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Abstract

Introduction: Coronary artery calcium (CAC) scans contain useful information beyond the 

Agatston CAC score that is not currently reported. We recently reported that artificial intelligence 

(AI)-enabled cardiac chambers volumetry in CAC scans (AI-CAC™) predicted incident atrial 

fibrillation in the Multi-Ethnic Study of Atherosclerosis (MESA). In this study, we investigated the 

performance of AI-CAC cardiac chambers for prediction of incident heart failure (HF).

Methods: We applied AI-CAC to 5750 CAC scans of asymptomatic individuals (52% female, 

White 40%, Black 26%, Hispanic 22% Chinese 12%) free of known cardiovascular disease at the 

MESA baseline examination (2000–2002). We used the 15-year outcomes data and compared the 

time-dependent area under the curve (AUC) of AI-CAC volumetry versus NT-proBNP, Agatston 

score, and 9 known clinical risk factors (age, gender, diabetes, current smoking, hypertension 

medication, systolic and diastolic blood pressure, LDL, HDL for predicting incident HF over 15 

years.
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Results: Over 15 years of follow-up, 256 HF events accrued. The time-dependent AUC [95% 

CI] at 15 years for predicting HF with AI-CAC all chambers volumetry (0.86 [0.82,0.91]) was 

significantly higher than NT-proBNP (0.74 [0.69, 0.77]) and Agatston score (0.71 [0.68, 0.78]) 

(p < 0.0001), and comparable to clinical risk factors (0.85, p = 0.4141). Category-free Net 

Reclassification Index (NRI) [95% CI] adding AI-CAC LV significantly improved on clinical risk 

factors (0.32 [0.16,0.41]), NT-proBNP (0.46 [0.33,0.58]), and Agatston score (0.71 [0.57,0.81]) 

for HF prediction at 15 years (p < 0.0001).

Conclusion: AI-CAC volumetry significantly outperformed NT-proBNP and the Agatston CAC 

score, and significantly improved the AUC and category-free NRI of clinical risk factors for 

incident HF prediction.
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1. Introduction

Coronary artery calcium (CAC) scoring is a strong predictor of coronary heart disease 

(CHD) events in asymptomatic individuals.1 However, it is a weak predictor of heart 

failure (HF).2 HF is a significant healthcare burden due to large and rising numbers of 

HF hospitalizations and rehospitalizations.3 Approximately 2% of the total US healthcare 

budget is spent on HF, and half of that is attributable to late diagnosis leading to inpatient 

admissions.4 Numerous studies have highlighted the importance of early detection of 

asymptomatic high-risk patients to prevent progression to overt clinical HF. These high-

risk patients include those with asymptomatic left ventricular dysfunction (ALVD), left 

ventricular hypertrophy (LVH), cardiomegaly, and enlarged cardiac chambers that if not 

detected and treated will lead to HF. They can be detected with imaging modalities such as 

echocardiography, cardiac computed tomography, and cardiac magnetic resonance imaging. 

Similarly, measurement of B-type natriuretic peptide (BNP) or the biologically inactive 

amino-terminal of BNP (NT-proBNP) that are circulating biomarkers of cardiac volume 

overload is associated with subclinical HF5,6,7,8. However, screening the asymptomatic 

population for detection of subclinical HF by any diagnostic means is not part of current 

guidelines due to cost and feasibility limitations.9

CAC scans contain insightful information beyond a CAC score that is not currently 

reported.10 We recently reported that artificial intelligence (AI)-enabled volumetry of left 

atrium in CAC scans enabled prediction of incident atrial fibrillation in the Multi-Ethnic 

Study of Atherosclerosis (MESA) occurring within one year.11 MESA is comprised of 

6814 asymptomatic individuals free of known cardiovascular disease at baseline who 

were recruited for prospective evaluation in 2000–2002. In this study, we investigated the 

predictive value of AI-enabled cardiac chambers volumetry in CAC scans (AI-CAC) for 

prediction of incident symptomatic heart failure (HF). We further compared the predictive 

performance of AI-CAC with the best clinical model comprising 99 known risk factors (age, 

gender, diabetes, current smoking, hypertension medication, systolic and diastolic blood 

pressure, LDL, HDL plus the addition of NT-proBNP or the Agatston CAC score.
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2. Methods

2.1. Study population

The Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective cohort study that 

began in July 2000 to investigate the prevalence, correlates, and progression of subclinical 

cardiovascular disease (CVD) in individuals without known CVD at baseline. The cohort 

included 6814 women and men aged 45–84 years old recruited from 6 US communities 

(Baltimore, MD; Chicago, IL; Forsyth County, NC; Los Angeles County, CA; northern 

Manhattan, NY; and St. Paul, MN). Individuals with a history of physician-diagnosed 

MI, angina, heart failure, stroke, or transient ischemic attack, or who had undergone an 

invasive procedure for CVD (coronary artery bypass graft, angioplasty, valve replacement, 

pacemaker placement or other vascular surgeries) were excluded.12

For our study, we removed data from 771 MESA participants who did not consent to 

use of their data by commercial entities leaving 6043 participants at baseline. Among the 

remaining participants, after removing cases with missing data including 125 cases with 

missing slices in CAC scans and 168 cases with missing NT-proBNP values, the total 

number of cases available for analysis was 5750. The 125 cases with missing slices were 

49.8% male and 50.2% females with age 60.8 ± 10.1. None of these cases had a diagnosis 

of HF, and our investigations did not reveal any association with dependent or independent 

variables in our study.

2.2. Outcomes

Participants were contacted by telephone every 9–12 months during follow-up and asked to 

report all new cardiovascular diagnoses. International Classification of Disease (ICD) codes 

were obtained for hospitalizations. Reviewers classified HF as definite, probable, or absent. 

Definite or probable HF required heart failure symptoms, such as shortness of breath or 

edema. Asymptomatic HF was not a MESA endpoint, therefore could not be investigated. 

In addition to symptoms, probable HF required HF diagnosed by a physician and patient 

receiving medical treatment for HF. Definite HF required one or more other criteria, such 

as pulmonary edema/congestion by chest X-ray; dilated ventricle or poor LV function by 

echocardiography or ventriculography; or evidence of left ventricular diastolic dysfunction. 

The criteria for possible HF are a physician diagnosis of HF and receiving medical treatment 

for HF. A total of 74 cases were identified with pre-baseline atrial fibrillation (AF) and were 

included as one of the known clinical risk factors for this study.

2.3. AI-CAC

The AI-enabled automated cardiac chambers volumetry tool in AI-CAC™ is called 

AutoChamber™ (HeartLung.AI, Houston, TX), a deep learning model that used 

TotalSegmentator13 as the base input and was further developed to segment not only each 

of the four cardiac chambers; left atrium (LA), left ventricle (LV), right atrium (RA), and 

right ventricle (RV) but also ascending aorta, aortic root and valves, pulmonary arteries, and 

several other components which are not presented here. In this manuscript, the AI-estimated 

LA, LV, RA, RV volumes and LV Mass are referred to as AI-CAC all cardiac chambers or 

AI cardiac chambers volumetry, interchangeably.
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Fig. 1 shows the AutoChamber segmentations of enlarged LV along with other cardiac 

chambers in two cases who were otherwise classified as low risk based on Agatston CAC 

score of 0 and ASCVD pooled cohorts equation (PCE) < 5%. The base architecture of the 

TotalSegmentator model was trained on 1139 cases obtained from University of Basel with 

447 cases of coronary CT angiography (CCTA) using nnU-Net, a self-configuring method 

for deep learning-based biomedical image segmentation.14 The initial input training data 

were paired non-contrast and contrast-enhanced ECG-gated cardiac CT scans of the same 

individuals with 1.5 mm slice thickness. Because the images were taken from the same 

patients in the same session, registration was accomplished with good alignment. Following 

this transfer of segmentations, a nnU-Net deep learning tool was used for training the model.

Additionally, iterative training was implemented whereby human supervisors corrected 

errors made by the model, and the corrected data were used to further train the model, 

leading to improved accuracy. AI-CAC was run on 6043 non-contrast CAC scans that 

consented to commercial data usage out of the 6814 scans available in MESA exam 

1. Expert rules built in AI-CAC excluded 125 cases due to missing slices in image 

reconstruction created by some of the electron beam CT scanners used in MESA baseline. 

Each AI-CAC chambers volumetry took on average of 20 s per scan.

2.4. NT-proBNP

NT-proBNP data were obtained from MESA core laboratory for MESA exam 1 participants. 

A detailed study design for MESA has been published elsewhere.12 Details on NT-proBNP 

assays used in MESA have been reported.15 N-terminal proBNP is more reproducible than 

NT-proBNP at the lower end of the distribution range, and more stable at room temperature. 

However, both BNP and N-terminal proBNP are clinically available. Intra-assay and inter-

assay coefficients of variation at various concentrations of NT-proBNP have been previously 

reported.16,17 The analytical measurement range for NT-proBNP in exam 1 was 4.9–11699 

pg/ml. The lower limit of detection for the NT-proBNP assay is 5 pg/mL, thus cases above 0 

and below 4.99 were treated as 4.99 pg/mL. Numerous studies have established NT-proBNP 

as a predictor of incident HF, with a relatively high negative predictive value (94%–98%), 

but a significantly lower positive predictive value (44%–57% for non-acute heart failure, 

66%–67% for acute heart failure).18,19,20

2.5. Statistical analysis

We used SAS (SAS Institute Inc., Cary, NC) and R-4.3.3 software for our statistical 

analyses. All values are reported as means ± SD except for Agatston CAC Score and NT-

proBNP which did not show normal distribution and is presented in median and interquartile 

range (IQR). All tests of significance were two tailed, and significance was defined at the p 

<0.05 level. Confidence intervals are presented at the 95% level.

Discrimination for HF prediction was performed over 5, 10, and 15 years follow up. The 

time-dependent ROC (receiver operator curve) AUC (area under the curve) was calculated 

based on survival probabilities using the inverse probability of censoring weighting 

estimator to measure the true positive rate and false positive rate for each threshold value. 

Pointwise confidence intervals were computed from the asymptotic normality of the time-
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dependent AUC estimator using 2000 bootstrapped samples. Standard errors and confidence 

intervals were estimated from the independent and identically distributed (iid)-representation 

of the estimator. Significance in AUC difference was determined using the DeLong test. Due 

to the limited number of HF events, internal validation was not used when evaluating model 

performance. The Cochran-Mantel-Haenszel test of trends was used to determine general 

association in proportions between AI-CAC LV volume Quartiles and Agatston CAC Score 

categories.

Category-free (continuous) net reclassification index (NRI) was calculated using the sum 

of the differences between the proportions of upward reclassifications and downward 

reclassifications for HF events and HF non-events, respectively. NRI was developed as a 

statistical measure to evaluate the improvement in risk prediction models when additional 

variables are incorporated into a base model.21

In our study, the base models are 9 known clinical risk factors (defined as age, gender, 

diabetes, current smoking, hypertension medication, systolic and diastolic blood pressure, 

LDL, and HDL), NT-proBNP, and Agatston CAC score. For the clinical model, diabetes and 

smoking status are dichotomized as yes/no. All other variables were modeled continuously. 

The AI enabled cardiac chambers volumetry (AI-CAC) model integrates all cardiac 

chambers (LA, LV, RA, RV) and LV wall mass within the same model. LV and LV Mass 

are modeled as a composite variable to reduce multicollinearity. All variables were modeled 

continuously. NT-proBNP and Agatston CAC Score values were right skewed, therefore 

natural log transformed and modeled continuously. Composite model analysis included 9 

clinical risk factors, Agatston CAC Score, and AI-CAC all cardiac chambers.

3. Results

In this cohort, ages ranged from 45 to 84, 53.3% of the participants were female, 38% 

were White, 28% were Black, 22% were Hispanic, and 12% were Chinese. Baseline 

characteristics of MESA participants who were diagnosed with incident HF versus those 

who were not over the period of 15 years follow up were calculated. At 5-, 10-, and 15-years 

follow-up 92, 188, and 256 HF cases were identified respectively. In univariate comparisons, 

incident HF cases were older, more likely male, and more likely White. The incident HF 

cases had higher cardiac chamber volumes for LA, LV, RA, RV, LV Mass, and NT-proBNP 

levels versus those without incident HF (all comparisons p < 0.001) (Table 1).

The time-dependent AUC [95% CI] for AI-CAC all cardiac chambers adjusted by age, 

gender, and BSA was comparable to the 9 clinical risk factors model at 5-, 10-, and 15 years 

(0.83 [0.79, 0.87] vs. 0.79 [0.77, 0.85], p = 0.58) (0.82 [0.79, 0.86] vs. 0.80 [0.76, 0.85], p = 

0.09) (0.86 [0.82, 0.91] vs. 0.85 [0.82, 0.90], p = 0.41), respectively. The AUC for AI-CAC 

all cardiac chambers was comparable to NT-proBNP for 5 years (0.83 [0.79, 0.87]vs. 0.79, p 

= 0.21) and significantly higher than NT-proBNP for 10- and 15-year prediction of HF (0.82 

[0.79, 0.86] vs. 0.75 [0.71, 0.78], p < 00.0001 and 0.86 [0.82, 0.91] vs. 0.74 [0.69, 0.77], p < 

00.0001, respectively). The AUC for AI-CAC all cardiac chambers versus the Agatston CAC 

score was 0.83 [0.79, 0.87]vs. 0.69 [0.65, 0.76] for 5 years (p < 0001); 0.82 [0.79, 0.86] vs. 

0.71 [0.66,0.75] for 10 years (p < 00.0001); and 0.86 [0.82, 0.91] vs. 0.71 [0.68, 0.78] for 15 

Naghavi et al. Page 5

J Cardiovasc Comput Tomogr. Author manuscript; available in PMC 2024 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



years (p < 00.0001). (Table 2). The AUC for AI-CAC LV volume and mass alone predicted 

HF similarly to all cardiac chambers despite slightly lower AUC at 5-, 10-, and 15- years 

was 0.82 [0.78, 0.86], 0.79, [0.75, 0.85] and 0.85 [0.82, 0.89], respectively.

The addition of Agatston CAC Score and AI-CAC cardiac chambers volumetry to the 9 

clinical risk factor model was highly significant (Fig. 2a and b). The continuous NRI for 5-, 

10-, and 15-years prediction of HF when AI-CAC was added to the Agatston CAC score as 

the only predictor in the base model was highly significant (0.81 [0.48, 0.88], 0.67 [0.57, 

0.85], 0.71 [0.57, 0.81], respectively p < 0.0001). The NRI [95% CI] for AI-CAC over 5, 10, 

and 15 years when added to base model NT-proBNP was significant (0.49 [0.29, 0.69], 0.47 

[0.32, 0.61], 0.46 [0.33, 0.58], respectively, p for all <0.0001). The NRI for AI-CAC over 

5,10, and 15 years when added to the clinical risk factors model was 0.43 [0.22, 0.63], 0.35 

[0.19, 0.48], 0.32 [0.16, 0.41], respectively, p for all <00.0001. (Table 3).

AI-CAC LV volumetry demonstrated high discrimination for detection of asymptomatic left 

ventricular dysfunction (ALVD) as defined by LV ejection fraction <50%. The AUC [95% 

CI] for AI-CAC LV vs. NT-proBNP was 0.84 [0.73, 0.92] vs 0.60 [0.52, 0.71], (p < 0.0001) 

respectively (Fig. 4).

Despite the correlation (p < 0.0001), a significant number of low-risk categorized 

participants by CAC score and ASCVD Pooled Cohorts Equation have enlarged cardiac 

chambers (Fig. 3a and b). Over 15 years, 18 (6.2%) of HF events classified as low-risk by 

ASCVD Pooled Cohorts Equation (PCE) risk estimate <5% and 71 (24.3%) classified as 

low-risk by CAC 0 were flagged by AI-CAC top quartile (Table 4).

Examples of two asymptomatic cases who were classified as low risk by CAC 0 and 

ASCVD PCE but were flagged by AI-CAC with enlarged LA and LV volume are shown in 

Fig. 1. Both cases went on to develop HF over subsequent years.

4. Discussion

To our knowledge this is the first report of an AI-enabled automated cardiac chamber 

volumetry in non-contrast cardiac CT scans obtained for CAC scoring that predicted future 

HF in a multi-ethnic asymptomatic population. Our study has shown that the AI-CAC 

technique non-significantly outperformed NT-proBNP for HF prediction at 5 years, and 

significantly outperformed NT-proBNP at 10 and 15 years. Additionally, it significantly 

outperformed the Agatston CAC Score for HF prediction at all years and provided a sizable 

NRI on top of both NT-proBNP and the Agatston Score. We recently reported that the same 

AI-CAC technique in CAC scans enabled prediction of future AF and outperformed both 

CHARGE-AF and NT-proBNP for predicting AF at 5, 10, and 15 years.11 Our study is 

not the first to raise awareness on the potential utility of non-coronary findings in CAC 

scans as they have been reported previously using manual 2D measurements of LV22–25 and 

LA sizes26,27,28,29. Furthermore, our study is not the first to suggest using AI for cardiac 

segmentation in non-contrast CT scans.30,31 However, we provide the first evidence on the 

predictive power of such an AI tool for incident HF as well as its practical feasibility that is 
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operator independent and fast versus tedious manual measurements that are time consuming 

and poorly reproducible.

NT-proBNP is a serum biomarker of cardiac volume overload particularly and has been 

studied extensively in various cardiovascular diseases, in particular heart failure32,33,.34 

Elevated levels of NT-proBNP are known to be associated with the presence of heart 

failure and reduced ejection fraction.35 Our study shows that AI enabled all cardiac 

chambers volumetry non-significantly outperformed NT-proBNP for 5-year HF prediction 

and significantly outperformed NT-proBNP for 10- and 15-year prediction. The small 

sample size of HF at 5 years may have resulted in the non-significant difference in 

prediction despite higher AUC for AI vs NT-proBNP (0.83 [0.79, 0.87] vs. 0.79, p = 

0.21). Additionally, AI-CAC LV improved NRI of NT-proBNP at all years. It is possible 

that AI is outperforming NT-proBNP because NT-proBNP is not specific to LV volume 

overload, whereas AI cardiac chambers volumetry in CAC scans directly measures LV 

volume. AI-CAC LV and LV Mass alone similarly predicted HF over 5, 10, and 15 years 

to all cardiac chambers, despite slightly lower AUC. AI-CAC LA and RV volumes showed 

modest but significantly lower discrimination for incident HF over 15 years. AI-CAC RA 

volume alone was not significant in predicting incident HF.

Recent studies have suggested another opportunistic screening tool using AI-enabled deep 

learning ECG signals for detection of prevalent ALVD.36,37 These AI ECG models using a 

standard 10-s 12-lead ECG data in asymptomatic populations as well as patient populations 

in clinical datasets have shown to predict future AF38 and HF39 with comparable accuracy 

to the HF risk calculators from the ARIC study and the Framingham Heart Study.39 In 

another study by Yao et al.,40 ECGs were obtained as part of routine care from a total 

of 22,641 adults without prior HF. The primary outcome was a new diagnosis of low EF 

(≤50%) within 90 days of the ECG. The results indicated that use of AI-ECG enabled 

the early diagnosis of low EF in patients in the setting of routine primary care.40 We 

do not have paired data to compare the performance of our AI-enabled cardiac chambers 

volumetry in CT scans with these AI-enabled deep learning ECG tools for detection of 

incident AF and HF. However, it is important to note that AI-ECGs are often referred to as 

“Black-Box AI” meaning the AI output does not show clinicians what features or segments 

of ECG signals were used for LVH and ALVD detection, whereas in our approach the AI 

colorfully segments the cardiac chambers in non-contrast CT images where the volumetry 

measurements are done and enlarged cardiac chambers are detected.

4.1. Non-coronary findings in CAC scans

As stated above, our study is not the first to raise awareness on the potential utility of 

non-coronary findings in CAC scans as they have been reported previously using manual 

2D measurements of LV22–25 and LA sizes26,27,28,29. However, despite multiple automated 

CAC scoring tools available, currently, there is no clinically available tool for clinicians 

to enable automated cardiac chambers volumetry in CAC scans. Such measurements are 

only possible on contrast-enhanced CT scans which require more radiation plus injection 

of an X-ray contrast agent that is burdensome,41 whereas our AI can be applied to any 

new or existing non-contrast CAC scans for automated cardiac chambers volumetry reports. 
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Other imaging modalities including contrast-enhanced cardiac MRI and echocardiography 

are not suitable as an opportunistic add-on screening tool to non-contrast CT scans such 

as ECG-gated CAC and non-gated lung scans. Therefore, non-contrast chest CT scans are 

prime candidates for opportunistic AI-enabled cardiac chambers volumetry for detection of 

high-risk future AF11 and HF. The AI approach can enable automatic screening of over 10 

million chest CT scans done each year in the US alone.42 Such an AI tool can run in the 

background of radiology PACS and alert providers to cases with enlarged cardiac chambers. 

Unfortunately, many high-risk patients with enlarged cardiac chambers, LVH and ALVD 

are currently undetected, therefore untreated. Early detection of these cases can allow for 

close monitoring of progression to clinical AF for stroke prevention and intensive medical 

treatment for clinical HF prevention.

4.2. Limitations

Our study has some limitations. The MESA Exam 1 baseline CT scans, performed between 

2000 and 2002, were predominantly conducted using electron-beam computed tomography 

(EBCT) scanners. This technology is no longer the commonly used method of CAC 

scanning. Since our AI training was done completely outside of MESA and used a modern 

multi-detector (256 slice) scanner, we do not anticipate this to affect the generalizability of 

our findings. Because asymptomatic HF was not a MESA endpoint, we could not investigate 

the relationship between cardiac chambers volume and asymptomatic HF.

5. Conclusion

In this multi-ethnic population study, AI-powered automated cardiac chambers volumetry 

enabled prediction of incident HF in new or existing CAC scans and improved on the HF 

predictive value of clinical risk factors, NT-proBNP and the Agatston Score.
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Clinical perspectives

The potential value of non-coronary findings in coronary calcium scans is significant. 

AI-enabled cardiac chambers volumetry can detect patients with enlarged LV and alert 

providers to take preventive actions. The clinical utility of this opportunistic add-on AI to 

CAC scans warrants further validation in other longitudinal cohorts.
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Fig. 1. 
Examples of two asymptomatic cases who were classified as low risk by Coronary Artery 

Calcium (CAC) zero and ASCVD Pooled Cohorts Equation (PCE) less than five percent but 

were flagged by AI-CAC™ with enlarged left ventricle (LV) volume.
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Fig. 2. 
a-b. Comparing Receiver Operating Curve (ROC) Area under Curve (AUC) between AI-

enabled cardiac chamber volumetry (AI-CAC) vs NT-proBNP, Agatston Score, and Clinical 

risk model over 5 years for incident heart failure (HF).
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Fig. 3. 
a-b) Quartiles of AI-CAC Left Ventricle (LV) Volume by coronary artery calcium (CAC) 

and ASCVD Pooled Cohorts Equation Categories.
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Fig. 4. 
a-b. Detection of asymptomatic left ventricular dsyfunction (ALVD) defined by left 

ventricular (LV) ejection fraction less than 55% by AI-CAC LV Volume and NT-proBNP.
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Table 4

Low risk reclassification for Cardiovascular Events and heart failure (HF) by AI-CAC enlarged left atrium 

(LA) and left ventricle (LV) in participants with Agatston coronary artery calcium (CAC) score of 0 or 

ASCVD Pooled Cohorts Equation (PCE) 10-year risk estimate below 5%.

ASCVD PCE Risk Estimate <5% & Top Quartile LA or LV CAC 0 & Top Quartile LA or LV

15-year follow-up
All Cardiovascular Events* (n = 1732) 197 (11.3%) 501 (28.9%)

HF (n = 292) 18 (6.2%) 71 (24.3%)

10-year follow-up
All Cardiovascular Events* (n = 674) 72 (10.7%) 259 (38.4%)

HF (n = 212) 13 (6.1%) 50 (23.6%)

5-year follow-up
All Cardiovascular Events* (n = 311) 32 (10.3%) 116 (37.3%)

HF (n = 106) 5 (4.7%) 24 (22.6%)

All Cardiovascular Events: stroke, myocardial infarction, angina, resuscitated cardiac arrest, all cardiovascular disease related deaths, HF, and atrial 
fibrillation.
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