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CohortFinder: an open-source tool for
data-driven partitioning of digital
pathology and imaging cohorts to yield
robust machine-learning models
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Batch effects (BEs) refer to systematic technical differences in data collection unrelated to biological
variations whose noise is shown to negatively impact machine learning (ML) model generalizability.
Here we release CohortFinder (http://cohortfinder.com), an open-source tool aimed at mitigating BEs
via data-driven cohort partitioning.WedemonstrateCohortFinder improvesMLmodel performance in
downstreamdigital pathology andmedical imageprocessing tasks.CohortFinder is freely available for
download at cohortfinder.com.

The increased availability of digital pathology (DP) whole slide images
(WSI) and radiographic imaging datasets has propelled the development of
both machine and deep learning algorithms to aid in disease diagnosis,
patient prognosis, and predicting therapy response1. These algorithmswork
by identifying patterns in digital data that are associated with clinical out-
comes of interest. While large-scale data analysis was previously limited by
storage, processing, and computational constraints, modern-day develop-
ment and testing of thesemodels increasingly involves the collection of large
cohorts over both physical (e.g., institutions) and temporal (e.g., time
points) spaces1. However, differences in non-biological preanalytical pro-
cesses at these various spatiotemporal points likely impart undesirable batch
effects (BE) in the final digital data. For example, BEs in DP images gen-
erated in the samemanner from the same tissue type yield significant visual
differences which may impact data interpretation (see Fig. 1A).

In DP, these BEs tend to originate from, but are not limited to, dif-
ferences in physical processes for data generation (tissue processing, storage,
glass slide preparation) as well as digitization processes (scanners, color
profile management, compression approaches)1–6. In MR imaging cohorts,

these BEs may result from MRI acquisition protocols, patient preparation
differences, or imaging artifacts such as noise, motion, inhomogeneity,
ringing, or aliasing7,8. Regardless of the modality, BEs have been shown to
not only severely hamper both the peak performance and robustness (i.e.,
degree of performance change when examining new unseen data) of
machine learning (ML)models but canalso cause spuriousdiscoverieswhen
associated with outcome variables of interest5,9,10. For example,ML has been
shown to be able to detect and thus be influenced by BEs associated with the
site of origin11,12, potentially leading to biased accuracy in the prediction of
survival, genomic mutations, or tumor stage.

Given the detrimental impact of BEs, there have been several
approaches developed for ameliorating them. For example, (a)ComBat7, (b)
Generative Adversarial Networks (GAN)3,13, and (c) data augmentation
approaches have been commonly utilized to mitigate batch effects in digital
pathology and medical image data. ComBat7 has been used to reduce the
variability of radiomic features by considering different scan parameters as
separate ‘batches’ and applying a non-parametric normalization between
them; which may unfortunately introduce unintended correlations leading
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to higher false positive rates (FPR)14. GAN3,13 have been used to generate
synthetic medical images for both CT liver images13 and hematoxylin and
eosin (H&E) pathology images3; however, there is a risk of GANs “hallu-
cinating”, i.e., generating unrealistic, or untrustworthy images that are not
representative of the appearance of real disease biology15. Another set of
techniques for managing BE focuses on data augmentation14,16; a suite of
techniques that involves increasing the size of training cohorts through the
generation of additional synthetic samples (e.g., creating variants of an
image based on permutations of brightness or contrast levels of real sam-
ples). Unfortunately, this process is subject to limitations in the distribution
of real samples, which may inadvertently exacerbate the impact of BEs
within the cohort (see Supplementary Figure 1). BEs often impact machine
learning (ML)models during the ‘data partitioning’ phase, which is defined
as theMLbest practice ofdividinga cohort into trainingand testing sets.The
training set is employed to create the model, while the testing set is used to
determine the model’s generalizability performance on previously unseen
data not employed during training.

The most common way to partition cohorts is to randomly assign
patients to training and testing sets, which we term the Average Case (AC)
(see Supplementary Fig. 1a). The AC strategy, however, has the potential to
result in unreasonably sub-optimal cohort partitions by sheer chance. For

example, in aWorst Case (WC), images demonstrating similar BEsmay be
mutually and exclusively assigned to the same training/testing split,
resulting in the trainingdata sharingminimal ornovisual similaritywith the
testing set (see Supplementary Fig. 2b for theWCdata partitioning results).
Such a cohort partition is likely to result in maximally exposing the ML
models to the deleterious effects of BEs, and thus yielding significantly
inferior performance of the resulting MLmodel on the testing set. Notably,
this WC represents the end point of a continuum of potential real-world
sub-optimal ACs, wherein models are exposed to only a subset of the true
range of BE variability in the data. It then stands to reason that there is likely
a Best Case (BC) (see Supplementary Fig. 2c) on the opposite end of the
continuumwhichmaximally balances BEs to yieldmore representative data
partitions and in turn result in more generalizable ML models. Our goal,
therefore, is to develop an algorithm that systematically mitigates BEs
during the data partitioning phase to consistently identify the BC partitions.

Toward addressing BEs in biomedical imaging and digital pathology
data, we have developed and released CohortFinder, an open-source data-
drivenpartitioning tool for specifically determiningBCcohort partitions for
training and testing ML models (https://github.com/choosehappy/
CohortFinder). CohortFinder ingests quality control (QC) metrics (e.g.,
via HistoQC/MRQy8,11, two open-sourceQC tools for digital pathology and

Fig. 1 | Batch effect examples andworkflow forCohortFinder in digital pathology
and radiology domains. A Examples of the batch effects with (1) four ROIs from the
tubule segmentation task, (2) four WSI thumbnails from the colon adenocarcinoma
detection task, and (3) four images sections from four different patients from the rectal
cancer segmentation task. As can be seen, the DP images show notable differences in
white balance, brightness, and contrast demonstrating clear BEs. Similarly, the MRI

imaging data also shows significant differences in foreground contrast. B The basic
workflow for CohortFinder. First, UMAP is used to project high-dimensional quality
control metric values into a two-dimensional space. Second, k-means clustering takes
place in this two-dimensional space to identify BE-groups using approximately k
target clusters. Finally, patients in each BE group are assigned to a training/testing set
based on the user-given ratio while sampling from each BE group.
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medical image data), and at the patient level, performs unsupervised clus-
tering to determine BE groups which are strikingly homogenous in pre-
sentation (see Supplementary Fig. 2c). By iteratively partitioning these BE
groups at a user-defined ratio into training and testing sets, CohortFinder
yields highly representative and diverse partitions, which balance BEs, even
in cases ofminorityBEgroups. CohortFinder also provides the ability, when
given relevant spatiotemporal labels (e.g., site origin, date of scan) or
downstream outcome labels (e.g., good/poor prognosis), to statistically test
for BEs and provide an associated report. CF provides a useful set of visual
and quantitative outputs for BE quantification and inspection (see Sup-
plementary Section S3, Supplementary Figs. 3, 4). To evaluate the ability of
CohortFinder to yield BC data partitions, three different deep-learning use
cases in DP and radiographic imaging are evaluated here: (a) tubule seg-
mentation on kidney WSIs, (b) adenocarcinoma detection on colon WSIs,
and (c) rectal cancer segmentation on MR images (see Supplementary
Table 1).

For quantitative comparisons, five commonly used evaluation
measures17 (Precision, Recall, Accuracy, IoU, and F1-score), were calculated
to compare the performance of BC, AC, and WC partitioning via internal
cross-validation as well as on external testing data (i.e., 1 patient from each
different site or scanner) for all three use-cases separately. In Supplementary
Tables 3, 4, the overall performance (average and standard deviation) and
fold-specific values for each evaluation measure are reported, respectively.
From the tables, WC partitioning demonstrates the worst quantitative
performance in all evaluation measures compared to AC and BC parti-
tioning, across all use cases. For example, for the colon adenocarcinoma
classification use case, BC demonstrates an average F1-score improvement
of 0.23 compared toWC (BC: 0.87 vsWC: 0.64) and 0.06 compared to AC
(0.81) in the external testing dataset. Further, BC also results in a relatively
lower standard deviation than AC for most evaluation measures (for
example, BC: 0.11 vs AC: 0.21 in terms of F1 score), suggesting that
CohortFinder can aid in producing more robust MLmodels exhibiting less
variance. Similarly, for the tubule segmentation use case, BC achieves an
averageF1-score improvement of 0.02 compared toWCand0.01 compared
to the AC (BC:0.95 vs AC:0.94 vs WC:0.93). For the rectal cancer seg-
mentation use case, BC outperformsWC and AC with an average increase
in F1-score of 0.06 and 0.05 respectively (BC’s F1-score of 0.68 versus AC’s
0.63 andWC’s 0.62). From the violin plots (Fig. 2), the F1 scores ofWCs are
more dispersed as compared to the AC and BC. In most cases, while the
distribution of BC is often more compact than AC, occasionally the dis-
tribution between AC and BC is similar. This observation supports the
notion that datapartitions generated via randomsampling (i.e., AC) exist on
a spectrum of BE mitigation, with some providing better or worse
accounting. This spectrum also illustrates that a user employing random
sampling has no way of knowing where their partitions lie on the BE
mitigation spectrum. As a result, they may in fact be utilizing a WC parti-
tioning of their data by pure chance. By contrast, CohortFinder provides
users with the assurance that they have an idealized partitioning that opti-
mally accounts for BEs in a given cohort. Figure 2 further depicts qualitative
comparisons ofMLmodel results between partitioning scenarios (WC/AC/
BC) for all three use cases. For the tubule segmentation & colon adeno-
carcinoma classification tasks, there are fewer FPs and FNs in the BC results
than those in AC andWC. For the rectal tumor segmentation use case, BC
best predicts the tumor contour compared to AC and WC.

Together, these results suggest that CohortFinder provides a sys-
tematic partitioning strategy that yields ML models with improved per-
formance and generalizability by identifying representative samples
covering the range of batch-effect variability available. Conversely, con-
ventional data augmentation methods focus on simulating patterns
derived from these representative samples. Therefore, we recommend
users employ CohortFinder in conjunction with data augmentation (see
Supplementary Fig. 1) to gain the unique benefits of the two processes.
Users can also incorporate CohortFinder into their existing pipelines
seamlessly; for instance, Ooijen et al.18. and Triguero et al.19. detail a
general AI pipeline where CohortFinder could be integrated into the

training phase, and could help transform ‘big data’ into ‘smart data’ for
efficient data mining. Given the low computational burden associated
with its usage (i.e.,1–2min on a consumer-grade laptop), we believe
CohortFinder will serve as a valuable tool to help avoid sub-optimalWC-
like cohort partitions, by replacing the typically used approach of random
sampling when creating data partitions.

To summarize, we have presented and released an open-source data-
partitioning tool termed CohortFinder. CohortFinder works by identifying
potential batch-effect groups and ensuring their proportional representa-
tion when partitioning a cohort into training and testing sets, yielding
demonstrably more reliable downstream ML models in batch-effect-laden
datasets. CohortFinder’s BE-groups can also facilitate rapid identification of
representative samples to bootstrap downstream workflows, such as
annotation. Importantly, CohortFinder ingests input metrics in a common
TSV format, produced by open-source quality control tools (HistoQC/
MRQy8,11). This suggests that as our knowledge of batch effects and quality
control improves, and more sophisticated metrics are developed, Cohort-
Finder will be organically capable of leveraging them for further improving
downstream ML models. The source code for CohortFinder is freely
available for use, modification, and contribution at cohortfinder.com.

Methods
Data partitioning based on BE groups
CF proceeds by identifying multiple BE “groups”, i.e., sets of images with
similar presentationmetrics as calculated byHistoQC11/MRQy8 (two open-
sourcequality control tools forpathologyand radiology, respectively). These
BE groups are then iteratively randomly divided into subsets at user-
specified ratios (the ratio of the testing data and all the data). As a result, the
training and testing sets have balanced representations of BE variability to
help ensure diversity for ML models.

A key component in consistently generating BC data partitions is the
ability to detect BEs a priori. While this can be approximated using either
available metadata (e.g., site or scanner labels) or by visual assessment, the
laborof labeling involvedquickly becomes intractable andnon-reproducible
for large datasets. This also does not leverage the most critical source of
information readily available, the presentation of the images themselves.
Importantly, previous work has demonstrated that computationally derived
quality control (QC) metrics can be repurposed to detect BEs8–12.

HistoQC/MRQy functionality
CohortFinder utilizes the output from either HistoQC or MRQy, open-
source tools designed to aid in QC of digital pathology and imaging
modalities (e.g., MRI, CT, PET), respectively8,11. These tools allow for
large-scale high-throughput extraction of deterministic image quality
measures. In bothmodalities, images are sequentially fed into the pipeline
where each module (a) captures basic metadata (e.g., the base magnifi-
cation, the microns per pixel, repetition time, echo time, number of slices
per volume), (b) quantifies visual characteristic metrics (e.g., brightness,
contrast, mean of the foreground, contrast per pixel), and (c) locates
artifacts (e.g., air bubbles, pen markings, noise, and inhomogeneity). The
resultingmetrics form the input for CohortFinder and are used to identify
BE groups.

CohortFinder functionality
Figure 1B illustrates the basic CohortFinder workflow, proceeds as follows:
(a) CohortFinder loads the extracted QC measures.
(b) The QC measures are considered a high-dimensional vector and

projected into 2 dimensions via uniformmanifold approximation and
projection (UMAP)20 for visualization as a 2-dimensional embedded
plot. UMAP works by modeling the data as a fuzzy topological
manifold, which allows it to capture complex relationships between
data points. It then optimizes a low-dimensional projection of the data,
aiming to preserve both the local and global structure of the manifold.
UMAP was chosen for its favorable properties over other dimension-
ality reduction techniques (such as t-SNE):
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• Embedding new data: UMAP21 can embed new data into an existing
manifold and avoid recalculating the entire model. Other methods,
such as t-SNE22, will need a full re-computation of the entire t-SNE
process for new data and thus have the possibility of resulting in vastly
different embeddings. Though principal component analysis (PCA)
can also be used to transform new data with higher speed23,24, because
PCA tends to ignore variation along directions other than the one with
maximum variation, it can potentially obscure finer-scale patterns in
the raw data25. By contrast, UMAP embeddings better capture subtle
features of data and can perform better in visualization and
downstream clustering tasks23–25.

• Computational efficiency:UMAPoutperforms t-SNE in computational
speed26, especially with large datasets due to its graph-based approach.

• Sensitivity to hyperparameters: t-SNE is more sensitive to the
hyperparameter settings, such as perplexity26, rendering it less
generalizable than UMAP.

• Preservation of global data structure:UMAP tends to preserve both the
global and local structure of the raw data topology, aiding in a deeper
understanding of the overall relationships and structures within
the data.

(c) K-means27 clustering takes place in this 2-dimensionalUMAP space to
identify k target clusters where each cluster is considered to represent a

Fig. 2 | Quantitative and qualitative results for all three use cases. For each use
case, we have (1) The overall performance on external testing datasets. (2) F1 score
performance for 9 different models on the external testing datasets, where the gray
dots in each violin plot indicate individual performance for a single image. (3)
Qualitative results. In tubule segmentation task (A), the first column is a cropped
PAS-stained image, the second column is the tubule segmentation ground truth
(GT), and the remaining images are the results ofWC, AC, and BC. In each scenario,
the top row is the DLmodel result, while the bottom row corresponds to the overlay
image between DL output images and the GT, where green parts represent the false
negative (FN) area, and the fuchsia parts represent the false positive (FP) area. WC
hasmore FNand FP areas compared toAC&BC.Compared toAC, BChas fewer FN
and FP areas. For colon cancer classification task (B), the images in the first column
are the H&E thumbnails and cancer annotation (the tumor area in fuchsia, non-

tumor in green). The remaining three images are the heatmaps for the WC/AC/BC,
where the orange area represents the predicted cancer area, blue represents the
predicted no-cancer area, and the gray area represents the non-informative area
(background/non-tissue area). From the heatmaps, WC over-predicts the tumor
regions, AC under-predicts the tumor region, while BC yields the best overlap
between tumor area and ground truth. For rectal cancer segmentation task (C), the
first column is the image with expert annotation ground truth in fuchsia, which is
also shown as a fuchsia contour in the remaining three columns. The 2D U-net
segmentation results forWC (yellow), AC (cyan), and BC (green) show thatWCand
AC overpredict the tumor region while BC marginally underpredicts. In all three
tasks, violin plots of F1 scores show a decreasing trend from BC to AC toWC. AC is
also seen to have a larger F1 score range, lower average F1 value, and a higher
standard deviation than BC; suggesting AC performance is less robust than BC.
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BE group. Replicated clusteringwas usedhere tomitigate the impact of
k-means’ randomness and improve the stability of the clustering
algorithm. K-means27 was utilized here due to its high computational
efficiency andeasy implementation. Furthermore, the results produced
by K-means are intuitive, as each data point is assigned to the nearest
cluster center. In the future, it could be valuable to consider
experimenting with other clustering algorithms within a more
comprehensive ablation study.

(d) For each BE group, images are randomly assigned into training and
testing according to a user-specified ratio.

CF produces four outputs: (1) UMAP plots (shown in Supplementary
Figure 3) indicate colored BE-group distribution results in 2-dimensional
UMAP space based on QC measures (Supplementary Fig. 3a). (2) patient
assignment results for training and testing (Supplementary Fig. 3b) where
“v” indicates a patient to be placed in the training set versus “o” to indicate
the testing set, (2) a contact sheet type image (shown in Supplementary
Figure 4) with representative images from each BE-group, (3) a general log
containing information for the user as well as potential errors, and (4) a
comma-separated valuefile that contains (a) themetrics used toperform the
BE-group detection, (b) the resulting UMAP coordinates, (c) the deter-
mined BE-group index number, (d) the label assigned to the particular
image (e.g., training vs testing), and (e) 3 different clusteringmetrics to help
quantify batch-effect severity (see Supplementary Section S3).

Batch-effect testing module of CohortFinder
If the user also provides labels of interest (e.g., the site information where the
images are collected from,or clinical variableof interest),CohortFinder runsa
permutation test for the presence of BEs. Similar to previous study12, this
approach utilizes a random forest (RF) machine learning model based on
HistoQC/MRQymetrics to predict the origin of images (e.g., itwill determine
whether it’s possible to classify images from each origination site based on
qualitymetrics) and to rank thesemetrics by their importance aspredictors of
factors that drive BEs. The performance of the RFmodel is compared against
anRFmodel trainedusing randomized labels.Thenull hypothesis for this test
suggests that if the prediction results using the specific image labels (e.g.,
origination sites) arenot significantly better than those obtainedwith random
labels, there is an absence of BEs associated with HistoQC/MRQy metrics.

Experimental design
Toevaluate the abilityofCohortFinder toyieldoptimal datapartitions, three
different deep-learning use cases in DP and medical imaging areas were
selected: (a) tubule segmentation on kidney WSIs, (b) adenocarcinoma
detection on colonWSIs, and (c) rectal cancer segmentation onMR images
(see Supplementary Table 1 for detailed description for the 3 use cases). For
each use case, 1 patient from each site/scanner was randomly selected to be
included in a benchmark external testing set while the remaining patients
were used for developing training and testing partitions. For the latter, three
scenarios were explored:
• Best Case (BC): Patients were segregated via CohortFinder into BE

groups, following which equitable BE distribution of samples was
ensured in all partitions. The number of clusters (k) in CohortFinder
was set to the number of patients divided by 3, to allow for 3-fold cross-
validationwhere 1 patient fromeach 3-patient cluster is assigned to1of
the 3 cross-validation folds (BC_1, BC_2, and BC_3). For example, in
the tubule use case which had 91 patients, the CohortFinder-cluster
parameter was set to 31.

• Average Case (AC): As per typical ML practices, samples were ran-
domly split into 3 average-case folds (AC_1,AC_2, andAC_3)without
considering BEs.

• Worst Case (WC): Patients were segregated to intentionally maximize
the BE differences, as defined by HistoQC/MRQy metrics, between
each worst-case group (WC_1,WC_2, andWC_3). To do so, patients
were clustered into 3 BE groups, yielding groups that are notably
different in presentation. Similar to how we determined BC,

CohortFinder was used here to cluster the patients into 3 BE groups,
where eachBEgrouphad a similar numberof patients.This allowed for
3-fold cross-validation where the patients in one BE group were
assigned to 1 of the 3 cross-validation folds (WC_1, WC_2, and
WC_3). For example, in the tubule use casewhichhad91patients, each
BE group was comprised of 31/30/30 patients, respectively.

During the experimental evaluation, internal patient-level cross-vali-
dation took place with each of the folds serving as the training set, and the
derived model was subsequently evaluated on the remaining folds as an
“internal” testing set. For example, AC_1 was used to train an ML model
which was then evaluated on AC_2 andAC_3. This internal testing process
was conducted to gain a robust estimate of ML model performance within
the training set. Patient-level distribution ensured that images from the
same patient only appeared in a specific fold andwere not distributed across
folds. Each trainedMLmodel was also tested on the external testing cohort,
allowing for a fair cross-fold comparison.

Evaluation metrics
Five metrics were used to evaluate model performance: precision, recall,
accuracy, IOU, and F1 score, based on their wide usage inMLmodel-based
segmentation and classification tasks17. Before calculating the metric value,
true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) predictions were calculated at a pixel level (for two segmentation use
cases) and patch level (for the classification use case). Each metric was
subsequently measured following the formulas in Supplementary Table 2).

Network configuration and training
U-net28,29 was used for the segmentation tasks andDense-Net30 was used for
the classification task, selectedbasedon their popularity for these tasks. Both
architectures were implemented in PyTorch with the following configura-
tion details:
1. Tubule segmentation: (a) depthof theU-Net: 5 blocks, number offilters

in thefilter layer: 4, (b) patch size: 512×512, number of trainingbatches
for each epoch: 6, (c) number of training epochs: 50, themodel with the
lowest validation loss was used to do the testing, (d) optimization
algorithm: Adam and (e) data augmentation: vertical & horizontal flips
and rotation were used during the network training process.

2. Colon adenocarcinoma classification: (a) Dense-Net architecture:
growth rate is 32, drop rate is 0, initial feature number is 64, batchnorm
size is 2, (b) patch size: 224, number of training batches for each epoch:
64, (c) number of training epochs: 50, themodelwith lowest validation
loss was used for the testing, (d) optimization algorithm:Adamand (e)
data augmentation: vertical & horizontal flips and rotation were used
during the network training process.

3. Rectal cancer segmentation: (a) depth of U-Net: 5 blocks, number of
filters: 30, (b) size of cropped input images: 128 by 128, batch size: 16,
(c) 50 epochs specified but with early stopping implemented based on
the dice similarity coefficient loss function with a patience of 4 epochs,
model with lowest validation loss was used for testing (d) optimization
algorithm:Adamand (e) data augmentation: vertical&horizontalflips
and rotation.

Code availability
CohortFinder is available at: https://cohortfinder.com Detailed doc-
umentation andusage instructions are included in the repository to facilitate
reproducibility and further research.
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