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Abstract

The rod and cone photoreceptor cells of the vertebrate retina have highly specialized structures 

that enable them to carry out their function of light detection over a broad range of illumination 

intensities with optimized spatial and temporal resolution. Most prominent are their unusually 

large sensory cilia, consisting of outer segments packed with photosensitive disc membranes, a 

connecting cilium with many features reminiscent of the primary cilium transition zone, and a pair 

of centrioles forming a basal body which serves as the platform upon which the ciliary axoneme 

is assembled. These structures form a highway through which an enormous flux of material moves 

on a daily basis to sustain the continual turnover of outer segment discs and the energetic demands 

of phototransduction. After decades of study, the details of the fine structure and distribution of 

molecular components of these structures are still incompletely understood, but recent advances in 

cellular imaging techniques and animal models of inherited ciliary defects are yielding important 

new insights. This knowledge informs our understanding both of the mechanisms of trafficking 

and assembly and of the pathophysiological mechanisms of human blinding ciliopathies.
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Introduction

Rod and cone photoreceptors of the vertebrate retina have evolved highly specialized 

structures that are uniquely optimized to serve their functions of light detection over a very 

wide range of light intensities, with maximal temporal, spatial and wavelength resolution 

for each intensity range. They have adapted a structure found in diverse cell types in 

virtually all metazoan species, the sensory cilium, or primary cilium, into an enlarged 

photo-sensing organelle, the photoreceptor sensory cilium, which serves as an incredibly 

efficient detector and transducer of visual signals, macromolecules, and membranes (see 

quantitative estimates below).

Cilia in most eukaryotic cells are tiny, hair-like organelles built around a central core of 

microtubules, surrounded by a thin layer of cytoplasm and a ciliary membrane of unique 

composition. These protruding organelles are often referred to as “signaling hubs” and 

are involved in diverse functional roles, including sensation of the external environment 

(olfactory and photoreceptor cells), fluid movement (trachea, brain, and the embryonic 

node), and in signaling pathways like Sonic Hedgehog. They are present in most cell types 

in metazoan organisms at some stage in the cell cycle and share the defining feature of 

a central bundle of microtubules. They are broadly classed into two types. Motile cilia 

possess a 9+2 microtubule architecture, along with additional structures such as dynein 

arms and “central spokes” needed for motility. Immotile cilia, also known as primary or 

sensory cilia, possess a 9+0 microtubule architecture at their base and lack the central pair of 

microtubules and the additional motility-related structures. The photoreceptor sensory cilia 

(Fig. 1) belong to this non-motile class. They differ from most other primary cilia in having 

large disc membranes, on which phototransduction takes place, extending from the ciliary 

microtubules in a highly specialized compartment of the cell called the outer segment (OS). 

The OS is connected to the inner segment (IS), where most biosynthesis takes place, by a 

thin section, known as the connecting cilium (CC), which contains no discs, has a bundle 

of 9 microtubule doublets, and serves as a conduit through which large amounts of proteins, 

membranes and small molecules must continually flow (see quantitative estimates below). 

There are many attributes that make the photoreceptor cilium unique. In this review we 

briefly summarize our current understanding of the structure and dynamics of this complex 

network of molecular machines and highlight some of the current areas of active research 

interest.

Methods for determination of cilium-associated structures.

Because of their small size, cilia in general, and the CC of the photoreceptor sensory 

cilia in particular, pose daunting challenges for structural analysis. In the first several 

decades of research on photoreceptor structure, the most widely-used tool was conventional 

transmission electron microscopy (TEM) of fixed, embedded and sectioned retina (see 

multiple references in [214] and examples below), with contrast provided by heavy-metal 

stains.

Scanning electron microscopy (SEM) of metal-coated surface structures and freeze-fractured 

membranes also played an important role [158–160] (Fig. 2). The high contrast and high 
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resolution of conventional TEM, capable in the best images (but far from routinely) of 

resolving individual tubulin protofilaments at a spacing of 5.5 nm, is achieved at the expense 

of harsh fixatives, dehydration and heavy metal stains that can distort some structural 

features, obscure others, and give rise to contrast by uncertain mechanisms that complicate 

interpretation. Translation of two-dimensional projection images into three dimensional 

structures has traditionally required extremely laborious serial sectioning and reconstruction, 

but automation-based pipelines and instruments developed in recent years have led to 

increases in speed, accuracy, and resolution of such reconstructions. A combination of serial 

sectioning with electron tomography, in which each section is imaged over a range of tilt 

angles, can be used to generate three-dimensional maps of relatively large volumes, on the 

order of a few cubic micrometers. This approach has been applied successfully to the basal 

discs of rod OS [204,19] (see Fig. 3) and to sensory cilia of epithelial cells [189]. High 

pressure freezing and freeze-substitution prior to embedding can help to preserve structural 

integrity in 3D TEM, as well as eliminate artifacts caused by harsh fixatives [205].

In recent years cryo-electron tomography (cryo-ET) has emerged as an increasingly 

powerful technique for determining details of cellular ultrastructure [115,100,116,6,51,141], 

including structures of cilia and adjacent features in ciliated cells. It has the advantage 

of preserving sample integrity in vitreous ice without chemical fixation or heavy-

metal stains, and scattering intensity reflects the mass of the underlying biological 

features rather than heavy metals forming contrast by being excluded from or 

adhering to those structures. This technique has been used extensively on motile cilia 

[137,187,43,135,10,69,151,18,139,86,144,63,97], which are larger and structurally more 

robust and rigid than primary cilia, and can be readily isolated to allow averaging of images 

of large numbers of motile cilia. Among the first applications of cryo-electron tomography 

to primary cilia were studies of vertebrate photoreceptor sensory cilia [129,58,213,138,157]. 

Early cryo-tomograms of rod cilia were quite noisy and had resolutions limited to tens 

of nanometers. However, over the last decade or so improved instrumentation has become 

available, including more sensitive direct electron detectors, higher accelerating voltages for 

thicker samples, energy filters and improved sample loading and imaging automation. These 

improvements, together with advances in software to allow rapid subtomogram averaging 

driven by machine learning algorithms (Fig. 4) have opened the way to obtaining structures 

at nanometer and sub-nanometer scales [157,168,172,235,165,232,207,12,49,24,32,48,104].

An intrinsic limitation on the application of cryo-ET to retinal samples is the requirement 

for the sample to be no more than a few hundred nm in thickness, and to be of low enough 

mass to be susceptible to freezing in a few milliseconds upon being plunged into a cryogenic 

fluid. This problem has in the past been overcome by the use of isolated rod cells, but these 

are necessarily fragments of the cells, separated from their native environment, and subject 

to distortions such as flattening or membrane vesiculation when a small volume is applied to 

an EM grid and most of the solvent wicked away before freezing. An alternative approach 

for preparing samples for cryo-ET is to subject tissues to high-pressure freezing, trim them 

partially in a cryo-microtome, followed by milling of thin lamellae in a dual beam cryo-

focused ion beam/scanning electron microscope (FIB/SEM), transfer to a cryo-TEM and 

tomographic data acquisition [20,166]. This method has yet to be applied to photoreceptor 

sensory cilia, but it may be a promising approach for future studies.
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A variation of electron microscopy that is potentially of great value is immuno-electron 

microscopy. Methods have not yet been developed for applying this technique in cryo-

ET, but it has been used extensively in conjunction with conventional TEM, using 

either pre-embedding or post-embedding antibody labeling, with secondary labeling by 

gold particles or ferritin to provide a recognizable signal. This approach can provide 

invaluable information on localization at TEM resolution but struggles with several technical 

limitations. These include loss of immunoreactivity under the harsh fixation conditions 

used for TEM, and poor structure preservation and contrast under milder conditions of 

fixation and staining. In addition, each ultrathin section generally contains only a few visible 

antibody conjugates, and frequently also some conjugates not associated with the structures 

of interest, so distinguishing true signal from background and obtaining a three-dimensional 

picture of localization remain challenging. A promising approach for future studies may be 

combining genetically encoded electron-dense tags and tomographic or other 3D imaging 

methods.

Superresolution fluorescence offers the ability to localize specific macromolecules in 

two or three dimensions, and to image two or more targets at the same time, using 

antibody labeling or genetically-encoded tags. Three different modalities of superresolution 

microscopy have been applied to photoreceptor sensory cilia. Single-molecule localization 

microscopy (SMLM) which uses thousands of images of sparsely activated fluorophores in 

a dark background of fluorophores in a “dark” state to determine localization coordinates 

of single fluorophores with precision in the range from 5 nm to 50 nm. Following capture 

of each frame, the active fluorophores are inactivated by bleaching, and then a new round 

of photochemical or chemical reactivation allows capture of another sparse and randomly 

selected set of coordinates. A variation known as STORM (STOchastic Reconstruction 

Microscopy [72] has been used to localize a number of cilium-associated proteins 

and products of ciliopathy-associated genes in mouse rod cells [214,41,157]. A recent 

paper [105] has described application to zebrafish cone cells of Structured Illumination 

Microscopy [66], a technique in which multiple alternating patterns of illumination are 

used to shift high resolution information to lower resolution portions of the Fourier 

transform of images and computationally reassign it to improve resolution by about a 

factor of two. Application of SIM to rod cilia from mouse retina is described in a recently 

posted preprint [https://www.biorxiv.org/content/10.1101/2020.10.28.357806v1]. Another 

promising technique is STimulated Emission Depletion microscopy, STED [216,153], which 

uses a donut-shaped excited state depletion pulse tuned to the red edge of a fluorophore’s 

emission to obtain resolutions in the range of tens of nm.

An alternative approach to improve resolution of fluorescence-based localization is 

Expansion Microscopy, ExM [31,210], in which cytoplasm is essentially replaced with a 

hygroscopic cross-linked polymer network that expands all structures within it, in a more 

or less isotropic way, upon hydration. This approach has been successfully applied to the 

retina [163], although ciliary substructures were not visualized. There have been multiple 

reports of its successful application to both motile and primary cilia in other cell types 

[53,52,162,88,96,103,112,152,184,188,238].
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As with immuno-EM, an ongoing challenge for immunofluorescence microscopy is the 

trade-off between conditions that maximize preservation of structure and those which 

maximize accessibility of antigenic epitopes to added antibodies. In single-molecule 

localization microscopy there is also a conflict between adequate labeling densities needed 

to ensure that desired image resolution is within the Nyquist sampling limit [101], and the 

need to avoid simultaneous emission from two fluorophores within the diffraction limit of 

one another. This problem may be alleviated by decreasing the probability of activation, 

e.g. using DNA-PAINT methodology [35,61] or photoactivation light microscopy (PALM 

[13]), albeit it at the expense of longer imaging times. All of the fluorescence methods 

mentioned above have been applied fairly extensively to primary and motile cilia of non-

photoreceptor cells, as the unique structural features of cilia make them an ideal test bed for 

new methodologies. Much remains to be done to adapt these approaches optimally to retinal 

tissue.

Dimensions and Components of Photoreceptor Cilia and Associated 

Structures

Outer Segments and Connecting Cilia

Among vertebrate species, OS of rods and cones vary widely in size. A number of species 

have particularly large photoreceptors, including the mudpuppy, Necturus, whose rod OS 

measure approximately 12 μm in diameter by 30 μm in length, encompassing a volume 

of 3.4 pL [17]. Mice have rod OS measuring roughly 1–1.5 μm by 24 μm, with a nearly 

one hundred-fold lower volume of about 0.035 pL [183,110,23]. Human photoreceptors are 

comparably thin and can have OS as short as 3 μm (infant cones) to as long as 63 μm 

(adult foveal cones) [68,233]. Dimensions of the CC and associated structures have been 

determined in mice by cryo-ET [58]. The CC is roughly 1000 nm in length in mice; the 

diameter is about 300 nm, with some variations in diameter along its length. The inner 

diameter of the axoneme within the CC is 156 nm, and the diameters of the A microtubules 

and B microtubules of the doublets are 22 nm and 24 nm, respectively.

Basal body

The basal body (BB) lies at the base of all cilia and flagella and is composed of a 

pair of centrioles, which are ~302 nm long tubes formed around 9 bundled microtubule 

triplets arranged in a cylinder, and a compliment of associated pericentriolar structures. The 

centriole pair in the BB originates from the centrosome, where the older centriole, termed 

the mother centriole (MC), duplicates to form the daughter centriole (DC). The mother and 

daughter centrioles are generally positioned within about 500 nm of one another, with a 

fairly wide variation in this distance (±131 nm). The centrioles are generally depicted as 

having their long axes at right angles to one another, but in reality, there is a wide variation 

in this angle from cell to cell [58] (Fig. 6).

In the developing mouse retina during asynchronous rod photoreceptor ciliogenesis, nascent 

BB centrioles are typically observed in different positions as they migrate through the IS 

cytoplasm, between postnatal days P0 and P7, to eventually dock onto to the apical surface 

[170]. The MC of the nascent BB serves as the template for the formation of the axoneme 
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during ciliogenesis, and thus the nine MC microtubule triplets are continuous with the nine 

microtubule doublets in the axoneme of the CC in rod neurons. The DC remains in the 

IS cytoplasm near the MC [58]. In primary cilia the BB serves as a critical way station 

for ciliary cargo transport, and in rod cilia, the BB may be the way station for rhodopsin 

and other OS cargoes. It is therefore an active and essential region of the cilium, especially 

considering the high volume of trafficking that flows into the cilium from the IS.

Within and around the BB, numerous structures serve as potential docking sites for ciliary 

cargo proteins, including the pericentriolar material (PCM) that surrounds the BB centrioles, 

the centriolar satellites, and the distal and sub-distal appendages [33,124,140,225]. Although 

ciliary cargoes clearly accumulate at the BB with intraflagellar transport (IFT) proteins and 

motor proteins in rod CC, the organization of ciliary cargoes within the structures of the BB 

region of any primary cilium remains generally unexplored. See [134,167,147,79,7,198] for 

reviews of the roles of IFT proteins and motor proteins in trafficking to and from the cilium 

in photoreceptors and other cell types.

In recent years, the core structure of the centrioles of centrosomes and BBs has been 

extensively mapped using state-of-the-art cryo-ET imaging and expansion microscopy 

(ExM) [52,162,63].

The MC in the basal body of mouse rod photoreceptor cilia maintains the same appendage 

structures attached to the MC in the centrosome, namely the distal appendages (DAPs, also 

known as transition fibers) and the subdistal appendages (sDAPs). The DAPs and sDAPs are 

essential for centriole docking during ciliogenesis [203,195,9].

Distal appendages

The DAPs have been classically defined from conventional TEM micrographs as blades 

or pinwheel fins that attach to each of the 9 microtubule triplets of the distal end of the 

MC in a striking rotational symmetry [4]. These blades are found in photoreceptors to 

attach to the periciliary/ciliary membrane border in the BB. The DAP structure from a 

HeLa cell centrosome MC was recently modeled with fine detail using electron tomography 

(conventional TEM-based) [16]. The architecture of the blades was shown to be composed 

of finger-like fibers with a dense head region bound to two adjacent MT triplets. The 

following protein components of the DAPs were originally identified with proteomics and 

SIM imaging: CEP164, CEP89/CCDC123, CEP83/CCDC41, SCLT1, and FBF1 [195]. The 

3D localization and organization of these DAP proteins was more recently thoroughly 

mapped with superresolution using STORM (stochastic optical reconstruction, a form of 

single molecule localization microscopy (SMLM)) [225] and correlative STORM/EM [16] 

as a blade pattern that closely matches the TEM structure. The STORM study also localized 

the core DAP protein FBF1 to the space between the blades that was termed the distal 

appendage matrix (DAM), and localized IFT88 specifically to this DAM region [225].

The association of the IFT proteins with the DAPs was also shown during ciliogenesis in 

developing mouse rods [170], and in adult mouse rods using immunoelectron microscopy, 

IFT52, IFT57, IFT88, and IFT140, which are all components of the IFT supramolecular 

transport particle, were densely localized in the region of the DAPs [169]. The potential 

Wensel et al. Page 6

Pflugers Arch. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



role of the DAPs in cell trafficking in adult rods is intriguing considering that the DAPs 

are located, structurally, at the interface of the BB and the CC, and may be an important 

checkpoint for ciliary trafficking. As such, the DAPs may contribute to the proposed barrier 

or gate for membrane cargo receptors at the base of the CC [171,227], or may serve as a 

docking surface for the coupling of ciliary cargoes to IFT proteins for transport into the 

cilium, as has been proposed in other models [74,211,229].

Using TEM and heavy metal stains, the DAPs are very evident in the BB of rod cilia 

and display a dense accumulation of stain (Fig. 6A). In cryo-ET tomograms of mouse rod 

cilia that are devoid of any TEM stains, the blade structures of DAPs are nearly invisible, 

indicating low electron density, and as such, the barrier between the BB cytoplasm and the 

CC is not clearly visualized. In the region of cryo-ET tomograms where DAPs are observed, 

there are fibers which are not observed with conventional TEM. They extend from the 

C-microtubules of the MC and associate with unassigned fibers of a different geometry that 

run parallel with the membrane and are observed tethered to cytoplasmic vesicles [58,157]. 

We recently immunolocalized the DAP protein CEP164 to the DAP region of the rod 

cilia (V. Potter et al., unpublished observations-see preprint: https://www.biorxiv.org/content/

10.1101/2020.10.28.357806v1); however, the localization of the full complement of DAP 

proteins to the rod photoreceptor cilia may reveal a unique, photoreceptor-specific DAP 

geometry and composition.

Subdistal appendages

In mouse rods, the sDAPs are prominently observed at early postnatal ages using 

conventional TEM and heavy metal staining (P7 in Fig. 6B). The sDAPs are located 

proximal to the DAPs and do not appear to have 9-fold symmetry. They are composed of a 

varying number of triangular wings that link adjacent MC triplets [202]. The functions of the 

sDAPs have been studied only in centrosomes [15,33], and their roles in photoreceptor cilia 

are not known. The core protein components of the sDAPs were identified in centrosomes 

as ODF2, CEP128, centriolin, ninein, and CEP170, and these same proteins were recently 

mapped in cultured RPE cells using STORM to match the wing-shape structure [33]. Like 

the DAPs, the sDAPs in adult rod photoreceptor cilia are not visible in cryo-ET tomograms 

[58,157], but unlike the DAPs, there is no obvious role for the sDAPs in the dynamics of rod 

cilia post-ciliogenesis.

Pericentriolar material

Both centrioles of the BB are surrounded by an electron-dense proteinaceous coat or tube 

known as the pericentriolar material (PCM). The multiple protein components of the PCM 

and their localization have been identified, including CEP135, ninein, pericentrin, C-Nap-1/

Cep250 and gamma tubulin, which forms a gamma (γ) tubulin ring complex (γTuRC) 

[143,234,81,124,219]. The γTuRC functions as a microtubule nucleation site for centrioles 

in the centrosome [121]. Although gamma tubulin is localized at the BB centrioles in 

isolated bovine rod photoreceptor cilia [126], cytoplasmic microtubules appear not to be 

linked to the BB/γTuRC in rods. One PCM protein that has been rigorously localized in the 

BB of photoreceptor cilia is pericentrin in a report by Mühlhans et al. [124]. With specific 

immunolocalization experiments, the large coiled-coil pericentrin protein was localized 
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surrounding the BB centrioles and more densely accumulated at the proximal (inward 

facing) triplet ends of the BB centrioles [124]. CG-Nap/AKAP9, another coiled-coil PCM 

protein, was also localized to the mouse rod BB in that study.

Centriolar satellites

The BB centrioles are surrounded by a matrix of electron dense mobile elements called 

the centriolar satellites that putatively serve as substrates and organizers for cilia-bound 

cargoes [124,140]. Unlike the PCM, the satellites are unorganized mobile granules that are 

membrane-less [40,140], and they were recently characterized as a membrane-less organelle 

(MLO), which are phase-transition cytoplasmic condensates caused by disordered domains 

within its constituent proteins [85]. The satellites are observed sporadically around the BB 

in TEM micrographs as electron-dense granules 70 – 100 μm in diameter [99]. They are 

difficult to identify in the dense IS cytoplasm of adult photoreceptor cilia; however, dense 

satellite granules were clearly observed with TEM in the BB region in mouse rods during 

the earliest stages of ciliogenesis [170]. Sedmak et al. [169] localized the IFT proteins 

IFT20, IFT52, IFT57, IFT88 and IFT140 to satellite structures in the BB of rod neurons 

during ciliogenesis by immunoelectron microscopy [170]. As the IFT proteins localize to 

the BB in adult rod cilia [169,157], the centriolar satellites are also potential substrates for 

maintaining a pool of IFT proteins and other trafficking machinery for eventual cilia cargo 

coupling and trafficking to the OS.

The satellite protein PCM1 (pericentriolar material 1) is the scaffold for other satellite 

proteins [70] and interacts with a large network of protein interactors as part of a 

comprehensive centriolar satellite interactome that has been characterized by a number 

of groups using proximity mapping [55,37,140]. PCM1 was localized to the BB region 

in adult mouse photoreceptors [124,45]. In another study, RP2, the protein product of a 

retinitis pigmentosa-associated gene, which serves as a GTPase activating protein for Arl3, 

an essential small GTPase regulator of CC trafficking, was localized by immunoelectron 

microscopy to the BB and tentatively to the centriolar satellites of rods [44].

Other notable interactions between centriolar satellite proteins and key photoreceptor 

trafficking regulators have been reported. The Bbs (Bardet-Biedl syndrome ciliopathy) 

protein subunits form a BBSome complex [132,131,224,34,109,174], whose function is 

required to avoid accumulation of inappropriate proteins in the CC and outer segment and to 

prevent retinal degeneration. BBS4 colocalizes and interacts with PCM1. BBS4 is essential 

for the normal localization of the BBSome to the BB of primary cilia [93,132,236,89]. 

BBS4 also interacts with the satellite proteins AZI1/Cep131 [30]. Cep290 is a large 

cilium-associated protein whose encoding gene is associated with multiple ciliopathies, 

and is the most common cause of the childhood blinding disease Leber Congenital 

Amaurosis [200]. CEP290 was reported to co-localize and interact with PCM1 in the 

BB of primary cilia [92], via another cilium/centrosome-associated protein, Cep72 [186]. 

Cep290 also interacts with the centriolar satellite proteins SSX2IP and CP110 in the BB 

[94,201]. In mouse rod photoreceptors, Cep290 and BBSome protein subunits have been 

localized to the BB [1,176,41,157] (V. Potter et al., unpublished observations-see preprint: 

https://www.biorxiv.org/content/10.1101/2020.10.28.357806v1). As with the BB pool of IFT 
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proteins, the centriolar satellites are candidates for maintaining and organizing the pool of 

ciliary machinery at the BB in rods.

Periciliary membrane

The IS plasma membrane that is adjacent to the CC is known as the periciliary membrane in 

mouse rods or the periciliary ridge in Xenopus rods [114]. In each case, they serve to form 

the ciliary pocket, an in-folding of the membrane at the base of the cilium, and they contain 

a complement of proteins distinct from those elsewhere in the IS membrane.

Rho and Rho-containing IS transport vesicles were shown to localize with the periciliary 

membrane in mouse rods and the periciliary ridge in Xenopus rods, which may serve as 

a docking site for these vesicles [145,25,114,150]. In mice, the periciliary-CC membrane 

interface is maintained by the periciliary membrane complex (PMC). The PMC contains 

Usher syndrome-related proteins, including myosin VIIa, VLGR1, and whirlin, and 

physically links the CC and periciliary membranes. It is distinctly localized to one side 

of the CC in mouse rods [223,157,111]. Usher proteins are also localized in the periciliary 

ridge (Maerker et al., 2008). The potential coordination of Rho cargo docking between the 

PMC and the BB, and the impact of this docking on Rho trafficking through the CC, have 

not been characterized.

Because of the dense networks of fibers and filaments of varying diameters, it is 

somewhat difficult to visualize the network of microtubules linked to the periciliary matrix. 

Cytoplasmic microtubules have been observed in the apical IS of human rods with TEM 

[111], and cytoplasmic dynein motors were shown to move rhodopsin containing vesicles 

along microtubules in vitro [191].

Ciliary rootlet

The ciliary rootlet is a prominent cytoskeletal element throughout the biosynthetic regions 

of mammalian rod photoreceptor neurons that is directly linked at its distal end to the BB 

[175,182,36,58,219]. The thick, filamentous rootlet extends proximally from the BB through 

the IS cytoplasm, into the outer nuclear layer (ONL) surrounding the soma and terminates 

at the synapse in the outer plexiform layer (OPL) [36,175,182]. In electron micrographs 

the rootlet is characteristically striated (Fig. 6C), which is caused by rootletin, the core 

cytoskeletal protein of the rootlet, which has an elongated coiled-coil tail domain that 

homopolymerizes into parallel, overlapping bundles that form the striated rootlet filament 

[222].

Although the 220-kD rootletin protein was first identified in mouse rod photoreceptors, the 

rootlet is a structural component of the motile cilia and flagella of various species and cell 

types. Unlike in mammalian photoreceptors, those rootlets serve to stabilize the beating 

or waving action the ciliary or flagellar axonemes [118]. Flagellar rootlets are particularly 

divergent from photoreceptor rootlets as, in response to Ca2+ influx they under contractions 

mediated by centrins, which are small Ca2+ binding proteins [199,164]. The photoreceptors 

of poikilotherms, including in the retinas of Xenopus frog species, do not have obvious 

ciliary rootlets. In mammals, loss of rootlets affects stability, viability and visual pigment 

transport at older ages in both rods and cones [58,220].
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The role of the rootlet in normal rod photoreceptor function remains unclear. Retinas from 

knockout mice of Crocc (ciliary rootlet coiled-coil, the gene encoding rootletin) were 

morphologically unaffected, including normally localized BB centrioles, even though the 

rod photoreceptors were missing rootlets, as observed by TEM [220]. Only after 12 months 

do these mice display signs of photoreceptor dystrophy. After the mechanical stress of 

being isolated from the retina, however, rod outer segment cilia from rootletin knockout 

mice were fragile [220], and when reconstructed with cryo-ET, were seen to have a broken 

and dysmorphic ciliary axoneme [58]. As such, the rootlet for rod cilia is not necessary 

for normal photoreceptor function, but the fragility that rises from the lack of the rootlet 

does seem to promote photoreceptor cell death. It may be one of many supportive, but not 

essential, features of photoreceptor cilia that confer robustness of function in the presence of 

environmental or genetic stress.

The rootlet is linked directly to the BB centrioles in rods through an interaction between 

rootletin and C-Nap1/Cep250, a rootletin homolog [219] and a PCM protein that was 

recently associated with nonsyndromic retinitis pigmentosa [73]. C-Nap-1 fibers are 

localized at the proximal ends of the BB centrioles [219], although, this localization has 

not been established in photoreceptors. In cryo-ET tomograms of isolated mouse rod IS/OS 

fragments, a nest of fibers is evident in the space between the BB centrioles, and it is still 

present in rootletin knockout rods [58]. These fibers potentially correspond to C-Nap, which 

may function as a scaffold between the centrioles, even in the absence of a connected rootlet.

The large size of the rootlet in mammalian rods, and the large volume of space it occupies 

within the rod IS suggest that the rootlet may serve as a convenient organizer or trafficking 

route for cytoplasmic proteins and organelles. Such a role, if it exists, would have to be 

redundant with other mechanisms, as only defects in long-term stability, and no acute 

trafficking defects, are apparent in rootletin knockout mice. As it is directly linked to the 

BB, the rootlet is structurally placed to serve as a potential highway through the IS to 

the BB for ciliary trafficking cargo. In many conventional TEM images of the rod IS, 

the rootlet is associated with IS mitochondria or cytoplasmic membranes described as 

“saccules” throughout the literature. These vesicular membrane saccules were postulated to 

be ER membranes that apparently contact the rootlet at various points throughout the rod IS 

in an unorganized manner [182,217,222,220]. In one report, the saccules were observed to 

be contiguous with rough ER. In cryo-ET tomograms of the rod IS, proteinaceous densities 

and occasional lateral filaments were found along the rootlet [58]. F-actin was not localized 

at the ciliary rootlet in monkey rod IS with immunoelectron microscopy [27], leaving the 

composition of these filaments undetermined.

The globular head domain of rootletin displays promiscuous binding, including non-specific 

binding to antibodies used as immunolabeling reagents [114]. This sticky surface may be 

what anchors and maintains the contact between the rootlet and IS organelles. Rootletin, 

through its globular head domain, was shown to interact with kinesin light-chain (KLC) 

1–3 protein subunits of the kinesin-I and -II motor proteins [222,221]. In a curious 

finding, peripherin/rds, an integral OS disc rim protein, was localized via immunoelectron 

microscopy to vesicles bound to the rootlet, but only in rods from mice with experimentally 

detached retinas [47]. Non-vesicular particles were also visualized on the surface of the 
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rootlet, and the size distribution of these varies substantially between dark-adapted and 

light-adapted conditions, suggesting a role in ciliary dynamics [58]. Thus far, these are the 

only characterized interactions that link any aspect of cellular trafficking in the rod IS to 

rootletin.

Despite these observations, the relative functional normality of photoreceptor cilia in 

intact retina of rootletin knockout mice suggests that the rootlet is not necessary for the 

biosynthesis and cellular trafficking of material to the OS cilia. The robust nature of 

the vectorial transport of materials in the rod IS may enable rod cells to process and 

transport cargo along alternative redundant pathways. For example, peripherin/rds itself 

was shown to utilize a non-conventional secretory pathway that bypasses the convention 

vesicular route through the Golgi [197], potentially through a late endosome pathway [142]. 

Therefore, the rootlet may normally serve as a substrate or organizer for trafficking in rod 

photoreceptors, and in rootletin knockout rods those processes must use an alternative or 

redundant substrate, such as cytoplasmic microtubules.

Structures and complexes within the connecting cilium.

The arrangement of microtubules varies along the length of sensory cilia, as does the 

complement of accessory structures and proteins associated with the outsides and insides 

of the microtubules. These also vary among cell types and species [82]. Throughout most 

of the BB, each tubule is composed of triplet microtubules, A-B-C, whereas at the distal 

ends of both centrioles there are partial triplets, i.e., A-B doublets with attached incomplete 

C-tubules [62,63,106], which transition to doublets in both centrioles of photoreceptors. 

Each tubule possesses 13 or 10 microtubule protofilaments, respectively. The A-tubule is 

characterized by a ring structure, and is the tubule that continues on in the singlet region, 

and the B-tubule is characterized by a c-shape which joins the A-tubule at two places, the 

inner and outer junction [136,107]. The inner junction (IJ) also contains an 11th non-tubulin 

protofilament, which is thought to be made by the proteins Flagella Associated protein 20 

(FAP20), Parkin Coregulated Gene Protein (PACRG), and Tektin [76,218]. Beyond the zone 

where the transition from incomplete triplets to doublets occurs, at the distal end of the MC 

in the region of the distal appendages described above, the axoneme begins as a bundle of 9 

microtubule doublets (Fig. 1). As these progress distally, they undergo loss of the B-tubule 

and become singlets [80]. In the proximal region, doublets and 9-fold symmetry persist for 

various distances in different cell types, but toward the more distal regions, the doublets 

transition to singlets, the 9-fold symmetry is lost, and the number of microtubules declines, 

often to a single one at the tip [57,80,189].

The nomenclature of ciliary subdomains in the literature is somewhat diverse and confusing. 

The basal body, as discussed above, can be clearly defined as a pair of centrioles, at a 

roughly orthogonal angle, built predominantly around a core of 9 microtubule triplets, about 

300 nm long. In contrast, the “transition zone” (TZ), if defined as the region of transition 

from triplet to doublet microtubules is, in both motile and non-motile cilia, no more than 

100 or 200 nm in extent; this transition also occurs in the DC at the distal end facing 

away from the MC in rods [214], and to triplets with “partial” C microtubules in some 

other ciliated cells [62]. In contrast, if the “transition zone” is defined in terms of specific 
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macromolecular complexes or structural elements visualized by electron microscopy, such 

as the “NPHP complexes,” the “MKS complex” (TCTN1, TCTN2, TMEM231, TMEM67, 

MKS1, MKS6, B9D1, B9D2, and AHI1), the “ciliary necklace” or “Y-shaped links” (see 

descriptions of these below), its length varies dramatically among species and cell types. 

Indeed, even the consistent markers of the TZ region segregate into distinct subregions when 

visualized at nanoscale resolution [226,157,41]. In a STED imaging study of primary cilia 

in cultured RPE-1 cells, CEP290 was observed restricted to a region of about 50 nm beyond 

the distal edge of CEP164 (distal appendage), with additional TZ markers, RPGRIP1L, 

MKS1, TMEM67 and TCTN2 located roughly 100 nm more distally [226]. In contrast, in a 

study of motile cilia in Paramecium, CEP290 was localized to a distal sub-compartment of 

the TZ, adjacent to RPGRIP1L and TMEM107, but more distal than NPHP4 and TMEM216 

[60]. It has been suggested, based on distribution of key marker proteins, that a distinction 

be made between the proximal TZ, marked by “Group I” NPHP proteins, NPHP1, NPHP4, 

NPHP8/RPGRIPL1, NPHP5/IQCB1, and NPHP6/CEP290, and a more distal “Inversin/Inv” 

compartment, marked by NPHP2/INV, NPHP3 and PPHP9/Nek8 [173]. In rods, some 

proteins commonly associated with the proximal TZ of primary and motile cilia, such as 

CEP290, AHI1, NPHP1, and NPHP4 are distributed throughout the length of the connecting 

cilium [41] (see also https://www.biorxiv.org/content/10.1101/2020.10.28.357806v1). A 

similar longitudinal distribution is observed for photoreceptor-specific ciliary proteins 

SPATA7, RPGR and RPGRIP, and all of these become confined to the proximal TZ in 

the absence of SPATA7 [41].

Ciliary Necklace and Y-links

Freeze-fracture scanning electron tomographs of the ciliary membrane in 1972 revealed a 

unique structure surrounding the membrane at the base of the cilium, which the authors 

referred to as a ciliary necklace, due to its “beads on a string” appearance [59]. The necklace 

was described as consisting of three scalloped rows of protrusions, and tentatively associated 

with the Y-links [59]. Through further examination of multiple cilia types, the authors 

surmised that this necklace corresponded to “champagne glass” structures connecting the 

doublet-microtubules to the membrane, seen in ciliary cross-sections. These filamentous 

structures are now referred to as Y-shaped links, named for their “Y” appearance in electron 

micrographs of cross-sections stained with heavy metals [59,156]. However, the match 

between the angular distributions and apparent symmetries (or lack thereof) of the Y-links 

and necklace protrusions is not obvious, and cross-sections showing Y-links do not, in 

general, show obvious protrusions from the ciliary membrane in register with them. Their 

structural relationship has not undergone intense scrutinization with current superresolution 

techniques, and their distributions along the lengths of cilia are variable.

Both the necklace and Y-shaped links are generally conserved structural elements of 

eukaryotic flagella and cilia, although their distributions along the length of the cilia differ 

among cell types and organisms. Each link radiates from a microtubule doublet pair at the 

outer junction of the A and B tubules and bifurcates as it extends toward the membrane 

[156,71,59]. In gill cilia, the portion of the Y-link near the axoneme measures 15 nm, 

while the diameter of the bifurcation is 52 nm [59]. In eukaryotic flagella, longitudinal 

electron micrographs depict wedges in the TZ between the microtubule doublets and the 
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membrane, and these wedges do not occupy the entirety of the flagellar TZ. It is unclear, 

however, if the wedges in longitudinal views are the same Y-shaped links observed in 

cross sections, especially considering that the wedges observed in flagella are absent 

in longitudinal views of primary cilia [156]. Recent serial electron tomography of fixed 

epithelial cilia revealed irregular clumps of material connecting doublets to the membrane 

in the most proximal region of ~100 nm at the ciliary base [189]. Additional microtubule-to-

membrane connections were observed in more distal regions, but not in a regular pattern. In 

photoreceptors, the Y-shaped links are observed along the full length of the connecting cilia 

(https://www.biorxiv.org/content/10.1101/2020.10.28.357806v1). The “Yshape” is observed 

in cross sections of the CC, however detergent extraction of membrane lipids reveals a 

more “tree”-like structure [71], agreeing with recent electron tomography studies of cilia and 

suggesting that the true structure in three dimensions may not be “Y-like” [58,189,215,157]. 

This idea also agrees with the original “champagne glass” description [59], in which the “Y” 

is the circular part of the glass and therefore has a round structure.

To date, the composition of the Y-shaped links and the necklace is unknown, though it has 

been hypothesized that CEP290 may form/interact with the Y-shaped links based on genetic 

and immunoimaging studies of Chlamydomonas flagella [38]. The immuno-EM data in that 

report, acquired using both C-terminal and N-terminal tags, actually suggest its localization 

to a region between two Y-shaped links, in closer proximity to one than the other. Since 

many TZ proteins appear to be part of stable structures, it is possible that any and/or many of 

them are involved in Y-shaped link and necklace formation or positioning. Further molecular 

imaging experiments, and the use of TZ mutant animals in which the Y-shaped links do not 

form will be needed to tease out the protein make-up of these structures.

The exact functions of the Y-shaped links and the necklace are also yet to be determined. 

It was originally hypothesized that the role of the Y-shaped links and ciliary necklace is 

to act as a switch for ciliary beating, regulated by Ca2+ signaling [59]. The Y-shaped links 

have been proposed to provide stability to the CC, as well as to create a barrier between the 

inner and OS, and aid in membrane protein trafficking [125]. These ideas, as well as the idea 

that nucleoporins such as NUP62 “filter” cytoplasmic proteins from diffusing into the cilium 

[14,90,192–194], have not been rigorously tested in rods or cones.

Although the photoreceptor cilium is highly modified in function, the basic structure of the 

CC is consistent with the proximal portion (including the TZ) of immotile primary cilia seen 

in other tissues, containing a 9+0 (i.e., a ring of 9 microtubule doublets lacking the central 

pair of microtubules found in motile cilia) microtubule morphology. Distal to the CC, at 

the base of the outer segment, the arrangement of nine microtubule doublets takes a form 

closer to triangular in cross section than to the 9-fold symmetric circle seen in the CC, and 

more distally, the microtubule arrangement undergoes a switch from doublet microtubules 

to singlet microtubules approximately one-third of the way up the axoneme, with singlets 

extending far into the OS length ([17,185,95,80,214]). This long singlet extension is rare and 

only observed in a few other cilia types, such as frog olfactory cilia and C. elegans sensory 

cilia [177,155]. Though this singlet extends deep into the OS length, it is unknown if it 

extends all the way to the tip of the OS.
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At the base of the outer segment/distal end of the CC, there is an out-folding of the ciliary 

membrane to form nascent discs (Fig. 1), whose lumenal compartments are continuous with 

the extracellular space [204,19], unlike the more distal closed discs found in rod (but not 

cone) OS. In this region there are clusters of filamentous actin [58,26,28,29] which may 

be involved in this out-folding/evagination process, in conjunction with regulation by the 

Arp2/3 branching proteins [181,180]. RPGR, or a retina-specific splice variant of RPGR 

may be involved in this actin-dependent process [91,127,128,237,117].

Turnover and trafficking

The microtubules of the photoreceptor cilium are attached to the continually renewing 

membranous stacked discs where phototransduction occurs [230]. Rods and cones impose 

major demands for regulation of developmental processes such as OS formation as well 

as maintenance of function by selective trafficking of OS proteins to their site of action. 

This need is exacerbated by the fact that the outer segment goes through a daily process of 

shedding and renewal, so that every 10 days or so (in mammals) the entire OS is renewed as 

described above [230]. A similar flux occurs in species with longer OS, albeit with a greater 

time lack between synthesis and shedding of discs.

An estimate of the numbers of macromolecules and membrane components that must pass 

through this compartment can be obtained by considering the continual turnover of the 

disc membranes. Disc turnover is approximately 10% of a mouse rod per day and similar 

rates are observed in other mammals [230,231,102]; the major components are rhodopsin 

and phospholipid. The content of rhodopsin is 7 × 107 molecules (Lyubarsky et al, 2004; 

Driesen et al, 2000), so 7 × 106 molecules of rhodopsin must be transported every day, or 

approximately 800 per second. The phospholipid content is 60 per rhodopsin [113], so more 

than 48,000 phospholipid molecules must be transported per second. Turnover of guanine 

nucleotides [3] in rabbit rods as measured by mass spectrometry, is about 28.3 μM s−1 in the 

dark. If we assume a volume of about 19 fL, this corresponds to 316,000 molecules of GTP 

and ATP transported per second and an equal flux of 5’-GMP and 5’-AMP flowing in the 

opposite direction. According to a model that fits electrophysiological data well [65], cGMP 

turnover ranges from 16.7 μM s−1 in the dark to a maximum of 150 μM s−1 at saturating 

light levels in mice, in reasonable agreement with the MS data. A similar flux of NADPH 

or other reducing molecules must occur in the light to keep all-trans retinal in the mostly 

reduced state [2].

Cilia formation, i.e. ciliogenesis, in photoreceptor cells must be efficiently regulated to 

allow for creation of a functional, organized outer segment (OS) with stacked membrane 

discs that are packed with the phototransduction and structural proteins necessary for 

sight. The demand for efficient protein trafficking in the mature OS is a result of the 

anatomy of the photoreceptor cell which has distinct compartments, i.e. the IS where OS 

proteins are synthesized and the OS where those proteins must function to capture light 

[130]. Correspondingly, human disease may result from inefficiency in the process of 

protein trafficking in photoreceptor cells. Notably, mutations that disrupt the transport of 

phosphodiesterase 6 (PDE6), rhodopsin, or other phototransduction proteins are a major 
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cause of the blinding disease, retinitis pigmentosa (RP) [208,75]. RP alone is responsible for 

vision loss in 1 in 4,000 people worldwide [190].

Several reviews in the last few years provide in-depth discussion of trafficking in 

photoreceptors [50,209,148,79,77,11]. Selective transport to the CC and OS seems to 

involve a combination of active transport from the IS, involving microtubule-associated 

motor proteins such as kinesins and dyneins, passive diffusion with filtering mechanisms 

for both soluble and membrane proteins, and active retrograde transport. The BBSome 

complex, formed by proteins encoded by the Bardet-Biedl syndrome (BBS) genes appears to 

be critical for removal of inappropriate proteins from the CC and OS [228,134,131,54,132]. 

The proteins of the A and B intraflagellar transport complexes (IFTA and IFTB) ferry cargos 

in both directions along the photoreceptor axoneme, in conjunction with motor proteins 

[87,206,134,105,98,146,79] and are essential for the proper development and maintenance 

of the photoreceptors and their cilia. In addition to their accumulation at sites at or near 

the basal body complex described above, both IFT proteins and BBS proteins are found in 

clusters along the CC, presumably caught in the act of cargo transport [157]. Transport of 

lipidated proteins requires chaperoning by a prenyl binding protein also known and PDEδ, 

or UNC119, which binds fatty acyl chains [50,67,46,8], in a process regulated by the small 

GTPases Arl2 and Arl3.

Ciliogenesis

Ciliogenesis is an asynchronous process [178,170,64]. There are two different ciliogenesis 

pathways – intracellular and extracellular. In intracellular ciliogenesis, the cilium forms 

within a vesicle in the cytoplasm prior to extracellular exposure, whereas in extracellular 

ciliogenesis, the basal body docks at the plasma membrane before extending the axoneme 

extracellularly. Cultured cell ciliogenesis may occur intracellularly or extracellularly, 

depending on the position of the centrosome in relation to the plasma membrane. Cell 

types with centrioles closer to the nucleus undergo intracellular ciliogenesis, while centrioles 

closer to the cell surface undergo extracellular ciliogenesis. This section will primarily focus 

on intracellular ciliogenesis, which is the pathway employed by photoreceptors. Intracellular 

ciliogenesis can be divided into stages, discussed below.

Primary ciliary vesicle

The first stage occurs within the cytoplasm and involves the primary ciliary vesicle [178]. 

The primary ciliary vesicle appears at the distal end of the MC centriole [178,149], and 

later flattens to become the ciliary sheath surrounding the ciliary bud. The subdistal and 

distal appendages then localize to the MC centriole and aid in stabilizing and anchoring 

the MC centriole to the primary ciliary vesicle for ciliogenesis (see Distal Appendages and 

Subdistal Appendages sections above for list of involved proteins) [178,179]. The distal 

appendages anchor the MC centriole to the vesicle for docking, and are sometimes referred 

to as “transition fibers” (Figs. 6, 7) [149].

Ciliary Shaft

In the second stage, the ciliary bud extends to become the ciliary shaft (Fig. 7). The 

extension of the ciliary shaft requires the intraflagellar transport (IFT) system, which is 
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a bidirectional microtubule-based motility process mediated by IFT particles and motor 

proteins. The current model is that kinesin-2 motor proteins and the IFT B complex 

(containing a subset of IFT proteins) participate in anterograde transport, while dynein 2 

motor proteins and IFT A complex (with an overlapping but different subset) are involved in 

retrograde transport [170,149,161].

These particles move along the axoneme delivering tubulin subunits and other axonemal 

components from the cell body, where they are synthesized, to the ciliary tip for axonemal 

extension. They also retrieve axonemal components and recycle IFT B complex from the 

ciliary tip back to the ciliary base [149,161]. Additionally, the kinesin 2 motor stabilizes the 

growing plus ends of microtubules to facilitate tubulin incorporation [83]. The IFT particles 

and motors are necessary for axonemal assembly and maintenance. In their absence, the 

axoneme either does not form or regresses [84]. As the ciliary shaft lengthens, secondary 

Golgi-derived vesicles fuse with the ciliary sheath membrane to lengthen it [178,64].

Plasma membrane fusion

In the third stage, the sheath membrane interacts and fuses with the plasma membrane, 

exposing the cilium to the external environment [178]. This fusion leads to the formation of 

a subdomain of the plasma membrane called the ciliary pocket (Fig. 7C) [120,56], which 

later becomes the periciliary ridge/membrane. Within these pockets, clathrin coated pit 

proteins localize, and there is active endocytosis [120]. The ciliary pocket may also serve as 

a site for the release of Golgi-derived secretory vesicles. IFT20 and IFT52 both localize to 

the ciliary pockets and associate with Golgi-derived vesicles [169].

Disc morphogenesis

The last stage is unique to photoreceptors and involves outer segment formation and 

maturation (Fig. 7D). As the cilium extends extracellularly, the proximal cilium gives rise to 

the CC and the distal cilium gives rise to the outer segment. Disc morphogenesis is mediated 

by evagination of the ciliary plasma membrane at the base of the OS [19,42]. Initially the 

discs are open to the extracellular space and contact the periciliary ridge, an IS structural 

complex that partially surrounds the CC [150] via PCDH21, a photoreceptor-specific 

protocadherin [19,154]. However, in rod photoreceptors, as the open discs move distally, 

the leading edge of an evaginated membrane fuses with an adjacent evagination to form a 

closed disc. While the disc is open, peripherin, an OS disc protein known for organizing 

the disc rims in complex with Rom-1, is only present at the rim near the axoneme, but 

once disc closure occurs peripherin is redistributed throughout the rim [19,42,122,5,119]. 

Coupled with disc closure is the loss of the IS connection mediated through PCDH21 [19].

Outstanding questions and challenges

Advances in imaging techniques, combined with both human genetics and a large number 

of animal models, have led to tremendous advances in our understanding of photoreceptor 

sensory cilia. Despite this progress, many of the most fundamental questions about their 

structures and dynamics remain unanswered. For the most part, the exact molecular 

composition of the substructures of cilium-associated structures remains unknown, much 

less the precise locations of specific molecules within them. For many ciliopathies in human 
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patients and animal models, the primary defects leading ultimately to loss of ciliary function 

and cell death, as opposed to defects such as impaired trafficking that may be secondary 

to the initial defects, remain poorly understood. Fortunately, these problems have attracted 

many talented and dedicated investigators, and the tools available are increasingly powerful. 

Hopefully, in the near future, application of these tools to establish genetically-encoded 

nanoscale tags and image them at the molecular scale will lead to a series of major 

breakthroughs in this area. An ongoing challenge is to monitor dynamics and trafficking 

in real time because the currently available methods generally depend on optical methods 

and photoreceptors are extremely sensitive to light. Some advances in the use of multiphoton 

excitation via infrared lasers have been reported [133,22,21,77,108,196,78], and this seems 

to be a promising direction for future studies of photoreceptor ciliary dynamics.
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Abbreviations

IS Inner Segment

OS Outer Segment

ONL outer nuclear layer

OPL outer plexiform layer

CC connecting cilium

BB basal body

TZ transition zone

PCM pericentriolar material

DC daughter centriole

MC mother centriole

DAM distal appendage material

CP ciliary pocket
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DAP distal appendage

sDAP subdistal appendage

PCV primary ciliary vesicle

TF transition fibers

IFT intraflegellar transport

MT microtubule
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Fig. 1. 
Schematic depiction of the photoreceptor (rod) sensory cilium. The ciliary structures of a 

rod sensory cilium and adjacent cellular structures are depicted roughly to scale, based on 

an outer segment length of approximately 20 μm and a connecting cilium diameter of ~300 

nm. The cross-sectional views of the microtubule bundles to the right are at a different 

scale, based on the same 300 nm diameter. The cartoon of an individual doublet microtubule 

doublet at the upper right has a scale corresponding to a diameter of the A-microtubule 

of ~22 nm. OS, outer segment; CC, connecting cilium; MTs, microtubules; BB, basal 

body; MC mother centriole; DC, daughter centriole; root, ciliary rootlet; ribo, ribosomes; 

RER, rough endoplasmic reticulum; V, vesicle (representing the large number of vesicles 

of varying size typically observed in this region); F, fibrils connecting the rootlet to the 

basal body; mito, mitochondria (much more elongated in rods than depicted here); OD, 

open discs at the base of the outer segment, with membranes continuous with the plasma 

membrane. To the right are cross-sectional views of the 9-fold symmetric arrangement of 

the MT bundles in the centrioles and CC. One of these doublet microtubules is further 

zoomed in to display the protofilament structure of the A- and B-tubules. Above the basal 

discs, the discs extend to a diameter in most mammals of ~1.4 μm. Not depicted are the 

dense networks of fibers and associated vesicles constituting the pericentriolar material, 

and present at varying densities throughout the distal inner segment, the bundles of actin 

filaments at the base of the outer segment, or the connections between the open basal discs 

and the adjacent membrane of the periciliary inner segment membrane. The ciliary pocket is 

depicted at either side of the CC.
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Fig. 2. 
Scanning electron microscope (SEM) of the outer portion of a mouse retina showing outer 

segments, inner segments and some nuclei. Reproduced from ref. [212]
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Fig. 3. 
Reconstruction of base of rod outer segment from electron tomography of serial sections of 

fixed and stained mouse retina. Inset B shows a series of slices through the tomographic map 

at different z positions. Inset C shows a close-up of a segmented portion of the tomogram 

showing attachments between the rim of a basal disc and the adjacent inner segment plasma 

membrane. Reproduced from ref. 18

Wensel et al. Page 34

Pflugers Arch. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Cryo-electron tomography of the base of the rod sensory cilium. Left panel shows a slice 

from a tomogram of a mouse rod embedded in vitreous ice, with the triplet microtubules 

of the basal body centriole pair segmented in magenta, green and blue surfaces for a, b 

and c MT. Right panel shows a map of a 72 nm (9 tubulin dimer repeats) section of a 

microtubule doublet generated by subtomogram averaging of doublets in connecting cilia. 

Tomograms were generated as described [157] and subtomogram averaging carried out 

as in [32]. CC, connecting cilium; MC, mother centriole; DC, daughter centriole; PCM, 

pericentriolar material/matrix; CP, ciliary pocket membrane; mito, mitochondrion
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Figure 5. 
The mouse rod photoreceptor cilium as imaged with alternative microscopies. Examples of 

an isolated rod photoreceptor cilia from mouse retina tissue samples are compared at the 

same scale from images captured by transmission electron microscopy (TEM), and by the 

fluorescence microscopies: confocal microscopy, structured illumination microscopy (SIM), 

and stochastic optical reconstruction microscopy (STORM). SIM and STORM are super-

resolution fluorescence microscopies with optimal X-Y lateral resolutions of approximately 

100 nm and 20 nm, respectively [66], [72]. Mouse retina samples imaged with fluorescence 

microscopy were immunostained with a pan-centrin antibody, which targets the lumen of the 

connecting cilium (CC) axoneme and the centrioles of the basal body (BB) in rods
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Fig. 6. 
Transmission electron microscopy (TEM) of mouse rod sensory cilia, highlighting A, distal 

appendages, green arrows, B, subdistal appendages, cyan arrows or C, ciliary rootlet, 

magenta arrows. MC, mother centriole; DC, daughter centriole; CC, connecting cilium, BB, 

basal body; CP, ciliary pocket. Samples in A and B were prepared and imaged as described 

[157]. (A) In TEM images of the BB region from age P14 mouse rod photoreceptors, the 

distal appendages are electron dense projections attached to the distal end of the mother 

centriole that apparently connect to the plasma membrane directly beneath the connecting 

cilium. In the transverse orientation, the DAP “blades” (green arrows) extend radially from 

each MC triplet. (B) In TEM examples of the BB in P7 mouse rod neurons, the subdistal 

appendages (sDAPs, cyan arrows) are attached the MC proximal the DAPs. The daughter 

centriole (DC) is located beneath the MC in this rod BB. In the transverse orientation, 6 

triangular sDAPs are each linked to 2 adjacent MC triplets and extend radially into the inner 

segment cytoplasm. (C) In TEM examples of rods from adult mouse retinas that were mildly 

permeabilized with Triton X-100, the striated rootlet (magenta arrows) can be seen linked to 

the BB centrioles and extending through the inner segment cytoplasm.

Wensel et al. Page 37

Pflugers Arch. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Schematic of intracellular ciliogenesis. A, primary ciliary vesicle docks to the distal end 

of the mother centriole. B, ciliary shaft extends within the ciliary vesicle. C, the ciliary 

vesicle and plasma membrane fuse to expose the cilium outside the cell. D, outer segment 

discs form and mature. DAP, distal appendage; PCV, primary ciliary vesicle; MC, mother 

centriole; DC, daughter centriole; CS, ciliary shaft; CP, ciliary pocket; TF, transition fibers
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Table 1.

Summary of current methodologies for microscopic imaging of photoreceptor neurons.

Examples of these methods used in photoreceptors

Superresolution 
Fluorescence

• SIM
• STED
• Expansion Microscopy

• SIM [105,181] (https://www.biorxiv.org/content/10.1101/2020.10.28.357806v1)

Superresolution 
Single Molecule 
Fluorescence

• STORM
• PALM
• DNA-PAINT

• [41,157]

Electron Microscopy • Transmission EM
• Scanning EM
• Cryo – Electron Tomography

• Conventional TEM [17,19,23,25–
29,42,64,71,95,145,170,169,175,182,185,204,217,5,7]
• Freeze-fracture SEM [159,160,158]
• Focused ion beam SEM [142]
• Cryo-ET [41,58,138,157,19,204]
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Table 2.

Summary of ciliary sub-structures in photoreceptor neurons.

Ciliary structure Location in photoreceptors Protein marker Reference

Basal Body (BB) Inner Segment Centrin [170,199,157]

Distal Appendages (DAPs) Inner Segment CEP164, CEP89/CCDC123, CEP83/
CCDC41, SCLT1, FBF1

[195,225]

Subdistal Appendages 
(sDAPs)

Inner Segment ODF2, CEP128, centriolin, ninein, CEP170 [33]

Pericentriolar Material Inner Segment CEP135, ninein, pericentrin, C-Nap-1/
Cep250, gamma tubulin

[81,143,219,124,234,126]

Centriolar Satellites Inner Segment PCM1, AZI/Cep131, SSX2IP, CP110 [70,124,45,30,201,94]

Periciliary Membrane 
Complex (PMC)

Inner Segment Myosin VIIa, VLGR1, whirlin [111,223,157]

Ciliary Rootlet Inner Segment/Outer Nuclear 
Layer

Rootletin, C-Nap-1/Cep250 [118,221,219]

Ciliary Necklace/Y-links Connecting Cilium CEP290 (in Chlamydomonas flagella) [39]

Axoneme Outer Segment RP1, MAK [123]
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