate r2 values with the 
following parameters: –ld-window 200000 –ld-window-kb 
1000.

We performed colocalization analysis between an eQTL 
and GWAS signals if the lead eQTL variant was in moder-
ate LD (r2 > 0.5) with the lead GWAS variant according to 
either our in-study reference panel or the 1000 Genomes 
European reference panel. For each analysis, we considered 
the index GWAS variant and any variants within ± 250 Kb 
and filtered eQTL data for this same set of variants. We ran 
coloc.abf46 using default priors with eQTL data inputs of 
nominal p-values, sample size, minor allele frequencies, 
betas, and beta variances and GWAS data inputs of nominal 
p-values, minor allele frequencies, and betas. We consid-
ered a coloc posterior probability (PP4) > 0.7 as sufficient 
evidence of colocalization.

Visualization
Gene expression heatmaps for condition, sex, and age 
were made using ComplexHeatmap106. Association plots, 
Hi-C maps, and other genomic signal tracks were plotted 
with plotgardener107. All other plot types were made with 
ggplot2108.
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Supplemental Fig 1 | RNA-seq and eQTL QC analyses. (A) Barplot depicting read depths for all 202 RNA-seq data sets used in this study. The dashed line 
represents the mean library read depth (101.8 million reads). (B) Violin plots depicting the distributions of read depths (left), RIN scores (middle), and 
mappability (right) of RNA-seq data sets used in this study. (C) The correlation of gene expression between vs within donors for PBS and FN-f samples is 
visualized via violin plots. (D) PCA plots reveal that RNA-seq samples cluster largely by treatment. Samples are colored by treatment and shaped by donor sex. 
(E) Principal component analysis of donor genotyping data calculated with EIGENSTRAT. Study data, colored in black, is overlaid with 1000 Genomes data, 
which are colored by superpopulations as denoted by the 1000 Genomes Project. AFR: African, AMR: Admixed American, EAS: East Asian, EUR: European, 
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Supplemental Fig 3 | Optimization of eQTL discovery. (A) Heatmaps of Pearson’s correlations between calculated PEER factors and known technical 
covariates in PBS (left) and FN-f (right) samples. * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001. (B) Number of significant eGenes as a result of 
correcting for 1-50 PEER factors and including various additional batch covariates. 20 PEER factors with no additional batches and 22 PEER factors with no 
additional batches yielded the most significant eGenes in PBS (left) and FN-f (right) with eQTL mapping. (C) Venn diagram of all significant eQTL-eGene 
pairs identified in PBS and FN-f.
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Supplemental Fig 4 | Conditional eQTL mapping identifies second-
ary signals. Locus zooms of the FN-f MMP16 eQTL signal before con-
ditional analysis and after isolating independent signals. rs9650033 and 
rs7828497 are lead variants for the independent signals and are not in 
LD with each other. Each signal is colored by LD relative to the signal 
lead variant.

Supplemental Fig 5 | Comparison of chondrocyte eQTLs to those 
identified by Steinberg et al.  (A) A Venn diagram shows the overlap 
of eGenes between our study (PBS and FN-f) and Steinberg et al. (low-
grade and high-grade cartilage). (B) Scatterplots comparing the effect 
sizes (beta) of Steinberg et al. lead variants for shared eGenes between 
the current study and Steinberg et al. Effect sizes are shown comparing 
PBS to low-grade cartilage (top left), PBS to high-grade cartilage (bot-
tom left), FN-f to low-grade cartilage (top right), and FN-f to high-grade 
cartilage (bottom right) eQTLs. R represents the Pearson correlation 
coefficient between beta values. 
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Motif Enrichment Supplemental Fig 6 | Chromatin accessibility supports 
condition-specific eQTLs. (A) Boxplots showing the log2 
fold change in accessibility (FN-f/PBS) of chromatin-acces-
sible (CA) regions overlapping high-confidence PBS-specif-
ic eQTLs (blue), shared eQTLs (tan), and high-confidence 
FN-f-specific eQTLs (yellow). Each set of eQTLs used to over-
lap with CAs contains the lead variant and any variants in high 
LD (> 0.8) with the lead. P-values are calculated from a Wilcox 
test. (B) Transcription factor motif enrichment for CAs over-
lapping PBS-specific (blue) or FN-f specific eQTLs (yellow).

Supplemental Fig 7 | Many lead eQTLs suggest distal regulatory contacts with their eGenes. (A) Kilobase distance of PBS and FN-f lead eSNPs to their 
eGene transcription start sites (TSS) as defined in methods. (B) Barplot showing the number of other genes skipped between the assignment of a lead eSNP 
to its eGene.

Supplemental Fig 8 | Effects of GWAS risk variants for examples of PBS-specific, FN-f-specific, and shared eQTL colocalizations. (A) The risk allele 
(A) of GWAS variant rs3771501 is associated with decreased expression of TGFA in both PBS and FN-f. (B) The risk allele (A) of GWAS variant rs56132153 
is associated with decreased expression of PIK3R1 only in PBS. (C) The risk allele (A) of GWAS variant rs9396861 is associated with decreased expression of 
RNF144B only after FN-f treatment. Boxplots depict donor genotypes at GWAS variants vs normalized gene expression with GWAS risk alleles bolded within 
labeled genotypes.
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Supplemental Fig 9 | PAPPA eQTL variants in PBS and 
FN-f colocalize with OA GWAS. (A) Boxplots depicting 
the effects of the PBS lead eQTL rs1885244 (left) and FN-f 
lead eQTL rs10983265 (right) on PAPPA expression. Both 
lead variants show the same direction of effect in both PBS 
and FN-f. (B) Locus zoom depicting the colocalization be-
tween Total Hip Replacement GWAS and the eQTL signal 
identified in FN-f. Total Hip Replacement GWAS is colored 
by LD relative to the GWAS index rs1321917 according to 
the 1000 Genomes European reference panel.

Supplemental Fig 10 |  eQTL signals for NPC1 and FA-
M53A do not colocalize with OA GWAS. (A) An All OA 
GWAS signal that was previously identified as colocalized 
with NPC1 eQTL is identified as an eQTL in our study but is 
no longer significant in updated OA GWAS from Boer et al. 
Association plots depict Boer et al. All OA GWAS (top) and 
PBS (middle) and FN-f (bottom) eQTL signals for NPC1. 
All OA GWAS is colored by LD relative to the GWAS index 
rs10502437 from Tachmazidou et al. according to the 1000 
Genomes European reference panel. PBS eQTL is colored 
by LD relative to PBS lead variant rs8083301 and FN-f eQTL 
is colored by LD relative to FN-f lead variant rs6507716. The 
Steinberg et al. lead variant for NPC1 (highlighted blue) 
resided in an intron of TMEM241 (highlighted light blue). 
(B) A previously identified eQTL signal for FAM53A that 
colocalized with KneeHip OA GWAS is not identified in the 
current study. A KneeHip OA GWAS signal identified by 
Tachmazidou et al. remains significant in Boer et al. with the 
lead variants from both studies in high LD (> 0.8) according 
to the 1000 Genomes European reference panel (top). FA-
M53A PBS eQTL (middle) and FN-f eQTL (bottom) signals 
are not significant. Association plots are all colored by LD 
relative to the Boer et al. GWAS index variant rs1530586 
according to the 1000 Genomes European reference panel. 
The Steinberg et al. lead variant for FAM53A (highlighted 
blue) resided in an intron of SLBP (highlighted light blue).
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