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Abstract

Purpose: Deep learning-based image denoising and reconstruction methods demonstrated 

promising performance on low-dose CT imaging in recent years. However, most existing deep 

learning-based low-dose CT reconstruction methods require normal-dose images for training. 

Sometimes such clean images do not exist such as for dynamic CT imaging or very large patients. 

The purpose of this work is to develop a low-dose CT image reconstruction algorithm based on 

deep learning which does not need clean images for training.

Methods: In this paper, we proposed a novel reconstruction algorithm where the image prior 

was expressed via the Noise2Noise network, whose weights were fine-tuned along with the 

image during the iterative reconstruction. The Noise2Noise network built a self-consistent loss by 

projection data splitting and mapping the corresponding filtered backprojection (FBP) results to 

each other with a deep neural network. Besides, the network weights are optimized along with the 

image to be reconstructed under an alternating optimization scheme. In the proposed method, no 

clean image is needed for network training and the testing-time fine-tuning leads to optimization 

for each reconstruction.

Results: We used the 2016 Low-dose CT Challenge dataset to validate the feasibility of 

the proposed method. We compared its performance to several existing iterative reconstruction 

algorithms that do not need clean training data, including total-variation, non-local mean, 

convolutional sparse-coding, and Noise2Noise denoising. It was demonstrated that the proposed 

Noise2Noise reconstruction achieved better RMSE, SSIM and texture preservation compared 

to the other methods. The performance is also robust against the different noise levels, 

hyperparameters and network structures used in the reconstruction. Furthermore, we also 

demonstrated that the proposed methods achieved competitive results without any pre-training 

of the network at all, i.e. using randomly initialized network weights during testing. The proposed 

iterative reconstruction algorithm also has empirical convergence with and without network pre-

training.
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Conclusions: The proposed Noise2Noise reconstruction method can achieve promising image 

quality in low-dose CT image reconstruction. The method works both with and without pre-

training, and only noisy data is required for pre-training.

I. Introduction

Low-dose computed tomography (CT) is of great research interest in recent years as one 

of the most efficient methods to reduce the radiation exposure received by patients1. In low-

dose CT, the noise in images increases dramatically due to larger relative statistical variation 

in number of photons. Besides diagnostic CT, similar high-noise situation also exists in 

other applications. For example, in dynamic perfusion CT and retrospectively gated cardiac 

CT, the photon flux must be controlled because local tissues undergo consecutively X-ray 

exposure2,3. The material decomposed images of dual energy and spectral CT also suffer 

from high-noise problem due to the ill-conditioned decomposition process4. Micro-CT is 

also subject to relatively high noise because of limited photon flux of the X-ray source 

unless very long exposure time is used5.

Image reconstruction algorithms play an important role in improving image quality for 

low-dose CT. One of the most widely used conventional solutions is iterative image 

reconstruction with designed penalty functions that exploit prior knowledge of CT images, 

such as continuity, edge sparsity, etc.6,7,8,9 Machine learning and deep learning, such as 

(convolutional) dictionary and deep autoencoders, has also been introduced to better model 

the priors10,11,12. However, deep autoencoders require high-quality images for training; 

linear dictionaries need very few training images, but their performance is limited due to 

relatively low complexity of the model.

Deep neural networks based on supervised learning achieved promising image quality on 

CT image denoising and reconstruction. Instead of modeling the priors, neural networks 

directly map the low-quality images or sinograms to high-quality images through non-

linear functions. The deep learning-based methods can be generally classified into two 

categories: (1) Denoising methods, where neither forward or backprojector is included in the 

network, such as most of the image-to-image mapping networks 13,14,15; (2) Reconstruction 

methods, where forward or backprojection are included in the network, such as most of 

the unrolled networks16,17,18,19 as well as iterative reconstruction with network prior12,20. 

Despite of their superior performance, the supervised methods require high-quality training 

images which are not always available as previously mentioned. Furthermore, they require 

that training data and testing data are from the same domain, e.g. both are head scans 

preprocessed with the same parameters, which lead to extra efforts in gathering training 

dataset when working with new scan configurations.

This work was inspired by a few recent advances in image denoising with self-supervised 

learning. The Deep Image Prior was proposed for image denoising by training networks to 

map random noise to noisy images with early stopping21. Gong et al. extended the Deep 

Image Prior to PET reconstruction with MR prior22. However, satisfying image quality 

cannot be achieved without any priors. Lehtinen et al. proposed the Noise2Noise later, 

where the network was trained to map one noise realization of noisy images to another 
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noise realization23. Wu et al. applied the Noise2Noise to CT and MR image denoising by 

splitting measurements to reconstruct different noise realizations24. The Noise2Noise was 

also applied to CT sinogram denoising by Yuan et al.25,26

In this paper, we proposed a novel CT image reconstruction method with an innovative 

Noise2Noise-based penalty function. It is an iterative reconstruction method which considers 

the data fidelity rather than an image denoising method. Instead of using a network 

with fixed-weights, we formulate the loss function with respect to both the image to 

be reconstructed and the network weights. The loss function consists of two parts: data 

fidelity and Noise2Noise-based prior. Weighted least square between the forward projection 

and the measurement is used for the data fidelity. For the prior term, the projection data 

are split to two independent sets to reconstruct two images via filtered backprojection 

(FBP), followed by an encoder-decoder denoising network14 which maps the two FBP 

images to each other. The final image is reconstructed by considering both the data fidelity 

and its distance to the output of the denoising network. Since the loss is based on the 

Noise2Noise prior, the network does not need any clean images for training. By building 

the network weights into the loss function, the network can be fine-tuned for individual 

data. Compared to Noise2Noise denoising23,24,25, the proposed Noise2Noise reconstruction 

considered data fidelity, which would greatly improve image details, which are essential for 

CT. The loss function was optimized by alternatively reducing the data fidelity term with 

separable quadratic surrogate 8 and the prior term with Adam algorithm27. To demonstrate 

the feasibility of the proposed method, it was validated on the 2016 Low-dose CT 

Challenge dataset28 and compared to other unsupervised/self-supervised methods including 

total variation, non-local mean, convolutional dictionary, and Noise2Noise denoising. The 

convergence of the proposed algorithm was also empirically analyzed.

II. Material and Methods

II.A. Related Works

II.A.1. Supervised Denoising—Supervised learning is the most widely used 

framework for deep learning-based low-dose CT image denosing, where the network is 

trained by mapping low-dose images to normal-dose ones:

Θ* = argmin
Θ

1
N ∑

i
f zi + ni; Θ − zi ,

(1)

where zi is the ground truth of ith training image, ni is the noise, f z; Θ  is the denoising 

convolutional neural network (CNN), Θ is its weights, and N is the total number of training 

samples. We will refer (1) as Noise2Clean in this paper.

II.A.2. Noise2Noise Denoising—The Noise2Noise framework uses noisy images 

instead of clean images when training denoising networks:
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Θ* = argmin
Θ

1
N ∑

i
f zi + ni1; Θ − zi + ni2 2

2,

(2)

where ni1 and ni2 are two realizations of noise. Compared to Noise2Clean (1), Noise2Noise 

uses noisy images zi + ni2 instead of clean images zi as training labels.

As demonstrated by Lethtinen et al. and Wu et al.23,24, the Noise2Noise training (2) is 

equivalent to supervised training with clean images when:

1. N ∞;

2. Conditional expectation E ni2 |zi = 0;

3. ni1 and ni2 are independent;

Condition 1 is the basic assumption for most deep learning algorithms. Condition 2 assumes 

zero-mean noise, which is satisfied by the noise in low-dose CT. Condition 3 assumes 

noise independence of the two noise realizations, which can be constructed via projection 

splitting24 or Poisson thinning26. The proposed method employed the projection splitting 

approach24 to construct the independence noise realizations because of the simplicity. 

Detailed proof of these conditions are given in the appendix A.

There is major difference between the proposed method and the existing Noise2Noise 

approaches. Existing approaches use fixed CNN weights during testing but the proposed 

method will fine-tune the CNN weights for each testing sample. The fine-tuning is possible 

because such two noise realizations, zi + ni1 and zi + ni2 can be constructed from the testing 

image itself. As it will be demonstrated in section III., it is even possible to do testing 

without any pre-training, i.e. the CNN is fine-tuned with random initialization.

II.A.3. Deep Image Prior—Fine-tuning the CNN during image reconstruction is related 

to the Deep Image Prior-based approach21,22. Deep Image Prior demonstrates that it is 

possible to use CNN to achieve unsupervised single image denoising by early stopping. 

Ulyanov et al. fits random noise to single noisy images and used early stopping to achieve 

image denoising21. Gong et al. fits prior CT or magnetic resonance (MR) images to positron 

emission tomography (PET) images and combines data fidelity to achieve image denoising 

and detail preservation22.

The major difference between our work and Gong’s work22 is that our Noise2Noise prior 

does not need any external, high-quality prior images. Furthermore, because zi + ni1 and 

zi + ni2 share the common structures, it is easier for the CNN to find the underlying structures 

and remove the noise compared to a cross-modality fitting used in Gong’s work22. Hence, 

the proposed Noise2Noise prior has good resistance to the overfitting problem in the Deep 

Image Prior.

II.A.4. Unrolled Network—Unrolled network16,17,18 is a family of supervised learning 

method which combines iterative reconstruction (IR) with CNN. It unrolls IR algorithms to 
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finite iterations and replaced the penalty term-related parts with trainable CNNs. There are 

several major differences between the proposed work and unrolled networks:

First, unrolled networks need clean images as training labels but the proposed method only 

needs low-dose data. Second, unrolled networks need the IR steps during training. However, 

the proposed method only needs image-based training if pre-training is desired; it can also 

work without any training phase. Hence, the training gradients do not need to backpropagate 

through the projectors, which makes the training faster and easier to implement. Last but 

not least, unrolled networks use fixed CNN weights during testing and the number of IR 

steps usually cannot be changed. But the proposed method optimizes CNN weights for each 

testing sample and the number of iterations is flexible as in conventional IR algorithms.

II.A.5. Regularization by Denoising—The proposed method alternates between a data 

fidelity step and a Noise2Noise-based denoising step, which resembles the Regularization by 

Denoising (RED)29. However, there are major differences between RED and the proposed 

method. RED optimizes the image to be reconstructed with a fixed denoiser in each 

iteration, whereas the proposed method optimizes the image and the denoising network 

at the same time. As discussed in the appendix B, the comparing non-local mean prior is 

equivalent to a RED algorithm with non-local mean denoiser.

II.B. Proposed Noise2Noise Reconstruction

II.B.1. Noise2Noise Reconstruction—The testing-time cost function of the proposed 

approach is:

x*, Θ* = argmin
x, Θ

1
A w

2 Ax−p w
2

+ βγ x − f z1; Θ + f z2; Θ
2 2

2

+ β
2 f z1; Θ − z2 2

2 + f z2; Θ − z1 2
2 ,

(3)

where A is the system matrix, x is the image to be reconstructed, p is the projections and w is 

the noise weighting matrix. z1 and z2 are FBP images from the odd-even split projections24. 

f z; Θ  is a denoising CNN with input image z and weights Θ. β is the hyperparameter to 

balance between Noise2Noise prior and the data fidelity, whereas γ is the hyperparameter to 

control the distance between the reconstructed image x and the network output. A w equals 

to ATwA  2 and is calculated by the power method. A w
2  was used to bring the data fidelity 

loss closer to unity for easier hyperparameter tuning. Ax−p w
2  equals to Ax−p Tw(Ax − p).

There are three terms in the cost function (3). The first term is the data fidelity between 

the image to be reconstructed x and the measurement p. The last term is the Noise2Noise 

prior, which fits the two noise-independent FBP images z1 and z2 to each other. The middle 

term is the relaxation term, which applies soft constraints between x and the CNN output 
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f z1; Θ + f z2; Θ /2. Such soft constraints make the structural preservation not solely depend 

on the complexity of the CNN.

Since there are two major hyperparameters β and γ, some strategy is required for efficient 

hyperparameter tuning. Luckily, the second and third terms are both image-to-image 

distance whose values are in the same magnitude, so γ should be in the order of 1. To 

tune β, γ could be set to a relative large value such as 10 first so that x is almost constrained 

to the network’s output. Then γ can be optimized solely or jointly with β.

A flowchart of the proposed Noise2Noise reconstruction method is given in figure 1. We 

observed that odd-even projection splitting would lead to systematic difference between z1

and z2 especially in rebinned data. To compensate for the bias, some randomness is added 

to the splitting: for projections 2l and 2l + 1 where l is an integer, projection 2l is randomly 

assigned to the odd or even set whereas projection 2l + 1 is assigned to the other. This 

random split scheme would significantly reduce the structural correlation between z1 and z2

without severe artifacts in the FBP images.

We employed the alternating optimization strategy to reduce the cost function (3). The 

following two sub-problems are constructed:

g1 x; Θ n − 1 = 1
A w

2 Ax−p w
2

+ βγ x −
f z1; Θ n − 1 + f z2; Θ n − 1

2 2

2

,

(4)

g2 Θ; x n = γ x n − f z1; Θ + f z2; Θ
2 2

2

+ 1
2 f z1; Θ − z2 2

2 + f z2; Θ − z1 2
2 .

(5)

Denoting the original problem (3) as g x; Θ , g1 is corresponding to the first two terms of g
who are related to x and g2 is corresponding to the last two terms of g who are related to Θ. If 

x n  satisfies that:

g1 x n ; Θ n − 1 < g1 x n − 1 ; Θ n − 1 ,

(6)

then

g x n ; Θ n − 1 < g x n − 1 ; Θ n − 1

(7)
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holds because the last term of g is not related to x.

Similarly, for Θ n  that

g2 Θ n ; x n < g2 Θ n − 1 ; x n ,

(8)

we have

g x n ; Θ n < g x n ; Θ n − 1

(9)

because the first term of g is not related to Θ. Hence, by alternatively reducing g1 and g2, we 

constructed the following sequence:

g x n ; Θ n < g x n ; Θ n − 1 < g x n − 1 ; Θ n − 1 ,

(10)

which reduces the original cost function (3).

The alternating optimization approach also decouples the original problem (3) into the 

image reconstruction problem (4) and the network training problem (5). Problem (4) has 

very simple L2 constraints and can be reduced by Separable quadratic surrogate (SQS)9. 

For problem (5), Limited memory Broyden-Fletcher-Goldfard-Shanno (L-BFGS)30,31 with 

line search can be used to ensure monotone. To improve computational efficiency, we 

used ordered subsets (OS) and Nesterov’s acceleration32 with SQS for (4) and patch-based 

Adam27 instead of L-BFGS for (5). Empirical convergence with these accelerations will be 

discussed in the results.

The proposed Noise2Noise reconstruction algorithm is summarized in table 1. In step 2, x
can be initialized from FBP results or zero; Θ can be pre-trained (see section II.B.2.) or 

randomly initialized. We used fixed number of iterations as the stopping criteria for the 

stopping condition in step 3. Step 4 to 6 are optimizing (4) via SQS with ordered subsets 

and Nesterov’s acceleration.Am, wm and pm are the system matrix, weighting matrix, and 

projections corresponding to the m th subset. Step 7 to 9 optimizes (5) by training the 

network on patches with Adam algorithm. It is important to enable patch-based network 

training for CT imaging due to the large size of CT images in real 3D applications.

II.B.2. Pre-Training—Although algorithm in table 1 can be initialized with random 

weights Θ, pre-training with a limited number of low-dose images would lead to faster 

convergence of the algorithm. Pre-training is also a common technique used in dictionary 

learning-based CT image reconstruction10,11. We proposed to use image-domain training24 

on a small number of images:
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Θ 0 = argmin
Θ

1
N ∑

i
1
2 f zi1; Θ − zi2 2

2

+ 1
2 f zi2; Θ − zi1 2

2

+ γd
f zi1; Θ + f zi2; Θ

2 − zi1 + zi2
2 2

2
,

(11)

where zi1 and zi2 are the two noisy FBP images reconstructed by projection splitting of the ith 

noisy training image. γd is a hyperparameter to balance between noise removal and structural 

preservation. Because the inputs to the denoising CNN, zi1 and zi2 have higher noise level 

than original noisy images, training without any constraint would generate oversmoothed 

results due to the excessive noise level in the source images.

II.C. Experimental Validation

II.C.1. Dataset—We employed the 2016 Low-dose CT Grand Challenge dataset28 for 

the validation of the proposed method. The dataset contains projections from 10 patients’ 

abdominal scans with Siemens Somatom Definition Flash. Realistic quarter-dose projections 

were simulated by Mayo Clinic from the original normal-dose data33. We rebinned the data 

to multi-slice fanbeam geometry34 with 1mm slice thickness and took 3-layer average to 

form 3mm thick fanbeam sinograms for our 2D reconstruction studies. Some important 

geometric parameters of the 2D rebinned fanbeam are given in table 2.

We randomly extracted 10 low-dose slices from each patient for the studies, which gave 100 

slices of sinograms in total. We further randomly selected 10 calibrating slices from the total 

100 testing slices for any hyperparameter tuning and pre-training. The pre-trainings only 

engage low-dose sinograms. A larger dataset which contained 50 slices per patients was also 

prepared for supervised learning (Noise2Clean).

II.C.2. Parameters—In the basic configuration, we used an encoder-decoder network as 

shown in figure 2. It has 4 encoding modules and 4 decoding modules and shares a similar 

structure with UNet35 but without resampling and channel-doubling. The network was 

pre-trained under the Noise2Noise denoising framework (2) with γd = 0 on the 10 calibrating 

slices for 1,000 iterations to provide a better initialization. The network was trained on 96 × 

96 patches with a mini-batch size of 40 by Adam algorithm with a learning rate of 10−3.

During reconstruction, x was initialized by FBP. Number of subsets M = 12. Nesterov’s 

acceleration factor γs = 0.5. Number of network training iterations Nsub = 5. In step 9 of 

algorithm 1, the network was fine-tuned on 40 96 × 96 patches for each iteration with 

Adam optimizer with learning rate of 10−3. The total number of outer iterations was set 

to 100. For quarter-dose reconstruction from Mayo’s simulation, we set β = 7.5 × 10−4 and 

γ = 5 based on root mean square error (RMSE) against the normal-dose images on the 

10 calibrating slices. Distance-driven projector and backprojectors realized by CUDA on 

graphics processing units (GPU) were used for all the reconstructions. Tensorflow 1.11 
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was used for neural networks36. The codes are available at https://github.com/wudufan/

Noise2NoiseReconstruction.

II.C.3. Comparing Methods—We realized comparing methods including iterative 

reconstruction (IR) with Gaussian, total variation (TV)37, spatial-encoded non-local mean 

(NLM)7 and convolutional sparse coding (CSC)11 penalties. To investigate the benefit of 

including reconstruction, the Noise2Noise denoising (N2Nd) was also realized according to 

(2) using the sinogram splitting shown in Fig. 1. The Noise2Noise Reconstruction with and 

without pre-training will be denoted as N2Nr and N2Nr (w/o pre). Furthermore, an encoder-

decoder network was trained by supervised learning (1) with L2-norm, i.e. Noise2Clean 

(N2C).

IR with Gaussian penalty was provided as the baseline method instead of FBP to eliminate 

the modeling error between FBP and IR. The strength of Gaussian penalty was tuned so that 

on normal-dose data IR achieved similar noise level with FBP with Hann filter. The same 

strength of penalty was used for low-dose reconstruction to visualize the noise levels. CSC 

was trained on the 10 calibrating low-dose FBP images with the same dictionary settings 

with Bao et al.11

The Noise2Noise denoising was trained on the 10 calibrating slices using the following 

equation:

Θ* = argmin
Θ

1
N ∑

i
γ zi1 + zi2

2 − f zi1; Θ + f zi2; Θ
2 2

2

+ 1
2 f zi1; Θ − zi2 2

2 + 1
2 f zi2; Θ − zi1 2

2 ,

(12)

where zi1 and zi2 are the two split reconstructions of the ith training image. To avoid model 

errors between IR and analytical reconstruction, we used the Gaussian baseline for zi1 and 

zi2 instead of FBP. The hyperparameter, γ, were tuned to for best RMSEs on the 10 training 

slices. During testing, the denoised images will be:

zd = f z1; Θ* + f z2; Θ*
2 ,

(13)

where z1 and z2 are reconstructed using the baseline IR with Gaussian prior.

The encoder-decoder network used in the Noise2Clean has the same structure in figure 2. 

The network was trained on a larger dataset which contained 50 slices per patients. The 

training was done by Adam algorithm with learning rate of 10−3 for 100 epochs. Five-fold 

cross validation was used to evaluate the method, where in each fold 8 patients was used for 

training and the rest 2 patients for testing. The total testing results was the aggregation of 

the testing slices from all the 5 folds. The final evaluation was done on the testing slices that 

were the same with the 100 testing slices used in the other studies.
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For comparison, we calculated RMSEs and structural similarity indices (SSIM)38 against the 

normal-dose reference images on the central 384 × 384 pixels. The SSIM were calculated in 

the soft tissue window (40 ± 400 HU) to reflect perceptual difference in the corresponding 

window.

II.C.4. Study Designs—The studies mainly contain four parts: comparing study on the 

quarter-dose projections simulated by Mayo, hyperparameter study, multi-dose-level study, 

and convergence study.

In the comparing study, the hyperparameters of all the unsupervised methods were 

optimized for RMSE based on the 10 calibrating slices. Then they were applied to all the 

100 slices to compare RMSE, SSIM and visual image quality. For Noise2Clean, 5-fold cross 

validation was used. In each fold, 8 patients’ data were used for training, and the CNN was 

tested on the other 2 patients on the same slices with the unsupervised methods. The final 

results for Noise2Clean was aggregated from all the testing sets in the 5 folds.

For the hyperparameter study, we extensively studied the influence of parameters to the 

Noise2Noise reconstruction by tuning parameters based on the baseline configuration given 

in section II.C.2.. To save computational time, the study was only done on the 10 calibrating 

slices. A joint grid search was performed for β and γ to depict the influence of these 

two most important parameters. The depth of network, structures of network, and number 

of sub-iterations Nsub were also explored respectively. The investigated network structures 

included encoder-decoder, UNet and ResNet, where UNet had the same depth with the 

encoder-decoder, and ResNet had similar number of trainable parameters with the encoder-

decoder network.

In the multi-dose-level study, instead of Mayo’s simulated quarter-dose projections, we 

used forward projection from normal-dose images reconstructed by FBP with Hann filter 

where we could evaluate RMSE with ground truth. Different noise level was added to the 

projections according to Yu et al.33. To save computational time, this study was only done 

on the 10 calibrating slices. Furthermore, instead of a full parameter optimization for each 

dose level, we only optimized the penalty strength β for all the methods, except for Gaussian 

where β remained the same to provide a reference to the noise level.

Last but not least, a convergence study was performed on one slice from Mayo’s quarter-

dose simulation. We studied the influence of reconstruction acceleration techniques, where 

we ran 1,000 iterations with 12 ordered subsets (OS) and Nesterov acceleration, and 

10,000 iterations without them. Different network training schemes were also investigated, 

including Adam optimization on patch with pre-training, Adam optimization on patch 

without pretraining, Adam optimization on the whole image with pre-training, and L-BFGS 

on patch with pre-training. L-BFGS was included due to its monotonic property because of 

the line search and relatively high efficiency.
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III. Results

III.A. Reconstruction from Quarter-dose

The RMSEs and SSIMs on the 100 slices against the reference normal-dose IR with 

Gaussian penalty are given in figure 3. The Noise2Noise reconstruction achieved the best 

RMSE (18.5 ± 3.9 HU) and SSIM in soft tissue window (0.830 ± 0.060) among all the 

unsupervised methods with p-values less than 0.001 under dependent t-test. Compared to 

Noise2Clean (RMSE = 17.5 ± 4.6 HU, SSIM = 0.822 ± 0.062), Noise2Noise reconstruction 

had worse RMSE but higher SSIM in the soft tissue window p ≤ 0.001 . The worse RMSE 

was mainly due to the inconsistent noises between the Noise2Noise reconstruction and the 

reference images, whereas Noise2Clean gave relatively smoothed images which led to lower 

RMSE.

Noticeably, the Noise2Noise reconstruction without pre-training achieved very close 

performance to the one with pre-training. The RMSE and SSIM of the Noise2Noise 

reconstruction without pre-training were 18.8 ± 3.9 HU and 0.826 ± 0.060 respectively. This 

result indicated that the proposed method was robust and insensitive to the initialization.

Figure 4 and 5 gave the reconstructed images of two slices. Compared to the other methods, 

the proposed Noise2Noise reconstruction had the most similar noise level and textures with 

the reference images. In figure 5, a flat region on the liver was selected to calculate the 

its standard deviation (std) as an indicator for noise level and texture, and Noise2Noise 

reconstruction achieved the closest std to the reference. It should be noted that Noise2Noise 

reconstruction was not particularly tuned for texture preservation. The hyperparameters for 

all the methods were optimized for RMSE on the 10 calibrating slices. The small lesions and 

vessels were also well-preserved in the results of Noise2Noise reconstruction.

III.B. Influence of Hyperparameters

With baseline settings as β = 7.5 × 10−4, γ = 5, encoder-decoder network with 4 encoding/

decoding modules (figure 2), and sub-iterations for Adam per outer iteration Nsub = 5, we 

investigated the influence of hyperparameters for the quarter-dose reconstruction on the 10 

calibrating slices and the results are given in figure 6.

Figure 6 depicted the joint influence of γ and β on the reconstruction results. As γ increased, 

the reconstructed image x was more constrained to the output of the network and it led to 

increased insensitivity to β. On the contrary, when γ decreased and x had higher freedom 

away from the network, the results’ sensitivity to β increased but the peak performance 

would also be improved. We selected γ = 5 considering both stability and peak performance 

in our study.

Figure 6 (b), (c) and (d) demonstrated the robustness of Noise2Noise reconstruction to 

different network structures and number of Adam iterations. The mean RMSEs remained 

almost the same for the three network structure, including encoder-decoder network, UNet 

and ResNet. The RMSEs changed within 1 HU when depth of network increased from 2 to 

5, or number of Adam iterations changed from 3 to 10.
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III.C. Multi-Noise-Level Study

In the multi-noise-level study, we inserted noise into the forward projection of normal-dose 

images reconstructed from FBP with Hann filter, so we had access to the ground truth 

images. The RMSEs on the 10 calibrating slices are given in figure 7. Reconstructed images 

from Gaussian, NLM, Noise2Noise and Noise2Clean are given in figure 8.

Figure 7 demonstrated that the proposed Noise2Noise reconstruction had consistently 

improved RMSEs compared to other unsupervised methods at multiple dose levels. 

Although Noise2Clean achieved lower RMSEs, its advantage over the Noise2Noise 

reconstruction did not significantly increase with reduced dose.

In figure 8, the Noise2Noise reconstruction demonstrated best texture preservation under all 

noise levels. It also had better structural preservation compared to NLM at the vessel marked 

by the white arrow. This structure was also missed by Noise2Clean, which indicated the 

benefits of combining iterative reconstruction and deep neural networks.

III.D. Empirical Convergence Study

The convergence curves of cost functions and RMSEs on one slice are depicted in figure 

9. In terms of cost functions, all the schemes converged to approximately the same value. 

The algorithms converged when no acceleration was applied to reconstruction, but slowly 

diverged with 12 OS and Nesterov acceleration after approximately 500 iterations. The 

divergence was mainly due to the artifacts at the edges of field of view (FOV), because the 

network was applied only inside the FOV to avoid FBP’s artifacts outside FOV. The RMSEs 

remained stable despite of the divergence because they were calculated on the central 384 × 

384 pixels which excluded the edge of FOVs.

Noticeably, the Noise2Noise reconstruction without any pre-training converged to the same 

cost function and RMSE compared to the one with pre-training, which further demonstrates 

that the proposed method still works even if there is no training phase.

The RMSE curves in figure 9 (b) and (d) demonstrated the methods’ resistance to the 

overfitting problem. There was no obvious sign for RMSE to increase in the accelerated 

cases or before 5,000 iterations in the unaccelerated cases. This was partially because of the 

relatively small number of parameters in the encoder-decoder network (≈ 148 K). However, 

the network was still over-parameterized and some noisy structures emerged at very late 

iterations as pointed by the white arrow in figure 10. Since this overfitting phenomenon only 

happened at very late stages, it should not be of concern for practical problems where much 

fewer number of iterations are used. Furthermore, this problem should also be mitigated 

when applied to 3D, where the images had more structures and higher dimensions.

IV. Discussion

As shown in figure 3, the proposed Noise2Noise reconstruction (with and without pre-

training) achieved the best RMSE and SSIM in the quarter-dose study among all the 

comparing methods except for Noise2Clean, which needs clean images as the training 

labels. It also achieved the best RMSE at various dose reduction rates comparing to methods 
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except for Noise2Clean, as demonstrated in figure 7 and 8. The proposed method also has 

good texture preservation, as shown in 5, the Noise2Noise reconstruction has the closest 

noise level to the normal-dose reconstruction although it was tuned for best RMSE.

Compared to Noise2Clean, the proposed algorithm has higher noise level although the 

RMSE and SSIM are similar for the two methods. This is mainly because of the data fidelity 

term. Similar to conventional IR algorithms, the balance between the data fidelity and the 

prior is adjusted by the hyperparameters. Higher weight on the data fidelity term leads to 

noisier results, and higher weight on the prior term leads to smoother results. In the proposed 

method (3), there are two hyperparameters, β and γ to control the balance. β is the primary 

parameter, which lead to smoother images with higher value. γ is the secondary parameter 

which controls the distance between the reconstructed image x and the Noise2Noise network 

output. Smaller γ will lead to noisier images, and γ = 0 will render the Noise2Noise prior 

ineffective because x will be totally decoupled from the network.

One of the most significant advantage of the proposed algorithm is that it works without 

any pre-training as demonstrated in figure 3 and 9, where similar RMSE can be achieved 

with and without pre-training in later iterations. The main purpose of pre-training is to 

accelerate the convergence. It only requires a very small amount of noisy training data, such 

as 10 slices in our case, which is the same with the dictionary-based method11. The low 

requirement on external data makes the proposed method potentially very useful for many 

research studies where there are very few subjects who undergo the same scan condition. 

The proposed method benefits from the rich representation power of deep neural networks 

but does not subject to the large amount of training samples.

Empirical convergence was also demonstrated as shown in figure 9 under various conditions. 

The convergence makes the proposed method different from most existing network-based 

methods, which have limited feedback from the measurement during testing time. The 

testing time convergence may lead to better robustness against outliers because of the 

feedback from the measurement.

In figure 9, some spikes presented on the loss function curves after the algorithms 

almost converged when Adam optimizer was used for network training. One of the most 

possible reasons could be that Adam used adaptive momentum that was normalized by 

the moving average of the network’s gradients’ magnitude. When the network was near 

minimum and the gradients could be close to zero, which could finally lead to very small 

normalization factors that cause numerical instability. This could be mitigated by more 

advanced algorithms such as AMSGrad39. However, despite of the occasional instability of 

the network training, the reconstructed images x had soft constraint to the network output 

and was barely influenced by the spikes. The network restored from the spikes quickly in the 

following iteration. For L-BFGS, the line search process inside its sub-iterations guaranteed 

the algorithm’s monotonic property when no acceleration was imposed. Spikes were also not 

observed since L-BFGS is gradient-based.

Besides Noise2Noise, it is possible to simulate ultra-low-dose data by noise insertion to the 

low-dose data to train a denoising network by mapping from ultra-low-dose to low-dose. 
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The trained network can be further applied to the low-dose data for further denoising, as 

demonstrated by Shocher et al. in the super-resolution tasks40. However, the performance of 

the network may be sub-optimal since the training data and testing data are not in the same 

domain (ultra-low-dose vs. low-dose).

The proposed method does not come without weaknesses. First, we used FBP images as z1

and z2 which may be suboptimal. They can be replaced by IR results for better image quality. 

Second, the projection splitting approach may lead to streaking artifacts when the views are 

not densely sampled. Instead, Poisson thinning26 can be used to generate half-dose images 

without angular down-sampling.

Last but not least, speed is currently the most concerned since network training is required 

within each iteration. In our 2D studies which were carried on a GTX 1080 Ti GPU, for 

each slice, SQS without OS (to minimize I/O time between CPU and GPU) required 0.22 

seconds per iteration, Adam needed 0.19 seconds per network training iteration on 40 96 × 

96 patches, and network inference required 0.08 seconds. Network training consumed the 

most time. However, since the networks are trained on patches, its relative time compared 

to reconstruction can be reduced when applied to 3D18, because 40 96×96×96 patches will 

be much sparser in 3D compared to 2D. The inference time will scale linearly when applied 

to 3D. Reducing total number of iterations is also needed for practical 3D applications, 

where better initialization can be provided with better Noise2Noise denoising network. 

Furthermore, the proposed method can always be used to generate training labels for 

supervised algorithms offline.

V. Conclusion

In this paper we proposed a novel iterative image reconstruction algorithm for low-dose CT 

based on the Noise2Noise penalty. The penalty term consists of the Noise2Noise network 

whose weights are fine-tuned for each reconstruction at testing time. The Noise2Noise 

reconstruction required noisy data only and achieved promising image quality compared to 

existing unsupervised and supervised methods. Superior stability was demonstrated for the 

proposed method regarding network structures, initialization and dose level. Furthermore, 

the proposed method did not require any external training data and similar performance was 

achieved on single-slice reconstruction with and without pre-training. The algorithm also 

converged when no reconstruction accelerating techniques were used and the convergence 

was not affected by the choice of network training algorithms.

In this work the low-dose CT data was used to validate the feasibility of the proposed 

method, although potential applications of the proposed method expands beyond the 

low-dose CT. It can be applied to normal-dose images to further reduce the noise as 

demonstrated by Yuan et al.26. Many applications, such as the material decomposition in 

dual energy CT, optical CT41, dynamic imaging in CT42, PET or MR lack high-quality 

images for supervised learning, and the proposed method can be used for noise reduction.
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Data Availability Statement

All the data used in this paper are publicly available in ”LDCT-and-Projection-data” at 

https://doi.org/10.7937/9npb-2637? ? ?. We used the 10 patient-subset that was included in 

the 2016 Low-dose CT Challenge training set, whose IDs are L067, L096, L109, L143, 

L192, L286, L291, L310, L333, and L506.

The codes are available at https://github.com/wudufan/Noise2NoiseReconstruction.

Appendices

A Noise2Noise Denoising Conditions

In this section we will discuss the conditions for Noise2Noise denoising given in section 

II.A.2. and how they are related to the proposed Noise2Noise reconstruction. Following the 

discussion by Wu et al.24, Noise2Noise denoising is equivalent to training with clean labels 

under the following theory:

Theorem 1. The following equation holds:

1
N ∑

i
f zi + ni1; Θ − zi + ni2 2

2

= 1
N ∑

i
f zi + ni1; Θ − zi 2

2 + C,

(14)

where C is irrelevant to Θ, if the following conditions are satisfied:

1. N ∞;

2. Conditional expectation E ni2 |zi = 0;

3. ni1 and ni2 are independent;

4. ∀i, f zi + ni1; Θ < ∞.

Proof. Let f i = f(zi + ni1; Θ), the left hand side of (14) can be expanded as:

1
N ∑

i
fi = zi + ni2 2

2

= 1
N ∑

i
fi − zi 2

2 − 1
N ∑

i
2ni2

T fi +

1
N ∑

i
ni2

T ni2 + 2ni2
T zi .

(15)

The first term on the right hand side is the Noise2Clean loss and the last term is the C in 

(14) which is irrelevant to Θ. For the second term, according to Lindeberg-Levy central limit 

theorem:
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1
N ∑

i
2ni2

T fi
d N E 2ni2

T fi , 1
N σ2 2ni2

T fi ,

(16)

where E ⋅  is the expectation, σ2 ⋅  is the variance, and N μ, σ2  is a Gaussian distribution 

with mean μ and variance σ2.

Because f i is bounded by condition 4 and ni2 also had finite value for realistic noises, 

σ2 2ni2
T f i  is finite so σ2 2ni2

T f i /N 0 as N ∞. Hence,

1
N ∑

i
2ni2

T fi E 2ni2
T fi = 2E fi

TE ni2 fi

(17)

Because f i is a deterministic function of zi and ni1, we have:

E ni2 fi = E ni2 zi, ni1

(18)

Considering condition 3 (independence) and 2 (zero-mean), we have:

E ni2 zi, ni1 = E ni2 zi = 0

(19)

Substitute (19) into (18) and then into (17), we finally achieve that:

1
N ∑

i
2ni2

T fi 0,

(20)

which removed the second term in (15) and made equivalence between (15) and (14).

□

Theorem 1 states that under the given conditions, the loss function of Noise2Noise equals 

to Noise2Clean plus a constant that is irrelevant to the trainable parameters Θ. Hence, the 

Noise2Noise loss is a surrogate to the Noise2Clean loss when optimizing regarding Θ.

Condition 4 can be easily satisfied by normal CNNs and inputs with finite value. For 

CT imaging without sparse angular sampling, if the sinograms are split into two sets 

and reconstructed by FBP respectively, the noise in the two reconstructed images will be 

approximately zero-mean and independent except for severe attenuated areas such as metal, 

thus conditions 2 and 3 will also be satisfied.
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Condition 1 requires large training dataset consisted of noisy images to satisfy the central 

limit theorem. For the single image case as in our case, different parts of the image can be 

considered as multiple training samples because that CNN is shift-invariant. Furthermore, 

as demonstrated in Deep Image Prior, when denoising CNNs are trained on single images, 

image structures will be recovered earlier than the noise21,22. As it was shown in section 

III.D., the proposed Noise2Noise reconstruction with encoder-decoder network is very 

resistant to overfitting. Overfitting was not observed until very late iterations (more than 

500 when accelerated by 12 ordered subsets and Nesterov’s acceleration32) even for single 

slice reconstruction.

B Equivalence of NLM Prior to RED

This section shows the equivalence of the comparing NLM method7 to a RED algorithm29. 

We used the following equation for the NLM method:

x* = argmin
x

1
A w

2 Ax−p w
2 + βR x ,

(21)

where

R x = ∑
j

∑
k ∈ Nj

wjk xj − xk
2,

(22)

where Nj is a 11 × 11 neighborhood of pixel j, and the weights wjk are calculated by the 

distance between the small 5 × 5 patches around pixels j and k on the FBP image and satisfy 

that ∑k wjk = 1. We used the FBP image as the guiding image instead of x because we found 

the former one leads to less smoothing results and better texture preservation.

According to Romano et al.29 in their appendix A, a prior function R x  is equivalent to RED 

when it is 2-homogenous:

R cx = c2R x ,

(23)

and the denoiser used by RED will be:

f x = x − ∇R x

(24)

Obviously R x  in (22) is 2-homogenous, so R′ x = R x /4 is also 2-homogenous. It 

can be derived that ∇R′ x = x − NLM x , where NLMj x = ∑k wjkxk is the non-local mean 
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denoising of x using the fixed weights wjk. Hence, the equivalent RED denoiser is 

x − ∇R′ x = NLM x , which is a non-local mean denoiser.

In fact, the SQS iteration we used to solve (21) is:

x n + 1 = x n −
ATw Ax n − p + 4β x n − NLM x n

ATwA1 + 8β
,

(25)

which also employs the NLM denoising in each iteration.
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Figure 1: 
The schematic of the Noise2Noise reconstruction. The sinogram is divided into two sets 

(blue and orange) and reconstructed with FBP independently (z1 and z2). The network tries to 

map z1 to z2 and vice versa. The average of the network outputs, y, is used as a prior during 

the IR. The IR updates both the image to be reconstructed and the network weights.
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Figure 2: 
The encoder-decoder network used in the studies. The resolution remained the same for all 

the featuremaps in the network, which was 96 × 96 during patch-based training and 640 × 

640 during inference. The number of channels for all the blue blocks were 32 except for the 

input and output layer.
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Figure 3: 
The box plot of the RMSEs and SSIMs on the 100 testing slices. N2Nd is the Noise2Noise 

denoising; N2Nr is the Noise2Noise reconstruction; N2Nr(w/o pre) is the Noise2Noise 

reconstruction without pre-training with zero-image initialization; N2C is Noise2Clean 

(supervised learning). The SSIMs were calculated in the soft tissue window 40 ± 400 

HU. Gaussian was used as baseline instead of FBP to eliminate the modeling bias between 

IR and analytical reconstruction. Compared to Noise2Noise reconstruction, Noise2Noise 

denoising does not fine-tune during testing.
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Figure 4: 
One of the reconstructed slices. Two metastases are marked by white arrows on the reference 

image and one of them is zoomed in. The display windows are 40 ± 400 HU. Gaussian was 

used as baseline instead of FBP to eliminate the modeling bias between IR and analytical 

reconstruction. Compared to Noise2Noise reconstruction, Noise2Noise denoising does not 

fine-tune for each testing image.
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Figure 5: 
One of the reconstructed slices. Two metastases are marked by white arrows on the reference 

image and one of them is zoomed in. The display windows are 40 ± 400 HU. The standard 

deviations inside the yellow circles were also calculated. Gaussian was used as baseline 

instead of FBP to eliminate the modeling bias between IR and analytical reconstruction. 

Compared to Noise2Noise reconstruction, Noise2Noise denoising does not fine-tune for 

each testing image.
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Figure 6: 
The influence of hyperparameters for quarter-dose reconstruction on the 10 calibrating 

slices. (a) Mean RMSEs with different β and γ; (b) RMSEs with different network structures, 

UNet had same depth with encoder-decoder and ResNet had similar number of trainable 

parameters; (c) Mean RMSEs with different number of encoding/decoding modules; (d) 

Mean RMSEs with different Nsub.
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Figure 7: 
The mean RMSEs on the 10 calibrating slices for different simulated noise levels. N2Nd: 

Noise2Noise denoising; N2Nr: Noise2Noise reconstruction; N2C: Noise2Clean.
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Figure 8: 
A region of interest of the reconstructed images at different dose level. The first row 

(Ground truth) is the full-dose reconstruction, whereas the second row and below are the 

results from 2, 3, 4, 6, and 8 times dose-reduction data with different methods. A vessel 

structure was marked by the white arrow on the ground truth image. The display windows 

are 40 ± 400 HU.
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Figure 9: 
The convergence curves for one slice: (a) cost function without any OS or acceleration; 

(b) RMSE without any OS or acceleration; (c) cost function with 12 OS and Nesterov 

acceleration; (d) RMSE with 12 OS and Nesterov acceleration. Adam (w/o pre) is Adam 

optimization without pre-training; Adam (w/o patch) is Adam optimization on the whole 

image instead of patches.
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Figure 10: 
A region of interest of the reconstructed images at different iteration number. The first row 

is reconstruction with 12 OS and Nesterov acceleration. The second row is without OS or 

acceleration. The iteration numbers are displayed at the upper left corner of each image. The 

white arrow points to some artifacts due to overfitting of the network at very late iterations.
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Table 1:

The Noise2Noise Reconstruction Algorithm.

Med Phys. Author manuscript; available in PMC 2024 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu et al. Page 32

Table 2:

Parameters of the Rebinned Geometry.

Parameter Value

Slice thickness 3mm

Pixel size of image 0.8mm × 0.8mm

Resolution of image 640 × 640

Views per rotation 2304

Number of detector units 736

Pixel size of detector 1.2858mm

Source to ios-center distance 595mm

Source to detector distance 1086.5mm
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