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Abstract
Single-cell RNA-seq (scRNA-seq) is a revolutionary technology that allows for the genomic investigation of individual cells 
in a population, allowing for the discovery of unusual cells associated with cancer and metastasis. ScRNA-seq has been used 
to discover different types of cancers with poor prognosis and medication resistance such as lung cancer, breast cancer, ovar-
ian cancer, and gastric cancer. Besides, scRNA-seq is a promising method that helps us comprehend the biological features 
and dynamics of cell development, as well as other disorders. This review gives a concise summary of current scRNA-seq 
technology. We also explain the main technological steps involved in implementing the technology. We highlight the pre-
sent applications of scRNA-seq in cancer research, including tumor heterogeneity analysis in lung cancer, breast cancer, 
and ovarian cancer. In addition, this review elucidates potential applications of scRNA-seq in lineage tracing, personalized 
medicine, illness prediction, and disease diagnosis, which reveals that scRNA-seq facilitates these events by producing 
genetic variations on the single-cell level.

Keywords  Single-cell RNA sequencing · Tumor heterogeneity · Microenvironment · Lineage tracing · Personalized 
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Introduction

Cancer is a genetic illness that remains a major health risk 
for humans. As it develops, tumor cells acquire and accumu-
late oncogenic somatic mutations and non-genetic changes, 
which may promote unchecked cell growth, invasion, and 
resistance to treatment. The diagnosis, discovery of new 
drugs, design of clinical trials, and selection of therapy strat-
egies all rely on an in-depth understanding of the molecular 
pathways driving carcinogenesis. Cancer genomes and tran-
scriptomes, tumor development, intra-tumor heterogeneity, 
and treatment resistance are just a few of the areas where 
our knowledge of cancer biology has been bolstered by next-
generation sequencing (NGS) in the last decade. Despite 
significant progress, most standard studies and datasets are 
based on bulk samples, which average the molecular features 

of cells in a tumor sample. The microenvironment of a tumor 
includes a wide variety of immunological, endothelial, and 
stromal cells, and is increasingly seen as an integral part 
of the tumor itself. Evidence is mounting suggesting cells 
in the tumor's microenvironment, in addition to cancer 
cells themselves, influence the tumor's biology and clini-
cal behavior. This finding shows that bulk tumor profiling 
may hide cellular diversity, making it difficult to investigate 
the unique molecular pathways by which various tumor cell 
types may contribute to carcinogenesis. Therefore, many 
cancer researchers have used the newly available single-
cell sequencing technologies to comprehend tumors at the 
level of individual cells to deal with the cell heterogeneity 
in tumors.

The use of single-cell RNA sequencing (scRNA-seq) is a 
contemporary NGS approach that facilitates the identifica-
tion of variations in genetic and protein expression among 
individual cells. This technology facilitates the acquisition 
of genetic data from microorganisms at the individual cel-
lular level, thereby enhancing comprehension of the micro-
environment. scRNA-seq has emerged as an influential 
innovation due to the advent of high-throughput sequencing 
techniques and the development of microfluidics, allowing 
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researchers to obtain high-quality single-cell samples and 
expose the individuality of every single cell [65]. Tradition-
ally, scientists have analyzed pooled populations of cells in 
tissues and organs because of the limitation of techniques to 
thoroughly analyze each cell’s uniqueness [75]. The com-
parison of bulk-RNA seq and scRNA-seq has been illumi-
nated in Fig. 1.

Recent technical developments have enabled far better 
resolution gene expression analysis than previously achiev-
able. The transcriptome at the single-cell level was charac-
terized using scRNA-seq in 2009 [117]. Various techniques 
enhance our knowledge of the biological information in sin-
gle cells, including analyzing the genomic DNA sequence, 
mRNA expression, protein expression, and cellular 

Fig. 1   Comparison of working 
procedures of a typical single-
cell RNA sequencing experi-
ment and traditional bulk RNA 
analyses. The strengths and 
weaknesses of each method are 
also listed. FFPE formalin-fixed 
paraffin-embedded
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metabolites. Technological breakthroughs in cell isolation, 
high-throughput sequencing methods, and data analysis soft-
ware have made the scRNA-seq application a reality. All 
these technological advancements indicate that scRNA-seq 
is becoming an increasingly powerful tool for evaluating 
developmental, normal, and pathological processes [78].

As a component of NGS, scRNA-seq has a role in explor-
ing cell heterogeneity and uncovering novel genetic traits 
associated with clinical outcomes [101]. The profiled cel-
lular programs in tumor samples have integrated genetic, 
epigenetic, and environmental cues, significantly improving 
our understanding of cancer heterogeneity [11], the cancer 
microenvironment [107], cancer metastasis [4], and cancer 
evolution in response to therapy [45]. Human hematopoietic 
development follows a similar pattern. For ethical reasons, 
it is difficult to acquire information on the lineage potential 
and hierarchical connections among early human hematopoi-
etic progenitors [52, 56]. However, scRNA-seq can help to 
realize fate mapping and lineage tracing [127]. The molecu-
lar processes and sequence of events by which the ultimate 
identities of cells are determined during embryogenesis or 
remodeling may be inferred from the changes in cell states 
as tissues and organs develop [134]. For example, it may 
help to understand and control the fates of cells in vivo, 
anticipate where cancers and other diseases arise, and even 
recreate the differentiation process of cells [118]. scRNA-
seq may be further utilized in inferring disease progression 
and prognosis in clinical trials [50], and single-cell genomics 
may reveal significant changes in the percentage and gene 
expression of cell types during injury and healing [21]. Fur-
thermore, comparing the single-cell transcriptome between 

novel cell subsets under pathological states and normal cells 
facilitates the discovery of correlations between gene expres-
sion and phenotypes [87].

In general, the popularization of the scRNA-seq approach 
has been aided by the open sharing of methods, commer-
cialization of technology, and widespread use in biomedical 
and clinical research. The primary single-cell sequencing 
technologies and applications, including tumor progression 
and lineage analysis, are outlined in this overview.

Conventional sequencing involves obscured signals from 
small cell populations. scRNA-seq is a set of techniques 
for untargeted measurement of novel genomic, transcrip-
tomic, and proteomic information in individual cells [45]. 
In scRNA-seq, a single cell's DNA and RNA expression pat-
terns can be determined by NGS, providing a better under-
standing of how a single cell functions and interacts with its 
environment. scRNA-seq technologies share common pro-
cedures, including isolating a single cell, RNA extraction, 
reverse transcription, preamplification, and data analysis 
[124]. The common workflow of scRNA-seq is illustrated 
in Fig. 2. Data analysis and the advent of cell separation have 
made it possible to create maps of individual cell types and 
states at the single-cell level [71].

The objective of our review is to provide a comprehen-
sive overview of the advancements made in single-cell RNA 
sequencing (scRNA-seq) technology, encompassing the lat-
est developments in emerging scRNA-seq methodologies. 
We conducted a comparative analysis of various scRNA-
seq techniques to ascertain their respective strengths and 
limitations. Furthermore, our emphasis was primarily on 
the utilization of scRNA-seq in the identification of tumor 

Fig. 2   Pictures of single-cell RNA sequencing (scRNA-seq) experi-
ments. A typical scRNA-seq workflow shares most of the following 
single-cell isolation by micromanipulation, laser-capture microdissec-

tion (LCM) microfluidics-activated cell sorting (FACS), (2) cell lysis, 
(3) reverse transcription of mRNA to cDNA, (4) cDNA amplification 
and library preparation, (5) sequencing
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heterogeneity and the characterization of the tumor microen-
vironment. Moreover, drawing from our independent inves-
tigation, our aim is to compile and condense the practical 
implementation of scRNA-seq in the context of tailored 
medical treatment, linkage mapping, and prognostication 
of illnesses.

Single‑Cell RNA Sequencing Technologies

Isolation of Single Cells (Capturing Single Cells)

The entire procedure of single-cell RNA sequencing starts 
with the isolation of single cells from tissues. Single cells 
can be separated mechanically and enzymatically into dif-
ferent subpopulations without affecting their viability [101]. 
Micromanipulation is one of the traditional methods of 
single-cell isolation, and individual cells are isolated from 
microorganisms, solid histological tissue, or embryonic stem 
cells with a micropipette or forceps and microscope [48]. 
However, due to the difficulty of its operation, the labor 
involved, and the high potential for mechanical damage to 
targeted cells, this microscopic control system is rarely used 
[147].

Laser capture microdissection (LCM) focuses a laser 
beam on cells of interest and attaches them to membranes 
[38]. LCM is a powerful technique for isolating cell popu-
lations or regions of interest inside a tissue. The specified 
region is excised by a laser using direct viewing and can 
then be processed for a number of subsequent investiga-
tions. From DNA and RNA sequencing through mass spec-
trometry, this technology has been widely employed in the 
research of liver disorders. However, LCM has significant 
limitations. Due to the cost of the microdissection appara-
tus, this is an expensive technology. The yield and purity of 
DNA, RNA, and proteins extracted from improperly pre-
served and processed tissue samples may not be suitable 
for further analysis. The absence of a coverslip on the tissue 
slide may impede the accurate identification of the area to 
be microdissected. To preserve the integrity of the molecule 
of interest, optimum tissue preservation, precise tissue sec-
tioning, and staining method optimization is necessary [99].

Initially labelingsing fluorescent monoclonal antibod-
ies, the fluorescence-activated cell sorting (FACS) method 
primarily relies on flow cytometry. Negative selection may 
also be used to undetained populations [110]. Target cells 
are identified and separated using this method's analysis of 
their molecular markers and physical traits (such as cell size 
and fluorescence scattering) [55]. Nonetheless, FACS sys-
tems continue to be rather restricted in several applications. 
Because cells must be suspended, tissues must be dissoci-
ated, resulting in the loss of cellular activities, cell–cell con-
nections, and tissue architecture [59]. Subpopulations with 

comparable marker expressions are difficult to distinguish, 
and the overlap of emission spectra amongst fluorochromes 
may enhance background noise, making low-intensity sam-
ples unidentifiable. Furthermore, as established by trypan 
blue exclusion and necrosis/apoptosis experiments for Chi-
nese Hamster Ovary (CHO) cells and a human monocytic 
cell line (THP1), FACS sorting may have non-negligible 
impacts on cell survival [90].

The smallest sample volume for FACS systems is sev-
eral hundred microliters to milliliters [55]. This is because 
lengthy tube sections often result in huge dead volumes, 
making it impossible to utilize uncommon samples, particu-
larly when the full sample has to be evaluated [76]. Finally, 
because FACS systems generally have a complex system 
made up of non-disposable components, the sterile opera-
tion is challenging to achieve. However, such limits are not 
always present or significant, depending on the instrument, 
process parameters (such as speed, laser type, etc.), cell type, 
and application [47].

A microfluidic chip with microchannels that tightly 
control liquid flow can be employed during cell suspen-
sion preparation to achieve low sample consumption with 
microfluidic methods [97]. In the past few years, microflu-
idic procedures have gained popularity and are gradually 
replacing FACS and other previously used techniques for 
isolating cells.

Single-cell methods generally have their own unique 
advantages. The micromanipulator ensures the accurate 
collection of cells and minimizes cell damage. LCM col-
lects spatial information and captures single cells from solid 
samples. FACS can focus on cells of interest. Microfluidic 
methods require a low volume of reagents, which makes 
them cost-effective. Understanding these single-cell isola-
tion methods helps in choosing appropriate techniques for 
various cells from diverse targeted bulk tissues.

Following separation, identifying single-cell sequencing 
data is the most difficult aspect of this approach. The plate 
micro-reaction system and combinatorial index technology 
in single-cell barcode technology solve this problem and 
increase single-cell detection throughput by 100-fold. The 
plate-like micro-reaction system, for example, contains sin-
gle cells, functional beads, and reverse transcription. Oli-
gonucleotides such as primers, cell barcodes, and unique 
molecular identifiers (UMI), as well as 5' to 3' poly (dT), are 
used to modify the surface of functional beads. The UMIs 
target each molecule in a cell, unlike primers, polymeric 
(dT) fragments, and cellular barcodes, which are unique in 
each micro-reaction. A UMI can mark the DNA genome, 
transcriptome, immunological profile, and proteome [117].

Microsphere-based technologies like Drop-seq, Seq-
Well, and inDrop are used to barcode specific molecules in 
single cells. After barcoding targeted molecules, a critical 
next step is the pre-amplification of transcripts by reverse 
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transcription. Therefore, all RNA sequences are converted to 
cDNA for further amplification and sequencing. Finally, the 
sequencing results are integrated and analyzed by computers 
at different levels.

Specific Protocols for Single‑Cell RNA Sequencing

The first whole-genome amplification (WGA) technique 
developed was PCR-based amplification using Degenerate 
Oligonucleotide-Primed PCR (DOP-PCR) for single-cell 
analysis. This method is biased in amplification and PCR 
efficiency variations and has high error rates due to the ther-
mostable polymerase and degenerate oligonucleotides used 
for primers [54].

The most widely used isothermal amplification method 
in WGA is multiple displacement amplification (MDA) 
[16]. The polymerase used is Φ29, with primary properties 
of excellent processivity and strand displacement activity. 
Since these enhancements improve genome coverage, there 
are fewer false-positive results. A proportionally more sig-
nificant number of first-increased loci are overrepresented 
following exponential amplification,this overrepresentation 
is amplified further by greater fold amplification. Certain 
overrepresentation areas may have a systematic or stochastic 
bias [148]. Φ29 polymerase activity generates a tiny amount 
of chimeric sequence side products, which may be decreased 
by endonuclease treatment, allowing for the physical separa-
tion of amplicons through debranching [16].

PicoPLEX and multiple annealing and looping-based 
amplification cycles (MALBAC) integrate the advantages 
of the first two methods mentioned above. Both MDA 
and MALBAC can successfully amplify genomes from 
single cells. However, in both procedures, preventing the 
amplification of extraneous contaminating DNA is diffi-
cult when performed in microlitre reaction volumes in a 
tube. Additionally, a prior investigation discovered that 
MDA provides significantly greater genome coverage than 
MALBAC (72%) [54]. This causes sequence-dependent 
bias, which causes overamplification in some genomic 
regions and under-amplification in others. However, this 
sequence-dependent bias of MDA is not reproducible 
across the genome, making normalization impractical and 
CNV determination less precise. Despite this, MDA has 
been utilized extensively since its invention [148].

Overall, there are many factors to consider when decid-
ing the best approach for a given clinical purpose. The 
technique used should be tailored to the application at 
hand, taking into account parameters such as the relative 
scarcity or abundance of the single cell to be separated, 
the ease with which DNA or RNA can be extracted from 
the target cell, and the needed depth of sequencing cover-
age. Although cost is always an essential concern with 
single-cell sequencing, it may be possible to obtain opti-
mal results by considering all the above parameters. In 
Table 1, we summarize the most significant single-cell 
RNA sequencing methodologies and platforms. In Table 2, 
we enumerate and compare specific protocols for scRNA-
seq to show their advantages and disadvantages.

Table 1   Collection of most important single-cell RNA sequencing techniques

Method Technology Name Platform Chemistry References

scRNA-seq Microdroplets 10× Genomics RNA Commercial 3′ or 5′ Zheng et al. [148]
Microdroplets Drop-seq Research 3′ Macosko et al. [86]
Microdroplets Indrop Research 3′ Klein et al. [66]
Nanowells Seq-Well Research 3′ Gierahn et al. [41]
Nanowells Takara Wafergen Commercial 3′, full-length Gierahn et al. [41]
Nanowells Cytoseq Research 3′ Fan et al. [33]
FACS Smart-seq2 Research Full-length Ramsköld et al. [104]
FACS Sci-RNA-seq Research 3′ Cao et al. [13]

scEpigenomics Microdroplets 10× Genomics chromium ATAC​ Commercial Tagmentation Satpathy et al. [108]
FACS ATAC tagmentation Research Tagmentation Buenrostro et al. [10]
FACS dscATAC-seq Research Tagmentation Cusanovich et al. [23]
Microdroplets scRBBS Research RBBS Guo et al. [49]

scDNA-seq Microdroplets 10× Genomics chromium CNV Commercial MDA Andor et al. [2]
Microdroplets Mission Bio Tapestri Commercial Amplicon PCR Lan et al. [74]
Nanowells Takara Wafergen Commercial/research Tagmentation Laks et al. [72]
Microdroplets tagmentation Research Tagmentation Zahn et al. [145]
FACS Sci-seq Research Tagmentation Cusanovich et al. [23]
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Clinical Applications of Single‑Cell RNA 
Sequencing

Application of Single‑Cell RNA Sequencing in Cancer 
Biology

The development of scRNA-seq technology holds enor-
mous promise for decoding cancer development, metas-
tasis, and drug resistance. Based on genetic subtypes, 
scRNA-seq technology has been utilized to identify dif-
ferent cancer cell populations linked with poor prognosis 
and treatment resistance. By explaining tumor microen-
vironment heterogeneity, the approach has been utilized 
to identify unique immune cell subsets that may be impli-
cated in tumor immunosurveillance and hence suggest pro-
spective pharmaceutical targets [36]. In addition, a bet-
ter understanding of the genetic composition of various 
malignancies has motivated clinical researchers to seek 
genotype-guided or individualized treatments [24]. Molec-
ularly targeted medicines offer the best chance of treating 
cancer-related genetic abnormalities known as oncogenic 
drivers. The concept of targeted therapy emphasizes the 
correlation between the characterization of neoplasms and 
the unique therapeutic responses of individuals[103]. The 
study is grounded in the field of genomics and biomarker 
expression, indicating that genomic mutations and their 
consequent downstream pathways may serve as viable 
targets for pharmacological intervention or as indicators 
for prognostic purposes. The progress made in genome 
sequencing has facilitated the prompt identification of 
genetic disparities between cancerous and non-cancerous 
cells by researchers [53]. Several studies have shown that 
intra-tumoral heterogeneity causes cancer progression and 
enhances treatment resistance [24]. A detailed understand-
ing of tumor dynamics is essential to designing effective 
and long-lasting treatments. Figure 3 illustrates the appli-
cations of scRNA-seq in cancer research.

Tumor Heterogeneity

The type of heterogeneity in a tumor population may be 
divided into intra-tumoral and inter-tumoral heterogene-
ity[26]. Many factors contribute to tumor heterogeneity 
across patients with the same kind of tumor, including 
genetic variations in the germline, shifts in the somatic 
mutational profile, and environmental influences [24]. When 
these characteristics are combined, they produce disparities 
between people, which is known as inter-tumoral heteroge-
neity. Intra-tumoral heterogeneity describes a patient's can-
cer cells [11]. The unequal distribution of genetically diverse 
tumour subpopulations across disease sites, as well as the 
dynamic changes in a tumor's genetic variety over time, are 
explained by cancer's spatial and temporal heterogeneity 
[75]. A few instances of how scRNA-seq may be used to 
interpret tumor heterogeneity are described below.

Non‑small Cell Lung Cancer  Lung cancer is  the leading 
cause of cancer-related fatalities in China, accounting for 
an estimated 61.02 million deaths [17]. Non-small cell 
lung cancer (NSCLC) represents 85% of lung cancer cases 
among the common subtypes. Improved knowledge of 
NSCLC pathogenic changes in genes, the discovery of novel 
drugs, and the use of biomarkers to identify individuals who 
are most likely to respond to immune checkpoint blockade 
therapy have all contributed to breakthroughs in NSCLC 
treatment [62]. For the vast majority of patients, cytotoxic 
chemotherapy remains an important component of systemic 
therapy, although immunotherapy and molecularly targeted 
medicines are now conventional first-line treatments for 
nearly half of those with advanced NSCLC[46].

Selective anaplastic lymphoma kinase (ALK) tyrosine 
kinase inhibitors (TKIs) have transformed ALK-rearranged 
non-small cell lung cancer therapy (NSCLC). ALK inhibi-
tors include crizotinib, ceritinib, alectinib, brigatinib (2nd 
generation), lorlatinib, and ensartinib (3rd generation). 

Table 2   Comparison of specific protocols for scRNA-seq

Kit scRNA-seq method Genome 
coverage 
(%)

Advantages Disadvantages

Sigma-Aldrich DOP-PCR [8] 39 Low genome coverage Highly suited for evaluating CNVs with large bin sizes 
(1 million bases) on a broad genomic scale

Qiagen MDA [82] 84 High genome coverage Sequence-dependent bias, overamplification in certain 
genomic regions, and underamplification in other 
regions. Normalization becomes impossible, and 
CNV determination becomes less precise

Yikon MALBAC [82] 72 CNV may be determined by doing 
signal normalization for noise 
reduction

Sequence-dependent bias, a high false positive rate 
for SNV detection, under-amplified regions of the 
genome are sometimes lost during amplification 
and cannot be accessed owing to the reproducible 
sequence-dependent bias
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Fig. 3   Summary of scRNA-seq applications in cancer research. A Non-small cell lung cancer. B Triple-negative breast cancer. C Ovarian can-
cer. D Gastric cancer
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Due to tumor cell heterogeneity, post-progression tumor 
tissues utilize diverse ALK inhibitor resistance pathways, 
and new diagnostic techniques are needed to understand 
resistance mechanisms and provide the best treatment.

Researchers wanted to know whether the sequencing 
of circulating tumor cells (CTCs) might provide further 
insight into ALK drug resistance variants and the pos-
sible tumor heterogeneity of ALK-rearranged NSCLC. 
After radiological disease progression on ALK-TKIs, 
blood samples from 17 patients with ALK rearrangement 
were used for CTC analysis. Multiple genetic variations in 
ALK-independent pathways were found by scRNA-seq in 
crizotinib-resistant CTCs [98]. The RTK-KRAS and TP53 
pathways primarily showed mutations in EGFR, KRAS, 
BRAF, and other genes in CTCs, and the results were simi-
lar to those of ctDNA analyses. Nine variant genes in the 
RTK-KRAS pathway were detected in nine CTC samples. 
Among CTC mutations, EGFR, KRAS, and BRAF had 
mutation frequencies of 14.1%, 7.8%, and 6.2%, respec-
tively. Both HIF and NOTCH pathways were altered in 
CTC-mutant samples, and both mutations were found in 5 
of 9 individuals. These findings imply that the variability 
of the CTC genome in crizotinib-resistant ALK-rearranged 
cases is unexpected, including ALK-independent, RTK-
KRAS, and TP53 pathways. Twenty genes were simultane-
ously altered, providing a crucial basis for treatment selec-
tion. These findings highlight the relevance of a single 
CTC gene in identifying drug-resistant cells in circulation.

The molecular features of the alveolar and cell dam-
age repair signatures are noteworthy. Overexpression of 
SUSD2 and CAV1, WNT/β-catenin-associated pathway 
genes, was identified in an RD cohort. The WNT/β-catenin 
signaling pathway contributes to carcinogenesis, repair, 
and regeneration after cell injury in NSCLCs. AT2 cells, 
in particular, use the WNT/β-catenin signaling path-
way for self-renewal and the damage response [91]. In 
addition, another research conducted by Yang et al. has 
shown that FOXP3 may increase the development of the 
β-catenin TCF4 complex and boost their role in activat-
ing EMT-related molecules such as snail and slug, result-
ing in the induction of EMT and the encouragement of 
NSCLC growth and metastasis[140]. Besides, Wang et al. 
revealed that SETD1A activates the Wnt/β-catenin path-
way, which changes cancer stem cell characteristics as well 
as cisplatin sensitivity in NSCLC. SETD1A also interacts 
with and stabilizes β-catenin to activate the Wnt/β-catenin 
pathway through the SET domain. NEAT1 and EZH2 
were revealed to be two novel SETD1A targets via which 
SETD1A enhances the Wnt/β-catenin pathway activity. In 
turn, β-catenin enhances SETD1A transcription, creating 
a positive feedback loop that promotes NSCLC develop-
ment. Based on the results of this study, new prognostic 
markers and therapeutic targets may be found, potentially 

leading to advances in the diagnosis and prognosis of 
NSCLC patients [128].

In summary, the WNT/β-catenin pathway may be thera-
peutically targetable because it is involved in the transmis-
sion of signals for cellular harm and survival [70].

The EGFR-mutant NSCLC model and H3122 cells as an 
ALK fusion-driven NSCLC model have been used to assess 
the therapeutic potential of WNT pathway discoveries. The 
researchers expected that inhibiting WNT/β-catenin signal-
ing and oncogenic EGFR or ALK would limit cell survival 
and enhance the depth of response from the start of therapy. 
Parental cells received an IC50 dosage of the relevant EGFR 
or ALK TKI (inhibitor concentration causing 50% cell loss) 
[70]. XAV939 and PRI-724, two WNT/β-catenin pathway 
inhibitors, were tested at four concentrations or in combina-
tion. In vitro, inhibiting the WNT/β-catenin pathway first 
followed by a TKI decreased cell confluency and increased 
response depth [70].

By revealing the presence of not only the putative onco-
genic driver but also additional oncogenic mutations, 
scRNA-seq data have demonstrated widespread intra-
tumoral heterogeneity in oncogenic changes expressed in 
cancer cells. This might explain why a complete response 
to treatment is uncommon. Tumors contain the necessary 
genetic architecture and evolutionary playbook for resist-
ance, and current bulk sampling studies may miss these 
“hard-wired” features. scRNA-seq profiling reveals the 
therapy-induced transcriptional plasticity that helps tumors 
to adapt and evolve. Transcriptional fingerprints for differ-
ent treatment times and clinical situations were found. Most 
of these traits were biomarkers of lower OS, especially in 
PD. At RD, the alveolar cell signature was enhanced and 
associated with survival. This profile showed cellular plas-
ticity and damage response, suggesting a treatment-induced 
adaptive phenotype that allows cancer cells to survive in a 
less aggressive state [130]. The alveolar cell signature and 
WNT/β-catenin pathway may also be involved in the dam-
age response and regeneration. To improve cancer cell sur-
vival during therapy, the WNT/β-catenin pathway must be 
fine-tuned. Research suggests that manipulating cancer (or 
TME) cell fate(s) to exploit certain biological states might 
improve metastatic solid tumor treatment. Targeting cell 
state vulnerabilities or preventing adaptation may increase 
patient survival by preventing a tumor from acquiring total 
medication resistance [39, 89]. Authors have identified 
low T-cell infiltration in the TME of TN and PD patients, 
consistent with previous findings of little cytotoxic T-cell 
infiltration in treatment-naive EGFR mutant NSCLCs and 
a link between EGFR activation and immunosuppression in 
preclinical models. T-cell infiltration and lower immuno-
suppressive macrophage infiltration during RD on targeted 
treatment indicate an inflammatory phenotype. This inflam-
matory state may complement the cancer cell compartment's 
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alveolar cell, damage repair, and regeneration states due to 
TME-cancer cell communication. Figure 4a shows the main 
altered lung cancer signaling pathways detected by scRNA-
seq [27].

Triple‑Negative Breast Cancer (TNBC)  High intra-tumoral 
variability is characteristic of triple-negative breast cancer 
(TNBC), a common subtype of breast cancer [143]. scRNA-
seq analyses in TNBC have indicated subclonal heterogene-
ity and severe disease stages. Five distinct cell clusters were 
detected by scRNA-seq in untreated early TNBC tumors. 
Patients with TNBC have a high incidence of somatic muta-
tions, frequent TP53 mutations (83%), and complex aneu-
ploid rearrangements (80%), resulting in considerable intra-
tumor heterogeneity [5].

On the basis of single-nucleus genome sequencing, the 
mutation rate in ER+ tumors is comparable to that in nor-
mal cells, and TNBCs exhibit sustained intra-tumoral variety 
[142]. According to marker genes and clustering, immune 

cells, and endothelial cells exhibit unique gene expression 
profiles. For instance, the majority of tumor epithelial cells 
exhibit luminal and luminal progenitor markers, though a 
minority express myoepithelial cell markers such as ACTA2 
and TAGLN [19]. In addition, macrophages are more preva-
lent in CD45-unselected malignancies and CD45-selected 
tumors [1, 83]. In addition, the current research provides a 
genetic analysis of the luminal progenitors and hormone-
sensing luminal cells, the two main subpopulations of the 
mammary luminal compartments. Overexpression of p53 
and several activated p53 target genes is shown to be pre-
sent in luminal progenitor cells, which are influenced by 
HGF/Met signaling in the mammary epithelium, as shown 
by the current research. Growing data indicate that p53 
regulates stem/progenitor cell self-renewal, differentiation, 
and plasticity in both embryonic and adult tissues [60, 114]. 
In the absence of p53, luminal progenitors were amplified 
and their proliferative and self-renewal capacities were acti-
vated in vivo. Nonetheless, it had no effect on their inherent 

Fig. 4   Collections of scRNA-seq applications in uncovering tumor 
heterogeneity in different kinds of cancers. Mainly altered signaling 
pathways related to different cancers are demonstrated in pictures. A 
WNT/β-catenin signaling pathway related to lung cancer. B HIF1-α 

signaling pathway associated with breast cancer. C Jak-STAT signal-
ing pathway correlated with ovarian cancer. D Mainly changed Notch 
signaling pathway in gastric cancer. E The TP53 signaling pathway 
commonly alters in all these four kinds of cancers mentioned
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identity. Furthermore, luminal progenitors missing p53 and 
stimulated in vitro by HGF were unable to establish basal-
specific features, demonstrating that p53 governs the adap-
tive nature of luminal progenitors after Met activation[20, 
122]. Previous research has shown that the lack of p53 in the 
mammary epithelium facilitates the process of self-renewal 
and symmetric division of stem cells. The aforementioned 
process might explain why luminal progenitors lacking p53 
have a restricted ability to undertake a luminal-to-basal 
transition after Met activation (64). Furthermore, another 
research found LGR5 activation in myoepithelial cells of 
regenerating mammary ducts[18]. In summary, luminal, 
luminal progenitor markers, and myoepithelial cell markers 
are significant in composing the genetic heterogeneity of the 
oncogenic pathway of breast cancer.

Intra-tumoral heterogeneity plays a critical role in the 
development of TNBC and contributes to the disease's resist-
ance to treatment, metastasis, and poor prognosis. Indeed, 
a worse prognosis is expected for TNBC patients in whom 
even a fraction of breast cancer cells is not eradicated [5]. 
The whole single-cell exomes of 20 TNBC patients receiv-
ing neoadjuvant chemotherapy (NAC) were sequenced 
in a prior study. Genotypes associated with resistance to 
chemotherapy in TNBC were found to be both prevalent and 
adaptively selected by NAC [64]. CDH1 target profiles may 
provide a link between E-cadherin loss and the mesenchymal 
phenotype acquired by tumor cells in response to NAC [80]. 
In certain cases, resistance genes are present in a minute 
proportion of primed tumor cells.

Below, we highlight some important clinical implications 
of the scRNA-seq findings regarding tumor heterogeneity. 
Patients with TNBC can benefit from chemotherapy if the 
tumor mass contains certain genotypes, which can be diag-
nosed by detecting chemoresistant clones prior to initiating 
NAC treatment [84]. Such subgroups of TNBC may have 
prognostic relevance beyond histological approaches for 
determining clonal extinguishment or persistence as a result 
of genetic clones. Hence, it is important to consider all treat-
ment options, including potential alternatives, before choos-
ing one[31]. Chemoresistant phenotypes can be overcome, 
for instance, by employing therapeutic techniques such as 
targeting epithelial-mesenchymal transition (EMT) signaling 
or decreasing hypoxia with HIF-1 inhibitors [84]. Signaling 
pathways related to HIF-α are depicted in Fig. 4b.

Using scRNA-seq technology, a group of researchers 
developed a method for identifying and analyzing single can-
cer cells in the operation of micro-metastasis of breast can-
cer in human patient-derived xenograft (PDX) models[40]. 
These assays contributed to the comprehension of the 
change in gene expression that occurs during micrometas-
tasis. Furthermore, researchers have identified mitochondrial 
oxidative phosphorylation (OXPHOS) as a crucial process in 
metastatic seeding [15]. In the preponderance of cases (e.g., 

breast tumors), this transcription factor does not promote 
clonal growth at the primary site, preventing positive selec-
tion. In contrast, RB1 loss and other oncogenic alterations 
that enhance OXPHOS (see previous subsection) promote 
both primary tumor growth and metastasis and therefore 
may be selected for during clonal evolution. This theory is 
further supported by the fact that slow-growing tumors, such 
as invasive lobular carcinoma (ILC), are highly metastatic. 
Moreover, inhibitors of the PI3K pathway inhibit tumor 
growth but reprogram mitochondrial trafficking, OXPHOS, 
and motility[81]. Contrary to the well-known stimulatory 
effect of hypoxia on tumor invasion, increased invasion as a 
result of elevated OXPHOS may manifest. However, tumor 
cells with elevated OXPHOS may be better able to adapt 
to hypoxia and migrate away from hypoxic regions [81]. In 
addition, another study has demonstrated the significance 
of OXPHOS in the development of malignancy. Tumor 
growth requires active mitochondrial function and oxida-
tive phosphorylation (OXPHOS). Recent research indicates 
that the absence of the retinoblastoma (RB1) tumor suppres-
sor increases mitochondrial protein translation (MPT) and 
OXPHOS in breast cancer [144]. Increased OXPHOS can 
increase anabolic metabolism and cell proliferation, as well 
as cancer stemness and metastasis. STAT3, FER/FER-T, and 
CHCHD2 are also involved in OXPHOS in mitochondria. 
Scientists postulate that RB1 loss is a prototypical oncogenic 
change that promotes OXPHOS, that aggressive tumors 
acquire lethal combinations of oncogenes and tumor sup-
pressors that stimulate anabolism as opposed to OXPHOS, 
and that targeting both metabolic pathways would be thera-
peutic [69].

Oxidative phosphorylation may aid in metastasis [25]. 
OXPHOS-derived ATP can power cytoskeleton remodeling 
for motility or survival during anoikis during cell separation 
and migration. Since mitochondrial ROS-inducing muta-
tions alone promote metastasis, OXPHOS-induced ROS 
generation may increase cell mobility by activating onco-
genic signaling and promoting metastasis. In micrometa-
static cells, NDUFS6, NDUFAB1, NDUFB2, NDUFAF4, 
UQCC3, and COA6, as well as the ATP synthase subunits 
ATP5I, ATP5G1, and ATP5J2, are upregulated. Micrometa-
static cells additionally upregulate mitochondrial transport 
genes TOMM5, TOMM6, and TIMM13 and mitochondrial 
ribosome genes MRPL14, MRPL55, and MRPL51, which 
translate ETC protein-encoding mitochondrial genes. SOD1, 
which converts superoxide radicals to O2 and H2O2, is 
also present in higher levels in micro-metastatic cells. This 
enzyme may protect micro-metastatic cells from oxidative 
stress-induced death. Primary tumor cells contain more 
ALDOA, ALDOB, ALDOC, PGM1, and PGK1. Logistic 
regression research also indicates that LDHA is the top 
gene most descriptive of primary tumor cells because it 
increases aerobic glycolysis by speeding up the conversion 
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of pyruvate to lactate and diverting it from the citric acid 
cycle (CAC). Cellular heterogeneity can impair medica-
tion efficacy. Scientists have discovered a unique kind of 
heterogeneity caused by temporary changes in glycolysis 
efficiency and ATP consumption or cycling in cells. Protein 
synthesis, glucose absorption, and the cell cycle combine to 
provide transitory resistance to acute metabolic challenges 
such as OXPHOS inhibitor therapy. In cancer and diabe-
tes, OXPHOS suppression is beneficial, affecting metabolic 
stress signaling via AMPK, mTOR, and ERK. New AMPK 
activators and OXPHOS inhibitors may cure cancer, diabe-
tes, and inflammatory illnesses.

Ovarian Cancer  Every year, 239,000 women worldwide 
are diagnosed with high-grade serous tubo-ovarian cancer 
(HGSTOC), which is characterized by a high recurrence rate 
and poor long-term survival [34]. scRNA-seq has recently 
enabled the investigation of the transcriptome diversity of 
tumors and associated stroma at a hitherto unexplored level 
in a variety of cancer types [9, 35]. The potential of this 
technique in ovarian cancer was recently established by Izar 
et al. [58], who described numerous cancer, fibroblast, and 
macrophage subpopulations using droplet-based scRNA-
seq.

It is well known that fibroblasts promote tumor growth 
and metastasis. The epithelial-mesenchymal transition 
(EMT) and neo-angiogenesis are aided by cancer-asso-
ciated fibroblasts (CAFs). In addition to CAFs, research-
ers have found that mesothelial cells and myofibroblasts, 
two additional fibroblast subclusters produced predomi-
nantly from unaffected tissue, are associated with poor 
outcomes. Mesothelium-derived fibroblasts were shown 
to co-express CALB2, WT1, MSLN, and keratins (KRT8, 
KRT18) [135]. All patient types and anatomical locations 
contained FB CALB2 cells, though normal and malignant 
omental tissue had the highest levels. Numerous pro-inflam-
matory cytokines (IL6 and IL18) and IL6-associated genes 
(COL8A1, CXCL16) were found in FB CALB2s (CCL2, 
CXCL1, IL6ST). IL6 promotes ovarian cancer cell prolif-
eration, migration, neo-angiogenesis, and chemotherapy 
resistance, as shown by the fold increase in these factors 
[95]. Adipogenesis, bile acid, fatty acid metabolism, and 
cholesterol hemostasis were all shown to be activated during 
metabolic pathway analysis, along with the TNF-β pathway, 
the route responsible for IL6 synthesis. Using pySCENIC, 
researchers found transcription factors associated with adi-
pocyte formation (SIX4, FOSL1) and fatty acid metabolism 
(NKX2-8) to be upregulated, along with the transcription 
factor STAT3, which is known to interact with IL6 [106].

As predicted, all three kinds of CAFs showed active 
EMT, as indicated by strong metalloprotease (MMP2, 
MMP14, MMP11) and collagen (COL10A1, COL11A1, 
COL5A1, COL1A1, COL27A1) production, allowing them 

to breakdown the extracellular matrix and leave the initial 
tumor location to metastasize. COL1A1, COL11A, and 
THBS1 are associated with tumor invasiveness and poor 
prognosis in ovarian cancer [133]. Despite gene expres-
sion similarities among CAF clusters, a metabolic path-
way study showed that the TGF-β pathway drives EMT 
in CAFs. COMP, LTBP2, SKIL, TGFBI, PDGFC, and 
THBS1 were substantially expressed. CAFs also enhance 
glycolysis, hypoxia, and apoptosis. Cancer cell subclusters 
exhibited high EMT and IL2/STAT5 signaling, according 
to molecular pathway research. MMP2, MMP14, collagens, 
and conventional EMT markers (TWIS T1, ZEB1, WNT5A, 
and SNAI2) were increased, whereas epithelial markers 
were downregulated (absence of EPCAM). By sequencing 
numerous tumor samples, Langerhans-like dendritic cells 
and lipid-associated macrophages (MMP9) was found in 
the omentum. scRNA-seq of human omental adipose tis-
sue has revealed that lipid-associated macrophages are 
the most numerous immune cell subgroup[61]. M_MMP9 
macrophages express adipose tissue-specific genes (CD36, 
FABP4, FABP5) and TREM2, which is involved in phago-
cytosis, lipid breakdown, and pro-inflammatory mediator 
release [61]. Normal cells include many CAFs, including 
inflammatory CAFs that express high quantities of interleu-
kin-6 and other cytokines that may cause cancer and treat-
ment resistance. In addition, paracrine (and/or autocrine) 
signaling can synergistically stimulate the JAK/STAT path-
way to cause malignant ascites and drug resistance in tumor 
cells and CAFs. The association of CAFs with peritoneal 
macrophages may also suppress or enhance tumor auto-
nomic activities. IL-6-producing CAFs may help tumor cells 
to activate JAK/STAT, which is connected to poor prognosis 
and chemoresistance[29]. Blocking JAK/STAT boosts anti-
tumour effectiveness in preclinical trials. Clinical trials such 
as phase I/II combination treatment should reveal ruxoli-
tinib's role in HGSOC. CAF infiltration reduces the immune 
checkpoint inhibitor response rate 93. Overall, the tumour 
microenvironment affects numerous cancer treatments. Fig-
ure 4c shows ovarian cancer signaling pathway changes [12].

Gastric Cancer

Gastric cancer (GC) is the fifth most common illness and 
third leading cause of cancer death worldwide. Histopathol-
ogy classifies GCs as intestinal or diffuse based on glandu-
lar cell morphology, differentiation, and cohesiveness. GCs 
are not isolated cancer epithelial cell masses. Instead, the 
tumor microenvironment (TME)—fibroblasts, endothelial 
cells, and immune cells—surrounds cancer cells in these 
tumors. Differential expression analysis has distinguished 
three epithelial cell types. The normal gastric epithelium has 
a pit, mucous neck, zymogen-secreting chief, intrinsic fac-
tor-producing parietal, and neuroendocrine cells. However, 
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the GC type 1 and 2 subclasses show downregulated MUC6, 
TFF2, TFF1, and MUC5AC. The GC type 1 subclass over-
expresses TFF3, FABP1, SPINK4, MUC13, and REG4. 
KRT7, KRT17, SOX4, and HES1, which are associated 
with metaplasia aetiology, are expressed at greater levels 
in the GC type 2 subclass. GC type 1 and type 2 cells over-
express gene sets for Myc, DNA repair, and Notch signal-
ing. Only GC type 1 cells show enhanced EMT and KRAS 
signaling. Each patient's tumor includes many clusters of 
GC type 1 and 2 cells, showing sub-clonal heterogeneity. 
Pathway activation analyses divide these clusters into three 
to five subpopulations for each patient's tumor, indicating a 
subclonal nature. The cell cycle, KRAS pathway, and Wnt 
activity reveal P6207 heterogeneity. These subpopulations 
may help in tumor development. In one study, single-cell 
correlation analysis showed intra-tumoral heterogeneity 
in three patients. Bulk stemness, immunological, stromal, 
and tumor scoring showed a significant tumor and stromal 
score differences between primary tumor and metastatic 
tumor single cells, indicating compositional and functional 
changes in malignancies. A population-wide examination 
of TT and LN single cells found that primary cancer over-
expresses NOTCH2, NOTCH2NL, KIF5B, and ERBB4 but 
that metastatic cancer overexpresses CDK12, ERBB2, and 
CLDN11 [6]. A heatmap of the top 50 highly expressed 
features from six redefined clusters using cell markers was 
created using tissue-specific markers,a heatmap of the top 
100 highly expressed features based on clusters were pro-
duced from tissue-specific markers. Metastatic malignancies 
showed high ERBB2, CLDN11, and CDK12 levels, whereas 
primary tumors had high NOTCH2, NOTCH2NL, KIF5B, 
and ERBB4 levels. Gastric cancer cells express more Notch 
signaling pathway-associated proteins, such as Notch2, than 
normal tissues [146]. KIF5B and ERBB4 levels boost can-
cer cell proliferation. Cancer metastasis involves CDK12, 
ERBB2, and CLDN11. Studies have connected CLDN11 to 
tumor migration and metastasis [28]. Although the theorized 
"seed"-and-"soil" notion has yet to be fully described, stom-
ach cancer aetiologies are partially known and empirically 
proven. It has been found that lymph node metastasis-prone 
subclones are more likely to possess CLDN11, a cell adhe-
sion-related tight junction protein family member. Cancer 
cells invade lymph nodes from primary tissues. Future stud-
ies should examine transcriptomic, genomic, and geographi-
cal information from primary metastatic tumors to determine 
survival and evolution forces in the cancer-related micro-
environment and uncover gastric cancer drivers [67, 138].

Tumor Microenvironment

Despite a major focus on malignant cells, non-cancerous 
cells, such as stromal and immune cells, play significant 
roles in tumor formation and treatment responses [126]. 

Ongoing evolutionary and ecological processes have been 
demonstrated, including constant interaction between can-
cer cells and the tumor microenvironment (TME). Non-
cancerous host cells such as fibroblasts, endothelial cells, 
and neuroendocrine and adipocyte-derived immune system 
cells compose the TME. The extracellular matrix (ECM) 
and soluble products such as growth factors, hormones, 
cytokines, and extracellular vesicles are also present in the 
TME [73]. Understanding the molecular and cellular differ-
ences between tumor and normal host cells in the TME is 
essential. It is challenging to interpret processes and identify 
targets for intervention because of the wide variety of non-
tumor host cells in the TME [137]. Therefore, deep sequenc-
ing at the single-cell scale is essential to deciphering the 
heterogeneity of the TME.

Based on a scRNA-seq analysis of human lung cancer, 
40,250 different cells were collected to create a 52,698-cell 
TME transcriptome catalog [131]. Fifty-two stromal sub-
groups, including previously unknown fibroblasts, endothe-
lial cells, and immune cells associated with tumors, were 
revealed. Compared with non-malignant counterparts and 
tumor tissue-associated counterparts, each subtype displayed 
distinct pathway activity [73]. Several stromal cell markers 
were negatively associated with patient survival regardless 
of tumor stage. Moreover, analysis of gene expression in the 
tumor stroma can identify therapeutic targets [88]. By using 
scRNA-seq, scientists have uncovered transcription factors 
that may transform anti-tumor cells into cancerous cells.

Single‑Cell RNA Sequencing of Tumors and Personalized 
Therapy

scRNA-seq-based precision cancer treatment approaches can 
improve tumor diagnosis, prognosis, targeted therapy, early 
detection, and non-invasive monitoring [92]. With single-
cell sequencing, rare variants, and specific cell expressions 
can be found with great accuracy. Rare tumor tissue vari-
ants can be identified, thereby advancing cancer genomics, 
drug resistance, and biomarker analysis [77]. More signifi-
cant tumor heterogeneity is associated with poor prognosis, 
including treatment response, metastasis, and overall sur-
vival [92].

Founder gene mutations can be identified from the tumor 
phylogenetic tree to predict response to therapy. Analysis 
of individual cell sequences can uncover low-abundance 
variants that may help in identifying drivers of drug resist-
ance. RNA-seq technology has successfully modeled drug 
resistance dynamics in breast cancer metastases [77]. After 
paclitaxel administration, cancer cells in metastatic disease 
stopped growing and died, but those resistant to the drug 
regrew. Researchers can elucidate genomic, epigenetic, and 
transcriptomic heterogeneity using the same cellular genome 
and transcriptome [139]. Drug development includes the 
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following steps: discovery of drug targets, screening of 
drug candidates, determination of drug resistance, drug 
toxicity, and drug pharmacokinetics. Compared with mas-
sive genomic data, scRNA-seq for drug development can 
provide a deeper and more comprehensive understanding 
of responding and non-responsive individual cells. There-
fore, scRNA-seq data are more efficient, accurate, and reli-
able than bulk genomic data. For example, scRNA-seq can 
identify drug candidates and targets resistance to drugs and 
toxicity.scRNA-seq technology enables early diagnosis and 
non-invasive monitoring of tumors. Finally, circulating 
tumor cells (CTCs) can provide insight into a metastatic 
spread [129]. The study of CTCs can also help to discover 
clones that invade surrounding tissues early in the tumor. 
Single-cell transcriptome data can reconstruct transcrip-
tional dynamics during development, differentiation, and 
clonal evolution using algorithms such as Wanderlust or 
Monocle. It is possible to identify signature transcriptions 
of tumor states, which will significantly impact treatment 
decisions [132].

Tumor Cells and Immunotherapy Response

scRNA-seq has led to a unique insight into the tumor-
internal and external pathways that determine response to 
and, ultimately, resistance to immunotherapy [57]. Through 
meticulous study of individual cells, genomics, transcrip-
tomics, epigenomics, and proteomics provide a wealth of 
information for studying tumor molecular and cytology. 
As a result, single-cell immune and stromal cell assays are 
effective in identifying cell types and conditions associated 
with patients' shared immunotherapy responses. Research 
of the transcriptome of individual tumor cells allows for the 
classification of tumor types and cellular hierarchies [45], 
as well as the identification of transcriptome characteristics 
associated with treatment response or drug resistance.

For example, 31 melanoma patients were analyzed using 
scRNA-seq based on immune checkpoint inhibitor (ICI) 
therapy[45, 104]. The researchers discovered a transcrip-
tional process in tumor cells that are involved in the resist-
ance of T lymphocytes to therapy. Expression of CDK4 
genes was enhanced, but that of genes encoding proteins 
such as interferon signal transduction or compliments was 
decreased. Additionally, a separate cohort of 112 patients 
showed reduced efficacy for PD-1 targeting. These findings 
demonstrate the value of small-scale single-cell investiga-
tions in deconvoluting large-scale data and in identifying 
therapeutically relevant cellular subpopulations [68, 88].

Lineage Tracing

Lineage tracing attempts to construct a hierarchical tree of 
all descendants derived from a single cell, though it does 

not always incorporate positional information. By track-
ing the state of cells, the ultimate identification of cells in 
embryogenesis and regeneration can be understood [37]. In 
addition, this technology can be used for regulating cell fate, 
predicting tumor origin, and remodeling cell differentiation 
in vitro. In recent years, the development of high-throughput 
scRNA-seq technology has provided a complete transcrip-
tional map of adult tissues and embryos based on millions 
of individual cells [127].

Currently, single-cell genomics methods allow for an 
objective diagnosis of cell identity by collecting thousands 
of gene expression measures while maintaining the cellular 
resolution required for proper lineage remodeling [63]. In 
addition to RNA capture, genomic technologies are cur-
rently used to measure the transcriptome, epigenome, and 
proteome. Advances in computer technology have enabled 
these data to be visualized and interpreted, resulting in new 
insight into biological processes and the identification of 
new cell types. Especially relevant to developmental biolo-
gists, single-cell data can infer the differentiation routes 
of cells [63]. Consequently, these approaches can help in 
identifying transcription factors associated with particular 
branches of differentiation.

In recent years, a large number of analyses of the single-
cell transcriptomes of developing tissues and organs, includ-
ing the inner ear, have suggested that scRNA-seq may be 
used to identify slight transcriptome differences between 
various cell types [30]. At E16.5-E18.5 d of mouse embryo 
development, epithelial cells isolated from the airways begin 
to differentiate towards the distal airway apex. In addition, 
they mainly differentiate into type I alveolar epithelial cells 
(AT1), which have a role in gas exchange, and type II alveo-
lar epithelial cells (AT2), which produce surfactants. Quake 
et al. analyzed 80 single cells in the lung tissue of an E18.5 
d mouse and found five cell clusters, four of which were 
composed of AT1, AT2, ciliated epithelium, and Clara cells. 
The fifth subgroup not only expressed AT1 and AT2 marker 
genes but also showed that progenitor cells with the char-
acteristics of AT1 and AT2 may exist [123], which indi-
cated that single-cell-resolution transcriptome sequencing 
may effectively promote the study of developmental biology 
[85]. By using the single-cell-binding RNA-seq method, the 
mechanism of mouse organogenesis has also been studied at 
single-cell resolution, providing a new holistic view of ani-
mal development. The above findings may also constitute a 
critical step towards understanding pleiotropic developmen-
tal disorders at the biological level and allow for a detailed 
study of the subtle effects of genes and regulatory sequences 
during development [14].

Owing to genome-scale single-cell analysis, our under-
standing has shifted over the past few years from an anima-
tion of discontinuous changes to a dynamic state driven by 
data [63]. These features not only predict the differentiation 
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dynamics of thousands of genes but also infer new cell 
transitions and end states, interactions with the cell cycle, 
and the ability to "cycle between cell states." To draw an 
authentic lineage, the blood relationship of a cell needs to be 
understood. Therefore, future fate maps can provide power-
ful tools for tracing and reconstructing lineage relationships 
[125].

Single‑Cell RNA Sequencing and Disease Prediction

scRNA-seq can be used to identify novel cell types, analyze 
stem cell differentiation and single-cell trajectory construc-
tion, and compare healthy and disease-related tissues at a 
single-cell level. Recent advances in cardiovascular research 
demonstrate the importance of these applications, as evi-
denced by the generation of cell atlases for mammalian 
cardiovascular development and stem cell differentiation. 
To develop effective patient-specific therapeutic strategies, 
single-cell omics can be used in cardiovascular precision 
medicine to characterize responses of individual cells to 
drugs or environmental stimuli. Single-cell transcriptomics 
has also revealed cell subpopulations in adult mouse hearts. 
scRNA-seq of non-cardiomyocyte cells from undamaged 
adult mouse hearts showed an extensive intercellular com-
munication network involving endothelial cells, cardiac 
fibroblasts, and immune cells.

Recent developments in scRNA-seq enable cell types and 
their significance in health and illness to be separated from 
complex tissues and host compartments[51]. This approach 
has altered our capability to understand the immune system 
in unprecedented detail, particularly with regards to pro-
cesses like hematopoiesis, carcinogenesis, the lymph node 
compartment, and responses to microbial ligands [42, 102]. 
The ever-growing amount of data has given rise to analytical 
techniques like computational deconvolution procedures that 
forecast the precise compositions of cell types from large-
scale gene expression data. These algorithms, however, are 
reliant on preexisting knowledge or particular datasets that 
are part of the experimental systems[100, 109].

Cardiac Homeostasis and Disease

scRNA-seq analysis of adult mouse hearts indicated a 
substantial intercellular communication network. Analy-
sis of adult myocardium at homeostasis and after ischae-
mic injury using SORT sequences has revealed various 
known cell types. Additionally, Gladkar et al. suggested 
that ischemia–reperfusion induces cell subsets of many 
different cell types and that Ckap4 is elevated in acti-
vated fibroblasts [44]. To identify gene modules of hyper-
trophic cardiomyocytes, the Smart-seq2 platform has been 
employed to conduct scRNA-seq of adult cardiomyocytes 

at the single-cell level [96]. Moreover, droplet-based 
scRNA-seq was performed on endothelial cells to explore 
the endothelial heterogeneity of neovascularization after 
myocardial infarction [105], and plasmalemma vesicle-
associated protein (Plvap) was identified as a novel marker 
of cardiac neovascularization. The combined data show 
that the intact single-cell properties of cardiac ECs can 
help to block new angiogenesis within the myocardium. 
This property may help to identify new therapeutic targets 
for heart diseases [105].scRNA-seq has also been used 
to evaluate gene expression in cardiomyocytes isolated 
from human embryos [22]. The developmental pathway 
of the human heart has been mapped using single-cell 
tagged reverse transcription sequencing with approxi-
mately 4,000 cardiac cells from 18 human embryos. Gene 
expression in both cardiomyocytes and fibroblasts was 
found to be gradually altered throughout development. 
Using human and mouse scRNA-seq data, cardiomyo-
cytes, endothelial cells, fibroblasts, and epicardial cells 
were compared and showed the highest transcriptional 
similarity in cells from human and mouse cardiomyocytes 
[22]. The results demonstrate higher expression of THY1 
in human fibroblasts,expression of CFB and ITLN1 was 
lower in mouse cardiomyocytes. However, Icam2 was only 
expressed in the endothelial cells of mice, whereas Rnf213 
was expressed exclusively in the mouse epicardium, show-
ing different gene expression patterns. Extensive work is 
underway to develop a single-scale atlas of the adult heart 
[112]. In general, scRNA-seq plays a vital role in under-
standing cellular variation and in identifying critical tran-
scriptional processes associated with cardiac development 
and disease.

Coronary Vessel and Disease

The formation of coronary arteries is a dynamic and 
regular development process, and scRNA-seq technology 
plays a crucial role in explaining these dynamic cellular 
transformations. For example, combining scRNA-seq with 
genetically tracked genes in mice revealed that coronary 
arteries derive from the pre-artery, as they develop through 
a specialized population of veins [116]. scRNA-seq has 
also been used to characterize the cellular status and fate 
in significant vascular lesions. Cells such as vascular 
endothelial cells, vascular smooth muscle cells (VSMCs), 
and immune cells all display different plasticity and sensi-
tivity to extracellular signals [79, 113]. Although VSMCs 
are terminally differentiated cells, they are highly plastic, 
and the use of single-cell analysis helps to delimit their 
ability to differentiate into fibroblast-like cell types. Addi-
tionally, single-cell analysis can help in determining the 
differentiation status of VSMCs in atherosclerosis [141].
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Challenges and Future Perspectives

The goal of scRNA-seq is to bring genomic studies to the 
cellular level, providing a new perspective on our under-
standing of genetics. These tools open up a new field of 
research to analyze the role of individual cells in ecosys-
tems and biological biology. In recent years, there has been 
significant progress in obtaining high-quality single-cell 
data, enabling the discovery of new biological phenom-
ena that conventional bulk genome queries cannot detect. 
Figure 1 illustrates the difference between traditional bulk 
RNA sequencing and single-cell RNA sequencing. The lat-
ter is a powerful tool to explore the complexity of cancer 
and its tumor environment to lead to personalized therapy. 
It also offers novel perspectives to investigate more ways 
of diagnosing and treating common diseases. In addition, 
scRNA-seq has been used to track cell development and 
stem cell research. However, this technology still faces 
several challenges.

Cell integrity and viability are critical for subsequent 
single-cell analysis, requiring that individual cells be sepa-
rated quickly and accurately, with minimal damage to the 
cells. Therefore, to obtain high-quality scRNA-seq data, 
there are four major technical problems that need to be 
overcome: physical isolation of single cells; gene ampli-
fication of a single cell to obtain sufficient substances for 
further analysis; economical and efficient genome analysis 
queries to identify variants that validate research hypothe-
ses; and analysis of introduced errors and biases. To maxi-
mize the quality of single-cell data and ensure that the sig-
nal is not affected by technical noise, each variable must be 
carefully considered when conducting single-cell experi-
ments. The high cost of scRNA-seq is also a non-negli-
gible problem. Although existing detection systems have 
brought the cost of sequencing each cell type to an accept-
able level, the overall cost is still prohibitive because thou-
sands of cells may need to be analyzed. Reducing the cost 
of sequencing will drive the implementation of scRNA-seq 
in oncology and other fields. Temporal and spatial meas-
urement of the molecular profile by using in situ sequenc-
ing and real-time sequencing, as well as in vivo analysis of 
the DNA and RNA from single cells, have been developed, 
but these methods need enhanced sensitivity, coverage, 
accessibility, and cost reduction [93]. In addition, in short-
read RNA-seq technology, errors and biases are mainly 
generated during the preparation of sequence libraries and 
assembly of short reads. These methods have difficulty 
in accurately identifying multiple different subtypes of a 
specific gene. Read coverage and sequencing depth must 
also be increased to overcome insufficient read length. 
Long-read RNA-seq technology overcomes the short-
comings of template expansion, reduces the false-positive 

rate, and can identify longer non-annotated transcripts, 
thus addressing the limitations of traditional short-read 
methods [32, 111]. However, this method is associated 
with problems of reduced throughput, high cost, and 
high sequence error, especially insertion and deletion. To 
reduce random errors, PacBio circular consensus sequenc-
ing (CCS) was developed, which can repeatedly read out a 
molecule over multiple cycles, increasing the depth of the 
sequence. However, this method also reduces the identi-
fication of specific isomers. In addition, the sensitivity of 
long-read sequencing to identify differentially expressed 
genes is lower than that of short-read sequencing [119]. 
Accordingly, a more complete and precise analysis can 
be obtained by hybridization of long-read and short-read 
sequencing [115].

The integration of artificial intelligence (AI) is increas-
ingly being recognized as a pivotal resource in life science 
and healthcare research. Despite being a nascent field, 
research on artificial intelligence is transforming our com-
prehension and outlook on the scientific domain. According 
to recent estimates provided by the European Commission, 
AI-based medical startups receive approximately 13% of 
global venture capital investments, which amounts to €5 
billion [7]. This dedication demonstrates the interest in the 
potential of artificial intelligence to improve healthcare. 
Precision medicine is a cutting-edge approach to treating 
disease. The generation of genomic Big Data (i.e., Big Data 
derived from genome sequencing), the gathering of clinical 
data, and the development of bioinformatics over the past 
ten years have made it possible to pinpoint the genetic fac-
tors underlying the onset and progression of diseases and to 
support clinical patient management. Personalised therapeu-
tic treatments are still scarce despite the high expectations 
[43]. The inadequacy of AI infrastructure and models to 
support the ongoing production of large-scale genomic data 
represents a significant failure. Hence, the challenge lies in 
comprehending the heterogeneous information encompassed 
within this data [94, 121].

The high-throughput profiling of all RNA species gener-
ated by cells is known as transcriptomics. Transcriptomics 
has shown rapid growth in recent years among genetic Big 
Data [136]. RNA sequencing, also known as RNA-seq, is 
a technique that enables the characterization of dynamic 
biological processes that are currently active in a popula-
tion of cells or in individual cells. The evaluation of the 
intricacy of these profiles has the potential to facilitate the 
identification of novel biomarkers and therapeutic targets. 
RNA-seq screenings are increasingly being integrated into 
precision medicine trials [120], AI mining of these data is 
thus required to determine novel clinical targets.

The increasing demand for artificial intelligence (AI) in 
the field of precision oncology will necessitate the presence 
of medical professionals and specialists who possess the 
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ability to effectively interpret outcomes and make informed 
decisions regarding precision therapeutic interventions. 
Additionally, these individuals will play an active role in 
the formulation and implementation of learning strategies. 
Given these circumstances, a highly accurate oncology sys-
tem powered by artificial intelligence will be readily acces-
sible as needed.

In conclusion, the development of scRNA-seq and its 
continuous methodological improvement have led to impor-
tant medical discoveries. scRNA-seq technology has been 

widely used in many aspects, including early mammalian 
embryology, tissue and organ development, the immune sys-
tem, cancer, microorganism, infectious disease, and stem 
cell research. High-throughput scRNA-seq techniques not 
only reveal cellular heterogeneity during disease progression 
and in the immune microenvironment but also contribute to 
further studies on disease turnover, thus guiding early clini-
cal diagnosis, targeted treatment, curative monitoring, and 
prognostic evaluation of diseases. It is expected that scRNA-
seq will soon achieve 100% coverage and accuracy. Due to 

Fig. 5   Illustrations of single-cell 
RNA sequencing applications 
in different fields. (1) tumor het-
erogeneity, (2) tumor microen-
vironment, (3) lineage tracing, 
(4) personalized therapy, and 
(5) disease prediction
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the rapid development of multi-omics scRNA-seq technol-
ogy, single-cell genome, transcriptome, epigenome, and pro-
teome analyses are expected to be performed simultaneously. 
In addition, spatially resolved transcription techniques can 
determine the spatial organization of cells in tissues, revolu-
tionizing the study of tissue function and disease pathogene-
sis [3]. In fact, spatially resolved transcriptomic research has 
become a new field. Moreover, the integration of scRNA-seq 
and AI will become a trend in NGS. scRNA-seq will become 
an indispensable technology to help in more easily treating 
diseases and exploring the life sciences (Fig. 5).
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