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Abstract
Objectives  To investigate the usefulness of machine learning (ML) models using pretreatment 18F-FDG-PET-based radiomic 
features for predicting adverse clinical events (ACEs) in patients with cardiac sarcoidosis (CS).
Materials and methods  This retrospective study included 47 patients with CS who underwent 18F-FDG-PET/CT scan before 
treatment. The lesions were assigned to the training (n = 38) and testing (n = 9) cohorts. In total, 49 18F-FDG-PET-based 
radiomic features and the visibility of right ventricle 18F-FDG uptake were used to predict ACEs using seven different ML 
algorithms (namely, decision tree, random forest [RF], neural network, k-nearest neighbors, Naïve Bayes, logistic regression, 
and support vector machine [SVM]) with tenfold cross-validation and the synthetic minority over-sampling technique. The 
ML models were constructed using the top four features ranked by the decrease in Gini impurity. The AUCs and accuracies 
were used to compare predictive performances.
Results  Patients who developed ACEs presented with a significantly higher surface area and gray level run length matrix 
run length non-uniformity (GLRLM_RLNU), and lower neighborhood gray-tone difference matrix_coarseness and sphe-
ricity than those without ACEs (each, p < 0.05). In the training cohort, all seven ML algorithms had a good classification 
performance with AUC values of > 0.80 (range: 0.841–0.944). In the testing cohort, the RF algorithm had the highest AUC 
and accuracy (88.9% [8/9]) with a similar classification performance between training and testing cohorts (AUC: 0.945 vs 
0.889). GLRLM_RLNU was the most important feature of the modeling process of this RF algorithm.
Conclusion  ML analyses using 18F-FDG-PET-based radiomic features may be useful for predicting ACEs in patients with CS.
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Introduction

Sarcoidosis is a systemic granulomatous inflammatory dis-
ease of unknown etiology. Cardiac involvement is clinically 
rare, and it only occurs in 5% of patients with sarcoidosis 
[1, 2]. However, cardiac sarcoidosis (CS) is an important 
predictor of poor prognosis in patients with sarcoidosis due 
to complications such as atrioventricular block (AVB), ven-
tricular tachycardia (VT), and congestive heart failure [3–5]. 
Thus, it is extremely important to make early diagnosis and 
evaluate disease activity for managing patients with CS [6, 
7].

Glucose metabolic activity can be evaluated by meas-
uring 18F-FDG uptake during PET/computed tomography 
(CT) scan for not only oncological but also inflammatory 
disorders [8, 9]. However, only a few studies have used 
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18F-FDG-PET-based radiomic features for diagnosing or 
predicting treatment response in CS [10, 11]. Recently, 
the potential applications of machine learning (ML) anal-
ysis have been reported in the field of nuclear cardiol-
ogy [12–14]. However, to the best of our knowledge, no 
study has examined the efficacy of the ML approach using 
18F-FDG-PET-/CT-based radiomics on predicting adverse 
clinical events (ACEs) in patients with CS.

The current study aimed to investigate the usefulness of 
ML models using pretreatment 18F-FDG-PET-based radi-
omic features for predicting the risk of ACEs in patients 
with CS.

Materials and methods

Patients

This retrospective study was approved by the institutional 
review board, and the need for informed consent was waived. 
In total, 70 consecutive patients with known or suspected 
CS underwent pretreatment 18F-FDG-PET/CT scan from 
April 2012 to December 2022. Their clinical records were 
reviewed to identify patients who should be evaluated.

In a previous study [15], the usefulness of Patlak Ki 
images extracted from dynamic 18F-FDG-PET/CT scan 
for evaluating the risk of clinical events in CS was exam-
ined. The previous study enrolled 21 patients with CS who 
underwent 30 18F-FDG-PET/CT scan, which included pre-
treatment, undertreatment, and follow-up scans, between 
April 2019 and January 2020. However, analyses using 
ML approaches for predicting the risk of ACEs in patients 
with CS using pretreatment 18F-FDG-PET-based radiomic 
features were not performed. Thus, among 21 patients, 8 
with pretreatment 18F-FDG-PET/CT scans were included 
in the current study. The inclusion criteria were as follows: 
(1) patients diagnosed with CS according to the Japanese 
Society of Sarcoidosis and Other Granulomatous Disorders 
guidelines [16], (2) those without a history of steroid treat-
ment, and (3) those with visible cardiac 18F-FDG uptake on 
PET/CT scan. The exclusion criteria were patients with a 
history or coexistence of other cardiac disorders.

Of 70 patients, 12 without cardiac 18F-FDG uptake were 
excluded. Among the remaining 58 patients, 11 were further 
excluded because of hypertrophic cardiomyopathy (n = 2), 
dilated cardiomyopathy (n = 2), ventricular aneurysm (n = 1), 
and lack of CS evidence (n = 6).

Finally, 47 patients (38 women and 9 men; mean age: 
61 ± 10 [age: 39–81] years) were eligible for the analyses. 
Immunosuppressive treatment was adopted for these patients 
after the pretreatment 18F-FDG-PET/CT scan according to 
the recommendations of the Japanese Society of Sarcoido-
sis and Other Granulomatous Disorders guidelines [16]. 

The loading dose of prednisolone was 30 mg/day, which 
was tapered to a maintenance dose and administrated to all 
patients during the follow-up period.

Imaging protocols

All patients were instructed to follow a high-fat and low-
carbohydrate diet for 1 day, and followed by a fast of at 
least 18 h before 18F-FDG-PET/CT scan, which resulted in 
a mean plasma glucose level of 102 (range: 71–154) mg/
dL immediately before intravenous 18F-FDG administration.

All 18F-FDG-PET/CT scan procedures were performed 
using two whole-body PET/CT scanners. The Discovery 
600M PET/CT scanner (GE Healthcare, Milwaukee, WI, 
the USA) was used from April 2012 to January 2018 and 
the Discovery MI scanner (GE Healthcare) from February 
2018 to December 2022. The emission scan was performed 
1 h after the administration of 18F-FDG (mean: 223 ± 30 
[155–277] MBq) after CT data acquisition (slice thickness: 
3.75 mm, pitch: 1.375 mm, 120 keV, auto mA: 40–100 mA, 
based on body mass, and reconstructed matrix size: 
512 × 512). The acquisition time was 2.5 min per bed posi-
tion (total: 7–11). Attenuation-corrected data were acquired. 
Using the Discovery 600M scanner, images were recon-
structed with a three-dimensional ordered subset expecta-
tion–maximization algorithm (image matrix size: 192 × 192, 
16 subsets, two iterations, voxel size: 3.125 × 3.125 × 3.27 
mm3, and VUE Point Plus). Using the Discovery MI scan-
ner, a Bayesian penalized likelihood reconstruction algo-
rithm was used (image matrix size: 192 × 192, voxel size: 
2.60 × 2.60 × 2.78 mm3, penalization factor: 700, and Q. 
Clear) with the point spread function. Each scanner used a 
consistent reconstruction setting and matrix.

Image and radiomic feature analyses

Two radiologists (with 12 and 20 years of 18F-FDG-PET/CT 
scan experience) who were knowledgeable about the study 
purpose but were blinded to the clinical information read 
the 18F-FDG PET/CT scan images. The radiologists visu-
ally assessed each 18F-FDG-PET/CT scan image as negative 
(myocardial visibility lower than or similar to that of the 
liver) or positive (myocardial visibility higher than that of 
the liver) 18F-FDG uptake [17] in the left ventricle (LV) and 
right ventricle (RV) myocardium. In case of a disagreement, 
they reached a consensus.

A third radiologist (18 years of 18F-FDG-PET/CT experi-
ence) performed quantitative analyses of the visible myocar-
dial lesions. The third radiologist generated the volume of 
interest (VOI) by manually placing a region of interest on a 
suitable reference-fused axial image, and defined the crani-
ocaudal and mediolateral extents encompassing the whole 
positive myocardial lesion, excluding any avid extracardiac 
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structures. Next, the maximum standardized uptake value 
(SUVmax) threshold was set at 40%, which was commonly 
used in previous studies [18], to automatically delineate a 
VOI equal to or greater than the 40% threshold of SUV-
max. The LIFEx package (version 6.00) [19] was used to 
extract 49 radiomic features from PET images (Supplemen-
tal Table 1). The LIFEx package is used to calculate textural 
features only for VOIs of at least 64 voxels. These 49 radi-
omic features were included in five categories (shape and 
first-order characteristics, gray level co-occurrence matrix, 
neighborhood gray-tone difference matrix [NGTDM], gray 
level run length matrix [GLRLM], and gray level zone 
length matrix). The VOI and SUV were resampled into dis-
crete bins using absolute resampling to minimize the cor-
relation between textural features and reduce the impact of 
noise and matrix size [20]. Sixty-four bins were used for the 
PET component with the minimum and maximum bounds of 
the resampling interval set to SUVs of 0 and 20, respectively. 
Moreover, the voxel size was resampled to 3.0 × 3.0 × 3.0 
mm3. Therefore, a bin size with an SUV of 0.3 was used to 
analyze the PET component. Voxels with an SUV of > 20 
were grouped in the highest bin [20].

As we used two different PET scanners, post-reconstruc-
tion harmonization was performed for all PET parameters 
using the ComBat harmonization method for R software 
(https://​github.​com/​Jfort​in1/​ComBa​tHarm​oniza​tion) [21], 
which is effective in PET scans [22].

Confirmation of ACEs

Echocardiography was performed within 2  months of 
18F-FDG-PET/CT scan (mean ± standard deviation: 
13 days ± 14 [range: − 50 to + 58 days]). The echocardiog-
raphy report was used as the reference standard for cardiac 
function. Cardiac dysfunction was defined as a LV ejec-
tion fraction (LVEF) of < 50% [23]. Further, twelve-lead or 
Holter echocardiography was performed within 2 months 
of 18F-FDG-PET/CT scan (mean ± standard deviation: 
17 days ± 15 [range: − 50 to + 58 days]). Moreover, patients 
were assessed to determine the presence of arrhythmic 
events, including sustained VT and AVB. AVB was charac-
terized as either second- or third-degree AVB or trifascicular 
block [23, 24].

Medical records were used to obtain information on 
patient prognosis. The last follow-up was conducted in 
December 2023. ACE was defined as the reduction in LVEF 
with cardiac dysfunction (LVEF of < 50%), hospitalization 
due to cardiac arrhythmia such as recurrence or onset of 
sustained VT and AVB or heart failure, and death [25, 26]. 
Change in LVEF was determined by comparing the find-
ings between echocardiography studies performed nearest 
to the pretreatment PET study and the last echocardiography 

studies of the follow-up period. Decrease in LVEF was 
defined as a negative change in LVEF.

ML approach

We adopted 49 radiomic features and the visibility of RV 
18F-FDG uptake to predict ACEs using the ML approaches. 
Data were stratified according to event and were randomly 
assigned into the training (80%) and testing (20%) cohorts. 
Based on the ML analysis for predicting ACEs, decision 
tree, random forest (RF), neural network, k-nearest neigh-
bors (kNN), Naïve Bayes, logistic regression (LR), and sup-
port vector machine (SVM), which are popular ML algo-
rithms, were used for binary classification [27, 28].

The parameter selection for each ML method in this study 
was carefully made based on the specific clinical challenges 
and the characteristics of our dataset. For the decision tree, 
we limited node levels and split thresholds to prevent over-
fitting, and consequently we selected an induce binary tree 
with two minimum number of instances in leaves, a split 
greater than 5, with maximum 100 node levels for depth of 
classification tree and stop splitting the nodes after major-
ity reach 95%. In the RF, a moderate number of trees were 
chosen to balance the model’s generalizability and computa-
tional efficiency, and consequently we selected 10 trees and 
did not split subsets smaller than 5. The neural network set-
tings were optimized with rectified linear unit (ReLU) acti-
vation function and Adam optimization for efficient learning 
and good convergence, and consequently we selected 1000 
neurons, alpha = 0.00001 and maximum iterations 1000. 
For kNN, setting the number of neighbors to 5 with metric 
Euclidean and weight uniform ensured suitable accuracy 
for our dataset size. The parameters for LR and SVM were 
chosen to optimize the tradeoff between model complexity 
and the risk of overfitting. Consequently, we selected a ridge 
with a coefficient score of 1 for LR. For SVM, we selected 
the Kernel radial basis function with cost 1 and regression 
loss epsilon 0.10, and the two optimization parameters, 
tolerance and iteration limit were set to 0.0010 and 500, 
respectively. In the case of Naïve Bayes, its simplicity and 
effective learning ability based on the distribution of data 
were valued. These parameter choices enabled us to con-
struct robust and reliable predictive models aligned with the 
objectives of our study.

To overcome imbalanced data, the synthetic minority over-
sampling technique was used in the training cohorts [29]. In 
this study, the sample size was small, and the set of features 
was reduced to prevent the influence of overfitting. The rank-
ing-based method was only applied on the training cohort to 
reduce set features based on the decrease in Gini impurity. As 
a rule of thumb, it is necessary to use < 10% of the sample size 
as the number of features for classification problem [30]. The 
final sample size of this study was n = 47; thus, we selected 

https://github.com/Jfortin1/ComBatHarmonization
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the 4 top ranking features for constructing each ML model. 
Moreover, the use of a resampling technique referred to as 
k-fold cross-validation is one of the solutions of overfitting [31, 
32]. Tenfolds are a common choice for k-fold cross-validation, 
particularly if the dataset is not extremely large or small [32]. 
In this study, a tenfold cross-validation was used to minimize 
the negative influence of overfitting on the training cohort.

Receiver operating characteristic curve (ROC) analysis 
was performed to compare the predictive performances of 
the models, and the area under the ROC curve (AUC) was 
calculated. The computed performance measures were AUC, 
accuracy, F1 score, precision (positive predictive value), and 
recall (sensitivity) for average over classes. The F1 score 
(F score or F measure) is the harmonic average between 
precision and recall [33]. Each ML algorithm was used to 
calculate each probability score (range: 0–1) of ACEs. The 
predictive performance of each machine model was indepen-
dently estimated in the testing set by quantifying the AUC, 
accuracy, F1 score, precision, and recall.

The diagnostic indices including sensitivity, specificity, 
positive predictive value (PPV), and negative predictive 
value (NPV) of the testing cohort were also calculated. The 
importance of features in the ML modeling process was cal-
culated using the decrease in AUC [34]. A higher decrease in 
AUC for a feature indicates that such a variable has a higher 
importance [34].

The ML analysis was performed using Orange version 
3.24.1 (Bioinformatics Laboratory, University of Ljubljana, 
Ljubljana, Slovenia), an open-source data-mining and visu-
alization package [35].

Statistical analysis

The Mann–Whitney U test or the Chi-square test was used 
to appropriately assess differences between two quantitative 
variables or compare categorical data. The DeLong method 
was used to analyze the statistical significance of differences 
between AUCs [36]. The diagnostic indices including sensi-
tivity, specificity, PPV, NPV, and accuracy were compared 
using the McNemar’s test or Chi-square test.

Data were presented as medians and interquartile ranges 
(IQRs). A p value of < 0.05 was considered statistically 
significant, and all p values were two-tailed. The MedCalc 
statistical software (MedCalc Software Ltd., Acacialaan 22, 
8400 Ostend, Belgium) was used for statistical analyses.

Results

Characteristics of the patients

Of 47 patients, the median LVEF was 50.0% (IQR: 
38.3%–63.8% [range: 20.8–81.0%]), and cardiac dysfunction 

was observed in 22 patients and arrhythmic events in 16 
patients before treatment. There were seven patients with 
positive RV 18F-FDG uptake on the pretreatment 18F-FDG-
PET/CT scans. The mean follow-up duration was 48.6 
(range: 7–139) months. Of 47 patients, 17 presented with 
ACEs during follow-up: 11 patients were hospitalized 
because of cardiac arrhythmia (n = 6) and heart failure 
(n = 5), five patients had worsening of systolic LV function 
and one patient died. The complication rate of ACEs was 
significantly higher in patients with positive RV 18F-FDG 
uptake than in patients with negative RV 18F-FDG uptake 
(85.7% [6/7] vs. 27.5% [11/40], p = 0.006).

Table 1 shows the clinical characteristics of the partici-
pants in the training and testing cohorts. Of 38 patients in 
the training cohort, the median LVEF was 49.0% (IQR: 
36.5–63.9% [range: 20.8–81.0%]) and cardiac dysfunction 
was observed in 19 patients and arrhythmic events in 13 
patients before treatment. There were seven patients with 
positive RV 18F-FDG uptake on the pretreatment 18F-FDG-
PET/CT scans. Fourteen patients developed ACEs during 
follow-up: eight patients were hospitalized because of car-
diac arrhythmia (n = 4) or heart failure (n = 4), five patients 
had worsening of systolic LV function, and one patient died.

Of nine patients in the testing cohort, the median LVEF 
was 54.4% (IQR: 43.9–64.0% [range: 30.3–74.1%]), and car-
diac dysfunction was observed in three patients and arrhyth-
mic events in three patients before treatment. Three patients 
developed ACEs during follow-up: all three patients were 
hospitalized because of cardiac arrhythmia (n = 2) or heart 
failure (n = 1).

No significant differences were observed in terms of 
LVEF, cardiac dysfunction, arrhythmic events, RV 18F-FDG 
uptake, and ACEs between the training and testing cohorts 
(each, p > 0.05).

ML models for predicting ACEs

Radiomic features were ranked based on the decrease in Gini 
impurity (Supplemental Table 2). The top four features for 
predicting ACEs were surface area, GLRLM_RLNU, coarse-
ness from the NGTDM (NGTDM_Coarseness), and sphe-
ricity. Patients who experienced ACEs had a significantly 
higher surface area (p < 0.001), GLRLM_RLNU (p < 0.001) 
and a lower NGTDM_Coarseness (p = 0.002) and sphericity 
(p = 0.010) than those without ACEs (Table 2).

The ML model was constructed using these top four fea-
tures to prevent overfitting. Table 3 presents the diagnostic 
performance of each ML algorithm in the training and test-
ing cohorts to predict ACEs.

In the training cohort, all ML algorithms achieved AUC 
values of > 0.80 for predicting ACEs (range: 0.841–0.944). 
Moreover, 5 of 7 ML algorithms (decision tree, RF, neu-
ral network, LR, and SVM) achieved F1 scores (range: 
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0.812–0.875), precision (range: 0.817–0.886), recall (range: 
0.813–0.875), and accuracy (range: 0.813–0.875) of > 0.80 
for predicting ACEs.

In the testing cohort, RF and neural network algorithms 
had an AUC of > 0.80 for predicting ACEs. The classifi-
cation performance of RF (AUC—training cohort: 0.935, 
testing cohort: 0.889) and neural network (AUC—training 
cohort: 0.944, testing cohort: 0.889) in the testing cohort 
was similar to that of the training cohort. Meanwhile, the 
performance of the remaining five ML algorithms was 
poorer in the testing cohort (AUCs: 0.667–0.778) than in 
the training cohort.

The diagnostic indices including sensitivity, specificity, 
PPV, NPV, accuracy, and AUC did not significantly differ 
among these seven ML algorithms (each, p > 0.05) (Supple-
mental Table 3). However, among the seven ML algorithms, 

RF had the highest diagnostic index (average over classes—
AUC: 0.889, F1 score: 0.882, precision: 0.905, recall: 0.899, 
sensitivity: 66.7% [2/3], specificity: 100% [6/6], PPV: 100% 
[2/2], NPV: 85.7% [6/7], and accuracy: 88.9% [8/9]). Supple-
mental Fig. 1 shows the important features of RF calculated 
using the decrease in AUC. GLRLM_RLNU was the most 
important feature with the highest mean value (0.150) and had 
a higher contribution in the modeling process.

Figures 1 and 2 show the representative 18F-FDG-PET/CT 
images of patients with and without ACEs, respectively.

Table 1   Characteristics of patients with cardiac sarcoidosis (n = 47)

IQR, interquartile range; LVEF, left ventricular ejection fraction; RV, right ventricle
a Comparison of the training and testing cohorts

Characteristics Training cohort (n = 38) Testing cohort (n = 9) p Valuea

Median IQR Range Median IQR Range

LVEF (%) 49.0 36.5–63.9 20.8–81.0 54.4 43.9–64.0 30.3–74.1 0.51
Number Number

Cardiac function
 Dysfunction (LVEF < 50%) 19 3 0.37
  Normal (LVEF > 50%) 19 6

Arrhythmic events
 Presence 13 3 0.96
 Absence 25 6

RV 18F-FDG uptake
 Positive 7 0 0.17
 Negative 31 9

Adverse clinical events
 Presence 14 3 0.85
 Absence 24 6

Table 2   Comparison of the top four radiomic predictive features between patients with cardiac sarcoidosis who developed adverse clinical 
events and those who did not

IQR, interquartile range; GLRLM, gray level run length matrix; RLNU, run length non-uniformity; NGTDM, neighborhood gray-tone difference 
matrix

Features Adverse clinical events p Value

Patients without adverse clinical events 
(n = 30)

Patients with adverse clinical events (n = 17)

Median IQR Range Median IQR Range

Surface area (mm2) 19,458.2 9426.3–22,243.3 851.1–45,417.8 38,427.9 25,277.1–41,865.1 12,681.6–58,135.6  < 0.001
GLRLM_RLNU 1780.3 1129.4–2402.3 131.8–4813.5 3707.6 2913.5–4542.9 1170.5–6338.9  < 0.001
NGTDM Coarseness (× 10−3) 2.4 1.7–4.5 0.9–30.2 1.4 0.7–2.0 0.2–23.8 0.002
Sphericity 0.55 0.49–0.68 0.39–0.85 0.47 0.40–0.57 0.28–0.78 0.010
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Discussion

The current study evaluated the usefulness of the ML 
approach using pretreatment 18F-FDG-PET-based radi-
omic features and the visibility of RV 18F-FDG uptake 
for predicting ACEs in patients with CS. RF had the best 
performance for predicting ACEs, with the highest AUC 
and accuracy among all ML algorithms. GLRLM_RLNU 
had the highest contribution in the modeling process of 
RF. Therefore, ML analyses using 18F-FDG-PET-based 
radiomic features may be useful for predicting the risk of 
ACEs in patients with CS.

Previous studies have examined the characteristics of 
18F-FDG-PET/CT radiomic features in CS. Manabe et al. 
[10] evaluated the diagnostic value of 18F-FDG-PET/CT 
texture analysis in patients with CS. Results showed that 
GLRLM long-run emphasis and GLRLM short-run low 
gray level emphasis were significant independent predic-
tors of CS diagnosis. Moreover, their group examined the 
efficacy of 18F-FDG-PET/CT texture analysis on provid-
ing prognostic information on patients with CS. Moreover, 
they reported that GLRLM high gray level run emphasis 
was significantly associated with ACEs [11].

In our study, patients with CS who developed ACEs had 
a significantly higher surface area, GLRLM_RLNU, and a 
lower NGTDM_Coarseness and sphericity than those who 
did not. GLRLM_RLNU is one of the higher order texture 
features, and it measures differences between the lengths 
of runs. The high GLRLM_RLNU values are indicative 
of heterogeneous images [37]. Coarseness, which is one 
of the NGTDMs, is associated with granularity within an 
image and is related to the level of special rate of change 
in intensity. The heterogeneous images had a high rate of 
change in the gray level within a neighborhood, which 
results in a low coarseness value [38, 39]. Surface area 
represents the area of the surface encompassing the VOI 
and has a direct relationship with spiculatedness [40]. The 
sphericity represents the degree to which the VOI is simi-
lar to a sphere (formula of calculation of sphericity was 
presented in the Supplemental Material), and sphericity 
increases as the shape of VOI more closely resembles that 
of a sphere [41]. Thus, ACEs may occur in patients with 
CS as evidenced by a more heterogeneous and larger myo-
cardial 18F-FDG uptake, and higher asphericity.

Recently, the potential applications of ML analysis have 
been reported in the field of nuclear cardiology [12–14]. 
Hu et al. [12] examined the usefulness of ML models for 
predicting early coronary revascularization after single-
photon emission computed tomography (SPECT) myocar-
dial perfusion imaging (MPI). Results showed that the ML 
model outperformed the expert interpretation of MPI by 
nuclear cardiologists for predicting early revascularization 
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performance. Rios et al. [13] showed that the ML models 
using automatically extracted variables had a better prog-
nostic accuracy for major cardiac ACEs compared with 
standard interpretation in patients undergoing SPECT 
MPI. However, to the best of our knowledge, no study has 
previously investigated the efficacy of 18F-FDG-PET-based 
radiomics and the visibility of RV 18F-FDG uptake using 
the ML approach for predicting ACEs in patients with CS.

In our study, to prevent the influence of overfitting, the 
ML models were constructed using the top four features 
ranked by the decrease in Gini impurity to predict ACEs. 
In the training cohort, all seven ML algorithms had a good 
classification performance with AUC values of > 0.80. How-
ever, in the testing cohort, only two algorithms with RF and 
neural network algorithm achieved AUC values of > 0.80. 
Meanwhile, the performance of the remaining five ML algo-
rithms (decision tree, kNN, Naïve Bayes, LR, and SVM) was 
poorer in the testing cohort (AUCs of 0.667–0.778) than in 
the training cohort probably due to overfitting. Although 
neither the AUC nor accuracy significantly differed among 
the seven ML algorithms, RF was the best performing clas-
sifier as it had the highest diagnostic accuracy (88.9% [8/9]). 

Moreover, it exhibited a similar classification performance 
between the training and testing cohorts (AUC: 0.935 vs 
0.889). GLRLM_RLNU was the most important feature for 
the ML modeling process of RF. Hence, the ML model with 
RF algorithm using 18F-FDG-PET-based radiomic features 
and the visibility of RV 18F-FDG uptake can potentially pre-
dict ACEs in patients with CS.

It has been reported that 18F-FDG accumulation in the RV 
is associated with the ACEs [25, 42]. In our study, the com-
plication rate of ACEs was significantly higher in patients 
with positive RV 18F-FDG uptake than that of patients with 
negative RV 18F-FDG uptake (85.7% [6/7] vs. 27.5% [11/40], 
p = 0.006). Thus, this finding was compatible with the previ-
ous reports [25, 42]. However, the visibility of RV 18F-FDG 
uptake was not ranked within top four features, and the con-
structed each ML model was not influenced by the visibility 
of RV 18F-FDG uptake.

This study had several limitations. First, it was retro-
spective in nature, and it had a relatively small study cohort 
with conducting only in a single institution. Thus, it is nec-
essary to perform a multicenter prospective study with a 
significantly larger population to validate and confirm our 

Fig. 1   A 39-year-old female patient with cardiac sarcoidosis who 
developed ACEs (VT) after the immunosuppressive treatment with 
prednisolone. Pretreatment 18F-FDG-PET/CT scan [maximum inten-
sity projection [MIP] (a), trans-axial (b), coronal (c), and sagittal 
(d)] images revealed 18F-FDG uptake in the sarcoidosis lesions of 
the lymph nodes (supra clavicular, hilar, and mediastinal region). The 
yellow line represents the border of the volume of interest in the myo-

cardium (SUVmax 11.3 g/mL, SUVmean 6.1 g/mL, CMV 29.7 mL, 
and CMA 180.9  g). Thereafter, the immunosuppressive treatment 
with prednisolone was initiated. The ACE (VT) occurred 25 months 
after pretreatment 18F-FDG-PET/CT scan at a maintenance predniso-
lone dose of 10 mg/day. The calculated probability score for predict-
ing the risk of ACEs (positive ≥ 0.5) was 0.90 on RF. Thus, the ML 
model with RF algorithm can predict the risk of ACEs in this case

Fig. 2   An 81-year-old male patient with cardiac sarcoidosis who did 
not develop ACEs after the immunosuppressive treatment with pred-
nisolone. Pretreatment 18F-FDG-PET/CT scan [maximum intensity 
projection (MIP) (a), trans-axial (b), coronal (c), and sagittal (d)] 
images revealed 18F-FDG uptake in the sarcoidosis lesions of lymph 
nodes (hilar, and mediastinal region) and myocardium. The yellow 
line represents the border of the volume of interest in the myocardium 

(SUVmax 5.7 g/mL, SUVmean 4.0 g/mL, CMV 28.6 mL, and CMA 
115.1  g). Thereafter, the immunosuppressive treatment with predni-
solone was initiated. The ACE did not occur 30 months after pretreat-
ment 18F-FDG-PET/CT scan at a maintenance prednisolone dose of 
10 mg/day. The calculated probability score for predicting the risk of 
ACEs (positive ≥ 0.5) was 0 on RF. Thus, the ML model with the RF 
algorithm can predict the absence of ACE risk in this case
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findings. Second, using different PET/CT scanners might 
have affected the results of 18F-FDG-PET-based radiomic 
analyses. However, the post-reconstruction harmonization 
using ComBat was conducted during analyses to overcome 
this issue. Third, only 49 radiomic features extracted from 
the LIFEx software were used in ML analyses. However, the 
LIFEx software has been widely used for radiomic analy-
ses in the field of PET/CT scan studies [43, 44]. Fourth, 
only seven ML algorithms (specifically decision tree, RF, 
neural network, kNN, Naïve Bayes, logistic regression, and 
SVM) were applied in the ML analyses. Nevertheless, we 
only used the ML algorithms implemented in the Orange 
software, which is a popular open-source tool that provides 
a visual approach to ML for an interactive data analysis, 
thereby facilitating the easy construction and configuration 
of workflows for ML studies [35]. Finally, although training 
and testing validation had a good classification performance, 
a training–test scheme with a larger population might be 
preferred for model validation.

In conclusion, ML analyses using 18F-FDG-PET-based 
radiomic features can be useful for predicting ACEs in 
patients with CS.
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