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Abstract

Oropharyngeal candidiasis (OPC) is the most common human fungal infection, arising typi-

cally from T cell immune impairments. IL-17 and IL-22 contribute individually to OPC

responses, but here we demonstrate that the combined actions of both cytokines are essen-

tial for resistance to OPC. Mice lacking IL-17RA and IL-22RA1 exhibited high fungal loads in

esophagus- and intestinal tract, severe weight loss, and symptoms of colitis. Ultimately,

mice succumbed to infection. Dual loss of IL-17RA and IL-22RA impaired expression of

small proline rich proteins (SPRRs), a class of antimicrobial effectors not previously linked

to fungal immunity. Sprr2a1 exhibited direct candidacidal activity in vitro, and Sprr1-3a-/-

mice were susceptible to OPC. Thus, cooperative actions of Type 17 cytokines mediate oral

mucosal anti-Candida defenses and reveal a role for SPRRs.

Author summary

Oral thrush is a painful oral infection of the mouth. We show that the combined actions

of 2 immune cytokines, IL-17 and IL-22, act in a concerted manner to combat this infec-

tion, in part via small proline rich proteins.

Introduction

The commensal pathobiont Candida albicans is the most frequent cause of human fungal

infections, yet studies of fungal immunity lag considerably behind other microbes [1]. Oropha-

ryngeal candidiasis (OPC) ranges from a nuisance to a severe and painful condition, with

potential to cause nutritional deficits or esophageal cancer [2–5]. To date, there are no vaccines

to C. albicans or indeed to any fungi, highlighting a need to better define the correlates of

immunity required to restrain fungal pathogenesis [1,6].

The importance of the Th17 axis in OPC was first demonstrated in mice lacking IL-17R

subunits (IL-17RA, IL-17RC), subsequently validated in humans lacking IL-17R components
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or downstream signaling components [7–13]. Nonetheless, OPC occurs infrequently upon

clinical IL-17 blockade, implying that additional pathways contribute to disease [14,15]. Th17

cells produce cytokines in addition to IL-17, notably IL-22 [16]. Despite co-expression in simi-

lar lymphocyte populations, IL-17 and IL-22 signal via distinct receptors that are located on

distinct epithelial populations, with IL-17 acting on superficial stratified squamous epithelial

cells and IL-22 acting on stem-like basal cell populations [17,18]. Moreover, these cytokines

activate different signaling modalities (TRAF/NF-κB/mRNA stabilization versus JAK-STAT

activation) [19]. How these cytokines act coordinately to achieve antifungal immunity is

unclear.

We report that mice lacking the IL-17 and IL-22 receptors are exquisitely susceptible to

OPC, more than either knockout alone. Infection is associated with up-regulation of small pro-

line-rich (SPRR) proteins, a poorly defined class of antimicrobial effectors [20,21]. We show

that SPRRs exert direct candidacidal activity and contribute cooperatively to OPC immunity.

Results

IL-17 and IL-22 signals are nonredundant in oral candidiasis

Here, we assessed the magnitude of OPC in Il22ra1Il17ra-/- mice compared to individual cyto-

kine knockouts [22]. As expected, WT controls cleared C. albicans within 5 days, while mice

lacking IL-22, IL-22RA1, or IL-17RA had high fungal burdens (approximately 103 CFU/g) and

weight loss (5% to 10%) (Fig 1A and 1B) [23]. Strikingly, Il22ra1Il17ra-/- mice exhibited

approximately 1 log elevated fungal loads and more weight loss compared to individual knock-

outs (Fig 1A and 1B). Il22ra1Il17ra-/- mice experienced severe morbidity, requiring sacrifice by

days 8 to 10, which is rare in individual knockouts (Fig 1C) [23].

Esophageal fungal loads were higher in Il22ra1Il17ra-/- mice compared to Il22ra-/- mice, but

were not statistically different from Il17ra-/- animals (Fig 1D). Il22ra1Il17ra-/- mice showed

reduced colon lengths (Fig 1E), indicative of intestinal tissue damage. However, fungal loads

in the SI and colon were the same in all mouse strains (Fig 1D), collectively suggesting that the

oral cavity shows a particular sensitivity to combined actions of these cytokines. There was no

fungal dissemination to visceral organs (kidney, liver, and spleen) (Fig 1F), likely ruling out

systemic candidiasis as cause of mortality. Thus, IL-17 and IL-22 act cooperatively to limit oral

and to some extent esophageal candidiasis, but not intestinal colonization of this fungus.

The SPRR family is implicated in oral candidiasis

To understand how IL-22 and IL-17 act in OPC, we compared oral mRNA profiles after OPC

in WT versus Il22ra1Il17ra-/- mice, revealing unique and overlapping expression patterns (Fig

2A). We focused on gene changes in Il22ra1Il17ra-/- mice immediately prior to severe morbid-

ity (day 7), where 1,446 genes were expressed in Il22ra1Il17ra-/- compared to WT controls (Fig

2B). A gene set not previously linked to antifungal immunity encoded antimicrobial small pro-

line-rich proteins (SPRRs) (Fig 2C and 2D) [21,24,25]. Sprr expression was negligible at base-

line but induced in WT mice at early time points (day 2). By day 7 when C. albicans was

cleared, SPRRs were no longer evident. In Il22ra1Il17ra-/- mice, SPRRs were impaired at day 2

though up-regulated at day 7, commensurate with high fungal burdens. IF staining confirmed

oral expression of a representative SPRR, Sprr2a1, in WT mice at day 2 but not Il22ra1Il17ra-/-

mice (Fig 2E).
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SPRR2a mediates anti-Candida responses

To ascertain whether SPRRs have antifungal properties, C. albicans cells were cultured in vitro

with recombinant SPRR2A1 and surviving fungi enumerated. There was a dose-dependent

candidacidal effect of Sprr2A1 (Fig 3A and 3B). In vivo, mice lacking 3 Sprr2a genes (Sprr2a1,

Sprr2a2, and Sprr2a3) were significantly but modestly susceptible to OPC, showing elevated

fungal loads and increased percentages of mice infected (Fig 3C and 3D). However, OPC was

not as severe in SPRR-deficient mice as in IL-17RA or IL-22RA knockouts, given the low fun-

gal loads and full recovery from infection-induced weight loss (Fig 3C). Thus, SPRR family

members are up-regulated in OPC and exhibit direct antifungal activity (Fig 3E), though

clearly additional antifungal pathways are also operative.

Discussion

These data show that IL-22R/IL-17R deficiency causes severe susceptibility to OPC, far more

than loss of either cytokine receptor alone (Fig 3). Synergistic activities of IL-17 and IL-22 on

target cells (typically nonhematopoietic) has been described previously, and particularly rele-

vant here is cooperative up-regulation of antimicrobial effectors (β-defensins, S100 proteins)

in dermal keratinocytes [26–28]. The present signaling synergy was so profound that

Fig 1. IL-17 and IL-22 are nonredundant in OPC. (A) Oral fungal loads at day 5. Dashed line: limit of detection.

One-way ANOVA with Tukey’s test. (B) Weight loss, two-way ANOVA with Tukey’s test. (C) Kaplan–Meier survival

curve, Mantel–Cox log-rank test. (D) Fungal loads in indicated organs at day 5. Data from 3–9 samples/group. (E)

Left: representative colons. Right: colon length, mean + SEM. Data from 2–3 independent experiments. (F) Fungal

loads in the indicated organs at day 5.

https://doi.org/10.1371/journal.ppat.1012302.g001
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Il22ra1Il17ra-/- mice subjected to OPC required sacrifice, which was almost never seen in indi-

vidual knockouts [17,23]. Although the basis for their mortality is uncertain, likely contribut-

ing factors are severe oropharyngeal/esophageal inflammation that impairs nutritional intake

(evidenced by weight loss), and potentially fatal dissemination of intestinal bacteria, described

recently by Drummond and colleagues [29].

SPRRs are best understood as precursors for the cornified envelope in stratified squamous

epithelia [21,30], prominently expressed in conditions of hyperkeratinization and dermal

inflammation [31], but are now appreciated to have important antimicrobial activities. For

example, mice lacking Sprr1a and Sprr2a show increased susceptibility to MRSA and dermal

P. aeruginosa infections [32]. SPRR2A causes membrane disruption in several bacterial species,

many of which reside in the oral cavity, and also limits bacterial adherence to gastrointestinal

epithelium [21,32]. A recent report demonstrated anti-helminth properties of SPRRs [25]. We

Fig 2. IL-22R/IL-17R deficiency implicates SPRRs. (A) Illumina RNA-Seq analysis of tongue mRNA. (B)

Transcriptional changes in OPC. Gene expression was normalized between Il22ra1Il17ra-/- and WT subjected to OPC

at day 7. (C) Heatmap of selected genes normalized to sham. (D) Gene expression by qPCR normalized to Gapdh. Data

show ± SEM relative to WT untreated mice, ANOVA with Tukey’s test. (E) Tongue cryosections at day 5 p.i. were

stained with DAPI and anti-Sprr2a1 Abs. Representative of 3–5 mice/group.

https://doi.org/10.1371/journal.ppat.1012302.g002
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show that at least 1 family member (SPRR2A) exhibits direct anti-Candida activities in vitro,

and SPRRs contribute to control of candidiasis in vivo. Although expression of SPRRs at early

time points (day 2) was strongly IL-17/IL-22-dependent, evidently other inflammatory events

associated with high fungal loads drive expression at later times (day 7). To our knowledge,

this is the first connection of SPRRs to fungal host defense, and future studies may determine

whether direct application of SPRRs to the oral mucosa can be exploited as an antifungal

therapy.

IL-17 and IL-22 are produced by “Type 17” lymphocytes (Th17 cells, γδ T cells, ILC3s), but

their downstream mechanisms of action are distinct [7,19]. IL-17 signaling is mediated by

proximal adaptors (Act1, TRAF6), which orchestrate an inflammatory signaling through NF-

κB, MAPK, C/EBPs, and posttranscriptional pathways that stabilize inflammatory mRNA

transcripts [33]. IL-22, in contrast, drives a JAK kinase-STAT3 pathway, controlling genes

involved in tissue repair, wound healing, and proliferation [34]. In this regard, STAT3 up-reg-

ulates SPRRs that modify the epithelial barrier under gastrointestinal stress [32,35], though rel-

atively little is known about how SPRRs are regulated.

Our assessment of SPRR2a (one of the few SPRRs for which detection reagents are avail-

able), showed prominent expression in the oral epithelium during OPC. Oral epithelial cells

Fig 3. Sprr2a controls C. albicans. (A, B) C. albicans were cultured with Sprr2a (0.5–10 μm) for 2 h and CFU

enumerated. Two-way ANOVA with Tukey’s test. (C) Left: fungal loads on day 2 by ANOVA with Dunn’s test. Right:

weight loss. Analyzed by two-way ANOVA. (D) Percent of mice with fungal loads/cohort. Data pooled from 2

independent experiments. (E) Model of IL-17/IL-22 cooperative signaling in the oral mucosa. Created with Biorender.

com.

https://doi.org/10.1371/journal.ppat.1012302.g003
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(OECs) are key responders to Type 17 cytokines, yet there is a clear separation of cytokine-

responsive cell types within this tissue [17,36,37]. Specifically, while IL-17 signals in the super-

ficial, K13+ post-mitotic OEC layer via the IκBz transcription factor [23,36], IL-22 is required

mainly on the proliferating K14+ basal stem-like cell layer [17,36]. Admittedly, this view of

oral epithelial cell dynamics is overly simplistic, as cells in the basal layer undergo complex

transitional states during differentiation [38]. More in-depth characterization of how and

where antifungal effectors such as SPRRs are regulated during candidiasis is warranted.

In summary, SPRRs, in part regulated by Type 17 pathway cytokines, make clear contribu-

tions to oral antifungal defense. Whether SPRRs play roles in other forms of candidiasis

remains to be determined. These observations may have clinical utility, given the emergence of

multidrug-resistant fungal strains and the unmet need for strategies to target such infections

[1,5].

Methods

Ethics statement

All animal studies were performed with approval from the University of Pittsburgh Institu-

tional Animal Care and Use Committee under protocol # 23083550 and were compliant with

all applicable provisions established by the Animal Welfare Act and the Public Health Services

(PHS) Policy on the Humane Care and Use of Laboratory Animals.

Mice

Il22ra1fl/fl [39] were crossed to Il17ra-/- (Amgen, Thousand Oaks, California). Il22-/- were from

Genentech, Sprra1-3-/- from JAX, WT C57BL/6 mice from JAX or Taconic. Experiments were

performed on age-matched mice (6 to 10 weeks, both sexes) housed in SPF conditions.

OPC

OPC was induced by sublingual inoculation with 107 CFU C. albicans (CAF2-1) or PBS

(Sham) in saturated cotton balls for 75 min [22,23]. Tissue homogenates were prepared on a

GentleMACS Dissociator (Miltenyi Biotec) with C-tubes. Intestinal tissue was flushed with

PBS prior to homogenization. CFU was determined by serial dilution plating on YPD/Amp.

Candidacidal assessment

C. albicans (CAF2-1) cells (105 cells/ml) in serum-free RPMI were cultured with rSPRR2A

(MBS1345074) for 2 h and CFU assessed.

Immunofluorescence (IF)

Cryosections were stained with DAPI and anti-SPRR2A (MBS9209523) and goat anti-mouse

AF488 (A32723, Invitrogen). Images were acquired on an EVOS FL microscope.

qPCR and RNASeq

Tongue RNA extracted using RNeasy kits (Qiagen). Primers were from Quantitect. Nextera

XT RNA sequencing was performed on Illumina NextSeq 500 and analyzed by CLC Genomics

Workbench v. 22. QC was performed on FASTQ RNASeq reads. Reads with Phred score >20

were aligned to a reference genome (mm10, GRCm38.75) with default parameters. DEGs were

filtered for significance at log fold change (LFC)� 1, and p� 2. G profile analysis was
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conducted using default parameters. Data are available at the Sequence Read Archive http://

www.ncbi.nlm.nih.gov/bioproject/1094974.

Statistics

Significance determined by ANOVA and indicated post hoc multiple comparison tests, ana-

lyzed on GraphPad Prism. P< 0.05 considered significant. *P< 0.05, **<0.01, ***<0.001,

****<0.0001.
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