
Article https://doi.org/10.1038/s41467-024-49775-z

Machine learning-enabled forward
prediction and inverse design of 4D-printed
active plates

Xiaohao Sun 1,6, Liang Yue 1,6, Luxia Yu1,6, Connor T. Forte1,
Connor D. Armstrong1, Kun Zhou 2, Frédéric Demoly 3,4,
Ruike Renee Zhao 5 & H. Jerry Qi 1

Shape transformations of active composites (ACs) depend on the spatial dis-
tribution of constituent materials. Voxel-level complex material distributions
can be encoded by 3D printing, offering enormous freedom for possible
shape-change 4D-printed ACs. However, efficiently designing the material
distribution to achieve desired 3D shape changes is significantly challenging
yet greatly needed. Here, we present an approach that combines machine
learning (ML) with both gradient-descent (GD) and evolutionary algorithm
(EA) to design AC plates with 3D shape changes. A residual network MLmodel
is developed for the forward shape prediction. A global-subdomain design
strategy with ML-GD and ML-EA is then used for the inverse material-
distribution design. For a variety of numerically generated target shapes, both
ML-GD and ML-EA demonstrate high efficiency. By further combining ML-EA
with a normal distance-based loss function, optimizeddesigns are achieved for
multiple irregular target shapes. Our approach thus provides a highly efficient
tool for the design of 4D-printed active composites.

Active composites (ACs), consisting of active materials that respond
differently to external stimuli, can transform their shapes once sti-
mulated. Typical stimuli include heat1–4, light5,6, water7,8, and magnetic
field9–11. The active shape change depends on the spatial distributions
of constituent active and passivematerials, see the simplest AC bilayer
for example (Fig. 1a). Multimaterial 3D (or 4D) printing technology12–15

is ideal to encode uniquematerial distribution in a highly voxelized AC
to generate pre-programmed, non-intuitive shape changes, which
provides great design freedom. Fully leveraging the large design space
and manufacturing flexibility of 4D printing requires solving a chal-
lenging design problem, i.e., efficiently finding the optimal material
distribution to achieve a target shape change16,17. To address the design
problem for 4D printing, computational design strategies including
gradient-based and gradient-free methods have been developed. For

example, the gradient-based topology optimization (TO) has been
used to guide the design for 4D printing, such as designing shape-
changing behaviors of ACs18–20 or optimizing compliances of soft
actuators21. The TO, however, typically requires the complicated
derivation of gradients andmay encounter difficulties when the active
material involves geometric or material nonlinearity (e.g.,
multiphysics-driven material nonlinearity). Alternatively, the gradient-
free method, such as finite element (FE)-based evolutionary algorithm
(EA), has achieved great success in designing certain shape-change
responses of active composites22–24 or other engineering structural
problems25–28. Such FE-EA approach generally relies on numerous FE
calculations to explore a large design space, thus suffering from high
computational cost. To resolve this issue, efforts have been made on
developing the reduced-order forward models which enables more

Received: 1 September 2023

Accepted: 13 June 2024

Check for updates

1The GeorgeW.Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. 2Singapore Centre for 3D Printing, School
ofMechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore. 3ICBUMR6303CNRS, Belfort-Montbeliard University
of Technology, UTBM, Belfort, France. 4Institut universitaire de France (IUF), Paris, France. 5Department of Mechanical Engineering, Stanford University,
Stanford, CA, USA. 6These authors contributed equally: Xiaohao Sun, Liang Yue, Luxia Yu. e-mail: qih@me.gatech.edu

Nature Communications |         (2024) 15:5509 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5888-1600
http://orcid.org/0000-0002-5888-1600
http://orcid.org/0000-0002-5888-1600
http://orcid.org/0000-0002-5888-1600
http://orcid.org/0000-0002-5888-1600
http://orcid.org/0000-0002-3901-9572
http://orcid.org/0000-0002-3901-9572
http://orcid.org/0000-0002-3901-9572
http://orcid.org/0000-0002-3901-9572
http://orcid.org/0000-0002-3901-9572
http://orcid.org/0000-0001-7660-2911
http://orcid.org/0000-0001-7660-2911
http://orcid.org/0000-0001-7660-2911
http://orcid.org/0000-0001-7660-2911
http://orcid.org/0000-0001-7660-2911
http://orcid.org/0000-0002-5825-6573
http://orcid.org/0000-0002-5825-6573
http://orcid.org/0000-0002-5825-6573
http://orcid.org/0000-0002-5825-6573
http://orcid.org/0000-0002-5825-6573
http://orcid.org/0000-0002-9292-5267
http://orcid.org/0000-0002-9292-5267
http://orcid.org/0000-0002-9292-5267
http://orcid.org/0000-0002-9292-5267
http://orcid.org/0000-0002-9292-5267
http://orcid.org/0000-0002-3212-5284
http://orcid.org/0000-0002-3212-5284
http://orcid.org/0000-0002-3212-5284
http://orcid.org/0000-0002-3212-5284
http://orcid.org/0000-0002-3212-5284
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49775-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49775-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49775-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49775-z&domain=pdf
mailto:qih@me.gatech.edu


efficient inverse design29,30. Yet, accurately and efficiently exploring a
large design space and tackling inverse problems remain to be
challenging.

Recent advancements in machine learning (ML)31 offer new pos-
sibilities for developing fast, computationally affordable, and high-
fidelity predictive models that can be integrated with the optimization
algorithm to achieve an efficient inverse design. For example, Gu and
coworkers have made extensive explorations32–35 on utilizing ML cap-
abilities, such as combining ML with gradient descent (GD) and active
learning32 or with EA33, for materials design. However, existing works
mainly focusedonoptimizingmechanical properties ofmaterials, such
as strength and toughness of composites34,35, auxetic
metamaterials36,37, and responses of soft pneumatic robots38; there is
limited work on ML-based design of shape changes of ACs39–43. Com-
pared to optimizing or extremizing a few properties, the design for
shape changes has unique challenges such as highly complexmapping
from material distributions to shapes (particularly for large deflec-
tions), the high-dimensional nature of the shape data and the varia-
bility of the target shapes. This also places higher demands on the
accuracy of ML models. Therefore, there exist big gaps between
existing methodologies and the shape-change design of 4D-printed
ACs. For AC beams, Zhang et al.39 utilized ML approach to solve the
forward prediction problem. Our recent work40 presents an ML-EA
approach that demonstrates high efficiency in the inverse design of AC
beams with complicated target shape change, which cannot be
achieved by conventionalmethods such as FE-EA. The recurrent neural
network (RNN) is proven to be appropriate to deal with sequential data
arising from the beam deflection41. However, the active beam design is
essentially a one-dimensional (1D) structure with 2D shape change,
which has relatively small design space, is more manageable but has
limited applications. The inverse design of 2D active structures (e.g.,
active plates) with 3D deformation is highly desired to further leverage
the large design space of 4D printing and ACs, which could havemuch
broader applications. However, this is also significantly more

challenging due to the higher-dimensional and more intricate defor-
mation behaviors, the more complicated data mapping, and the tre-
mendously increaseddesign space. For example, as discussed later, for
an active beam design using 24 × 4 voxels for 2D deformation, the
design space is (296 ≈ 8 × 1028); for an active plate with 15 × 15 × 2 voxels,
the design space becomes 2450 ( ≈ 3 × 10135), an increase of more than
10100. Dealing with such a tremendous design space requires new
strategies.

It should be noted that shape transformations of 2D AC sheets
into 3D surfaces due to differential expansion have long been studied
to understand biological morphogenesis44 or harnessed to program
shape changes45,46. These studies have focused on certain geometries,
such as spherical or saddle surfaces. More recently, great progress has
been made in the inverse design for arbitrary target surfaces. One
important approach is to exploit established techniques of conformal
mapping to obtain a spatially varying, isotropic expansion field, or a
metric, thatmaps the planar surface to the target47. The expansion can
be physically realized through not only material expansion such as
swelling, plasticity and growth48,49, but also specially designed
mechanical units such as auxetic materials50,51 and others52. Note that
the metric uniquely determines the Gaussian curvature (K) of the
surface, and thus the conformal mapping is essentially finding an
optimal metric to achieve target K. In fact, the metric change is not
limited to the isotropic expansion. Other geometric mapping strate-
gies have been proposed to optimize the metric with certain con-
straints for various anisotropic physical systems53–55. Although
achieving great success, the geometric approach suffered from some
limitations. First, the Gaussian curvature alone does not determine a
unique state but can adopt different isometric configurations47,48. For
example, a developable, arbitrarily bent surface is isometric to the
planar state (K =0) and thus cannot be achieved through the geo-
metric approach. In this case, voxel-level designs that allow material
heterogeneities in the thickness direction are important. Second,
mechanics has not been accurately considered in the geometric
approach. In general, the shapes prescribed by a designed metric
represent stretch-free configurations56. To achieve so, this
approach essentiallyminimizes stretching energy without considering
bending energy, and the shapes are correct only when the bending
energy is negligible compared to the stretching energy, e.g., infinitely
thin sheet. Thus, in many practical systems where bending is non-
negligible, the geometric design can lead to the shape that deviates
significantly from the target and thus is often used as the initial solu-
tion for further optimizations with mechanics models52,53. In addition
to the geometric mapping, various strategies for surface designs have
been developed for specific physical systems, such as nematic
sheets55,57, origami58,59, lattices60,61, buckling mesosurfaces62, and infla-
table systems63,64. However, a universal and efficient voxel-level design
approach is highly desired, particularly for 4D printing, as it can enable
an integrated and intelligent design-fabrication process.

This work tackles the challenging problem of designing active
plates, i.e., exploits ML for the efficient forward shape prediction and
inverse design for voxelized plates, as illustrated in Fig. 1b. The volu-
metric expansion is used to represent a general active response
(eigenstrain) that can be induced by different mechanisms. A deep
residual network (ResNet)-based ML model is trained using a dataset
acquired from FE simulations. By combining key ingredients such as
the data augmentation by symmetries and the proper selection of
boundary conditions, the trained MLmodel achieves high accuracy in
the shape prediction with complex material distributions. We then
incorporate the ML into both the GD and the EA (gradient-free) algo-
rithms for finding the optimal material distribution based on a target
shape. The ML forward model accelerates the gradient-based optimi-
zation by enabling not only the fast forward prediction but also the
efficient computation of exact gradients via automatic differentiation
(AD). In addition, the ML allows the EA to search solutions in a large

Material distribution M Actuated shape S
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Fig. 1 | Overview of machine-learning (ML)-enabled, voxel-level inverse design
of 4D-printed active composite (AC) plates. a Example of AC actuation: bending
of a bilayer due to mismatch in the active response (eigenstrain) of constituent
active and passive materials. b Schematic of a complete design-fabrication process
for AC plates: the forward prediction of actuated shape through ML, the inverse
design ofmaterial distribution throughML-incorporated optimization, and the 4D-
printed realization of the voxel-level optimized design. Twomaterials are encoded
as ‘1’ (active) and ‘0’ (passive). The voxel-level material distribution is then digitally
encoded into a three-dimensional binary number array (denoted byM). The actu-
ated shape is parameterized as coordinate data of sampling points (denoted by S).
For forward prediction, theMLmodel takes an inputM and produces the output S.
For inverse design, the ML-based optimization algorithm receives a target S and
produces the optimized M.
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design space that is impossible to be explored by FE simulations.
Furthermore, using a global-subdomain design strategy with the two
algorithms, optimized designs in terms of material distributions for a
variety of FE-derived and algorithmically generated target shapes (or
surfaces) are rapidly achieved. By further combining ML-EA with a
normal distance-based loss, optimized designs are achieved for mul-
tiple irregular target shapes. Althoughmany ML-based strategies have
been utilized for the materials design32–35, applying existing meth-
odologies to the shape-change design of 4D-printed ACs is very chal-
lenging due to the high complexities outlined above. Our voxel-level
inverse design approach empowered by ML pave the way for the
intelligent design and fabrication of 4D printing, and is thus promising
in facilitating broader applications of 4D-printed shape-morphing AC
structures.

Results
Physical problem and dataset
In this work, we assume the active plate consists of two materials,
a material with an active expansion (referred to as active material)
upon the stimulus and a material that does not respond to the
stimulus (referred to as passive material), which are encoded as
“1” and “0”, respectively, as shown in Fig. 1b. The two materials
are randomly assigned to Nx × Ny × Nz voxels, with Nx and Ny being
the voxel numbers in two in-plane (x- and y-) directions and Nz in
the thickness (z-) direction, respectively. The material distribu-
tion is therefore digitally encoded into a 3D binary number array
of “1”s and “0”s, denoted by M. Under a certain stimulus, the
active material expands while the passive material does not,
resulting in a shape change of the plate (Fig. 1b). The deformed
shape is represented by the coordinates (xi, yi, zi) of voxel mesh
points sampled on the mid-surface, giving a 3D number array
denoted by S. For the studied active plate, there exists 2Nx × Ny × Nz

possible material distributions, giving a large and complex design
space. For example, here, we consider the case with voxel num-
bers of 15 × 15 × 2 (with the dimension of 40mm × 40mm× 1mm),
which has a huge design space of 2450 ( ≈ 3 × 10135) and is much
greater than that of the active beam considered in our previous
work (296 ≈ 8 × 1028)40.

The FE model for the active plate is developed to generate
the dataset (see “Methods”). We propose four boundary condi-
tions (BCs) that allow the AC plate to deform freely, which mimic
the active response of most ACs in the literature. More

specifically, we adopt the following BCs in our FE simulations

xA = yA = zA =0,

xC = yC , zC =0,

zB = zD:

ð1Þ

whereA,B,C,D are four corner points of themid-surface of the plate as
illustrated in Fig. 2. The first equation of Eq. (1) fix A at the origin and
eliminate the translation of the plate, and the other three equations
eliminate the rotation at A about the z axis, about the axis (−1,1,0) and
about the axis (1,1,0), respectively. Once we have simulation data, we
can easily convert the deformed shapes to those satisfying different
BCs that allow free deformation. Here, we propose such a set of BCs to
mimic the scenario where one corner of the plate is clamped as
follows,

xA = yA = zA =0,

xC0 = yC0 , zC0 =0,

zB’ = zD’:
ð2Þ

where B’, C’, D’ are the three corner points (or nodes) of the corner
element at the mid-surface (Fig. 2). Note that Eq. (2) follows similar
forms with Eq. (1) but is prescribed at different points, which enables
the free deformation of the plate but mimic a corner-clamped
condition. We will refer to the BCs in Eqs. (1) and (2) as the original
and converted BCs, respectively. In addition, the other two BCs (BC3
and BC4), which are detailed in Supplementary Note 1, will also be
evaluated. As will be shown in “Performance of machine-learning
model”, the converted BCs are most beneficial for the ML prediction
and thus will be used throughout the paper unless otherwise
specified.

Due to the large design space, a large amount of training data is
needed. We create 56,250 random material distributions (or designs)
of two types: 31,250 fully random designs and 25,000 island designs.
The former is randomly generated without any pattern constraints,
while the latter is obtained through certain combinations of random
island images with connected domains of “1”s or “0”s (see “Methods”
and Supplementary Fig. 1). The corresponding true actuated shapes
are then obtained through FE simulations (Fig. 2). As a result, the
generated datasets are pairs of material distribution M and actuated
shape S in terms of coordinates of sampling points. Owing to the
symmetries in the geometry, each simulation data can be augmented

Dataset (M, S)

Original boundary conditions

Finite element

Designs

Augmentation (16x)

ML training

Convert
Converted boundary conditions
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C �
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Dataset (M, S), 
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Fig. 2 | Schematics of two boundary conditions (BCs): original BCs (Eq. (1)) and
converted BCs (Eq. (2)). M and S represent the random material distribution
designs and corresponding actuated shapes, respectively. Using the original BCs,
FE simulations are performed to generate the dataset, i.e., pairs of (M, S). The same

BCs are then used to augment the dataset 16 times. Finally, the converted BCs are
used to transform the generated dataset for the ML training. The quadrilateral
AB’C’D’ (red) is taken to be the corner element face that lies on the mid-surface.
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to 16 non-repeating data with flipped and/or transposed material dis-
tribution designs (Supplementary Fig. 2), whose actuated shapes can
be calculated using symmetric rules without need for new simulations.
As the original BCs allow for simple calculation of the new shape
changes, the dataset is augmented first based on the original BCs and
then converted to the other set of BCs. After 56,250 FE simulations and
data augmentation, the size of the entire dataset is 900,000, which is
split into training and validation datasets with fractions of 0.9 and 0.1,
respectively. As detailed in “Methods”, statistics investigations of the
dataset are performed, and the results show that the island dataset
overall exhibits larger displacements (mean value of maximum dis-
placement: 33.0mm) than that of the fully random dataset (mean
value of maximum displacement: 8.4mm) (Supplementary Fig. 3a, b);
the training and validation datasets follow similar distributions (Sup-
plementary Fig. 3c). The data is then used to train theMLmodel, which
will be constructed below.

Machine-learning model for forward prediction
In this section, we present a ResNet-based ML model that can accu-
rately predict the actuated deformation of an AC plate. The ResNet
architecture is well suited for very deep convolutional neural networks
(CNNs) and has achieved widespread successes in various computer
vision tasks, such as image classification65. ResNet has also been used
to predict the mechanical response of magneto-mechanical
materials43. To illustrate the essential idea, we show in Fig. 3a the
ResNet used, which is comprised of N residual blocks. Each block
consists of two convolutional layers (each followed by a batch nor-
malization (BN) layer and a rectified linear unit (ReLU) activation layer),
an addition layer, and an identity skip connection (Fig. 3b). The block
input is thus allowed tobypass the layersof themain branch, providing
a simpler path through the block. For the entire ResNet, the inclusion
ofmany skip connections allows information to propagatemore easily
between shallow and deep layers, thus mitigating issues of vanishing
gradients and degradation in deep CNNs. In addition to the ResNet, we
also build the plain CNN with the same architecture as ResNet but
without skip connections, as well as the graph convolutional network
(GCN), and compare their performances on the active plate design
problem.

We useF to denote the built MLmodel, which receives amaterial
distribution M and predicts the actuated shape S (or (x, y, z)), i.e.,

S= ðx,y,zÞ=F ðθ;MÞ ð3Þ

where x, y, or z consist of values of the specific coordinate component
of all sampling points, θ denotes the parameter set (weights and bia-
ses)ofF . The loss function is thendefined as the sumof squared errors
(SSE) between the predicted response (x, y, z) and the true response
(xtrue, ytrue, ztrue) for a specific design, i.e.,

Lðθ;MÞ=
���ðx,y,zÞ � ðxtrue,ytrue,ztrueÞ

���
2
, ð4Þ

where ||⋅|| denotes the L2 norm operator. The training of the network is
to find the optimal θ thatminimizes the loss Eq. (4) on the training set,
i.e.,

min
θ

L ðθ;MÞ ð5Þ

The actual training process is performed over minibatches of the
training set, i.e., by iteratively calculating the mean loss over a mini-
batch andmaking an update of θ. The Adam, a gradient-descent based
optimizer, is used for the parameter updates. More details on the
construction and training of theMLmodel are described in “Methods”.

Performance of machine-learning model
We first study how the four BCS, the original BCs (Eq. (1)), converted
BCs (Eq. (2)), BC3 and BC4, affect the ML performance. Two ResNet
models with different depths are trained using the data with the four
BCs and their training curves are shown in Fig. 3c. The ResNet-7 (7
represents the number of convolutional layers), which has limited
capability for learning complex shapes, achieves similar performance
on all the BCs, while the ResNet-33 demonstrates much better per-
formance on the converted BCs compared to the other three BCs. This
suggests that shapes with the converted BCs are easier to learn by the
deep ML models. The reason can be explained as follows. Physically,
the converted BCs endow the deformed shape (in terms of coordi-
nates) with some spatially sequential dependency on the voxel, start-
ing from the fixed boundary towards the free boundary of the plate. In
contrast, the original BCs result in a shapewhere each sampling point’s
coordinate depends on the entire voxel information, implying a more
nonlinear mapping between the design and the shape. Therefore, we
will use the ML model with the converted BCs throughout the paper.

Next, we study the effects of network architecture and depth on
the model performance. Figure 3d shows the training curves of vali-
dation loss versus epochs for the plain CNN and ResNet with different
numbers of convolutional layers. The training loss is quantitively
similar to the validation loss and is thus omitted for visual clarity. The
final validation loss values at epoch 20 for these cases are given in
Fig. 3e. The results show that deeper network architectures generally
lead to better performance, but plain CNN encounters degradation
when the number of convolutional layers exceeds 21, which is not
observed inResNet. As a result, ResNet outperformsplainCNN for very
deep networks, achieving its best performance for the number of
convolutional layers equal to 51. For deeper ResNet, the bottleneck
design is often adopted65, whichdoes not improves theperformance in
our case (Supplementary Fig. 4). Therefore, we will not use deeper
network but the ResNet-51 in the rest of this paper. In addition, we also
study the performance of GCN models, which proves to be inferior to
that of both plain CNN and ResNet (Supplementary Fig. 5).

Inspired by our previous work40, we use different networks to
learn the individual coordinates (i.e., x, y, and z) so as to further
improve the model performance. In particular, we consider the fol-
lowing three combinations of the coordinates for the training: (1) one
network to learn (x, y, z), (2) three networks to learn (x), (y), and (z),
respectively, and (3) two networks to learn (x, y) and (z), respectively.
For each network of each case, the loss function takes a form similar to
Eq. (4), with only slight changes in the specific coordinates. The total
loss of different networks of each combination is then used to make
the comparison. Figure 3f shows that the third combination, i.e., one
for (x, y) and one for (z), demonstrates the best performance.

Based on the results above, we train the ML model with the
ResNet-51 architecture, the converted BCs, and the combinations of (x,
y) and (z), for the forwardprediction problem.Theprediction accuracy
of the trainedmodel is illustrated below. Figure 3g, h shows the density
scatter plots of the ground-truth versus predicted values of (x, y) and
(z) of 1 million sampling points randomly picked from the validation
set (180,000 shapes, eachwith 256 sampling points). In both cases, the
datapoints aremainly concentrated on the regression line, while those
for (z) are qualitatively more scattered than those for (x, y). Quantita-
tively, the prediction achieves the R2 > 0.999 for (x, y) and R2 = 0.995
for (z), implying excellent accuracies for all three coordinates. Lever-
aging the symmetries can further enhance the prediction accuracy,
achieving R2 ≈0.999 for (z), as detailed in “Methods”. Figure 3i further
shows comparisons of the ground-truth (gray) and ML-predicted
(colored) shapes for nine datapoints randomly picked from the vali-
dation set,where the contour visualizes theprediction errorΔriof each
sampling point i, which is defined as the distance between the pre-
dicted and true positions (i = 1, 2,…, 256). Themaximum Δri values for
these shapes (marked in Fig. 3i) are significantly less than the edge
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length (40mm) of the plate, demonstrating an excellent agreement
between the ground-truth and predicted shapes even for large defor-
mations. Moreover, to evaluate the model’s generalization ability, we
build additional datasets that differ significantly in pattern types from

the existing fully random and island datasets, as detailed in Supple-
mentary Note 5. The distinction across datasets is illustrated through
their example patterns (Supplementary Fig. 6) and statistics (Supple-
mentary Fig. 7). Our ML model exhibits excellent performance on the
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new datasets, and incorporating the new datasets into the training set
slightly improves the performance (Supplementary Fig. 8). These
demonstrate that our existing ML model has strong generalization
ability.

In addition to the accuracy, the prediction speed of the ML
(ResNet) model is also examined. We perform benchmark tests on the
time cost of the ML and FE for 1000 shape predictions of randomly
generated designs, either the fully random designs or the island
designs. All tests are based on a single CPU core (Intel Core i9-10900)
and one GPU (NVIDIA Quadro P620). As shown in Table 1, the FE pre-
diction requires 11 and 28 h for the two designs, with the island designs
being slower. In contrast, the ML model only takes 3.6 s regardless of
the design type, which is much faster than the FE. These results
demonstrate high efficiency of theMLmodel in the forward prediction
problem. Also, as indicated in our previous work40, high speed and
high accuracy are critical for the inverse design problem.

Inverse design approach based on ML: a global-subdomain
strategy
Next, we introduce the ML-based approach for the inverse design of
material distribution based on target actuated shapes. As discussed
above, the design space for 2D active plates is enormous. Evenwith the
ML model achieving high prediction accuracy, it still cannot directly
handle the fundamentally different inverse design problem where
distinct designs could yield similar actuated shapes. To address this
challenge, a global-subdomain design strategy is adopted, which first
optimizes all voxels globally to obtain a provisional optimal solution
and then adjusts voxels in a subdomainwith relatively large local errors

to further refine the solution (Fig. 4a). In particular, the subdomain is
identified to contain Nsub pixels with the highest local errors, which
may consist of one ormultiple region(s) depending on the spatial error
distribution. Each pixel corresponds to Nz design voxels in the thick-
ness direction. All design voxels within the entire subdomain will be
optimized simultaneously. Note that the subdomain design step may
consist of multiple sub-steps. In each sub-step, the subdomain is re-
identified based on the shape errors of the optimal design of the
previous sub-step. The sub-step is repeated until the achieved solution
converges (or cannot be further improved).

We thenpropose two specific algorithms, theGD (gradient-based)
and the EA (gradient-free) for the optimization. As shown in Fig. 4b, in
general, an optimization procedure consists of evaluating the
design(s) using the ML forward model and generating new candidate
design(s) using either GD or EA algorithm until an acceptable solution
is found or a critical number of generations Ngen is reached. The two
algorithms are thus termed ML-GD and ML-EA, which are detailed in
“Methods”.

It is noted that either ML-GD or ML-EA can be used in the global
design step. In contrast, the subdomain design will adopt the EA only.
This is because compared to the global design, the reduced design
domain (and thus design space) facilitates the random search for
better designs in an EA process. In a GD process, however, the gra-
dients with respect to all voxels always need to be tracked and the
gradient-based design update is already efficient, thus the subdomain
design does not improve the optimization efficiency.

Design results for FE-derived target shapes based on given voxel
patterns
We first consider the FE-derived target shapes generated by intuitively
or randomly designated voxel patterns. More specifically, we generate
intuitive or random designs, and the corresponding actuated shapes
obtained through FE simulations are used as the targets. Albeit still
challenging, this is a relatively simpler case as the shape obtained from
FE simulations can possess features, such as surface continuity and
smoothness, upon which the ML model is trained. In addition,
although our MLmodel uses 15 × 15 × 2 voxels, we specify the intuitive
or random design in a grid with coarser in-plane resolution such that
each grid consists of multiple voxels ( ≥ 2 × 2), but perform the inverse
design at full voxel resolution. In this way, there is more room for the
ML voxels to vary while achieving a shape that approximates the tar-
get. Figure 5 shows the inverse design results for three different FE-

Table 1 | Time cost for 1000 shape predictions with ML
(ResNet) and FE for different types of design: ‘s’ for seconds
and ‘h’ for hours

Time cost for 1000 predictions

Design type, Nx × Ny × Ny ML (ResNet) FE

Fully random, 15 × 15 × 2 3.6 s 11 h

Island, 15 × 15 × 2 3.6 s 28h

For the purpose of dataset generation, the FE simulations can be run in parallel to significantly
reduce the time cost.
The estimation for time cost is based on a single CPU core (Intel Core i9-10900) and one GPU
(NVIDIA Quadro P620).

Design domain Fixed domain

Flattened array for optimization▪ ▪ ▪

(a) (b)Global

Subdomain
No

Gen+1

Gen+1

Yes
ML evaluation Design update

Auto. Differen.

Gradient descent
Shape error{ Constraint penalty

Shape error

Loss

Gen=1

Gen=1
▪ ▪ ▪

▪ ▪ ▪

Stop?Initialization

Selection
Mutation

Crossover

Population of designs

Individual design
ML-Gradient Descent

ML-Evolutionary Algorithm

Target Optimal

Fig. 4 | Inverse design approach based on ML. a Schematic of the global-
subdomaindesignapproach.b Schematics ofML-GDandML-EAoptimizations. The
solid arrows are used for the main logical flow or direct connections, while the

dashed arrows connect objects with explanatory relationships. Regardless of the
algorithm, for consistency, each round of optimization is termed a “generation”
(i.e., “Gen” in the figure) although “iteration” is more commonly used in GD.
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derived target shapes. As will be detailed later, we have performed
different design trials for each target shape, and Fig. 5 only reports the
best-achieved results. The given designs, target shapes, optimal
designs, optimal shapes compared with targets, error maps, and
experimentally 4D-printed, actuated shapes of both given and optimal
designs, are shown in seven columns (from left to right). In column 4,
since the optimization is entirely based on theMLmodel, the resulting
optimal shape (i.e., the ML-predicted shape of the optimal design) is
termed as the “ML-optimal shape” (blue grid). Also, since the ML
always has prediction errors, we then use FE to evaluate the “true
actuated shape” (orange grid) of the optimal design. To quantify the
design accuracy, the approximation errors of the two optimal
shapes against the target shape are obtained, using the absolute
distance of each sampling-point pair in the two shapes (i.e.,

Δrij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxij � x̂ijÞ2 + ðyij � ŷijÞ2 + ðzij � ẑijÞ2

q
, where i, j =0, 1, …, 15) divi-

dedby a reference length (taken as the edge length, 40mm). In column
5, only the errormapof the FE true actuated shape is shown for brevity.
In columns 6 and 7, all printed square sheets are initially flat and only
the actuated shapes are shown. Experimental details can be found in
“Methods”. As shown in Fig. 5, for all three targets, excellent agreement
is achieved between the target (gray surface), the ML-optimal shape
(blue grid) and FE true actuated shape (orange grid), which is quanti-
tively verified by the error map. The experimental actuated shapes of
both given and optimal designs further validate such agreement (Fig. 5
and Supplementary Movies 1–3).

Before turning to other types of target shapes, we proceed to
investigate the performanceof our design approach inmore detail.We
first focus on the first target (row 1 of Fig. 5) but present complete
design results for two separate global-subdomain trials (Supplemen-
tary Fig. 9), one with ML-GD for the global design and ML-EA for the
subdomain design (Supplementary Fig. 9b), the other with ML-EA for
both design steps (Supplementary Fig. 9c). In the global step, ML-GD
andML-EA give different optimal designs, but both result in the shapes
that agree well with the target. Using the error map of the global step,

either with ML-GD or ML-EA, the subdomain is identified, and the
subsequent optimization further improves the result. It is interesting
to see that the subdomain located in the free corners is beneficial for
the design improvement (Supplementary Fig. 9), which is also
observed in the cases with other target shapes (Supplementary
Fig. 10). This is again due to the spatially sequential dependency of the
shape, which further justifies the use of distance-weighted loss func-
tion (Eq. (12)) in the global step, as theoptimal solution ismore likely to
have smaller errors near the fixed boundary while larger errors near
the free boundary.

It is also seen that in the global step, the optimal design byML-GD
is slightly better than that of ML-EA for this target (Supplementary
Fig. 9). To check if this is correct in general, we next study the second
target (row 2 of Fig. 5) and compare the performance of ML-GD and
ML-EA (SupplementaryFig. 11), where the global step is the focus. Since
ML-GD may be affected by the initial solution, to make fair compar-
isons, four ML-GD optimizations are performed using different initial
solutions, i.e., all-passive (“0”s), all-active (“1”s), all-neutral (“0.5”s,
unphysical values), and random designs (Supplementary Fig. 11). The
results show that the ML-optimal shapes of all five cases agree
remarkably well with the target, exhibiting a similar magnitude of
errors (column 4 of Supplementary Fig. 11). This demonstrates the
similar accuracy of two optimization algorithms. However, due to
inherently random ML prediction errors, the approximation errors of
the FE true actuated shape against the target are slightlymoredifferent
across the five cases (column 5 of Supplementary Fig. 11): the ML-EA
achieves the best design, by which the FE true actuated shape even
outperforms the ML-optimal shape slightly; the ML-GD with the all-
active initial design performs worst. Despite the error due to ML pre-
dictions, the five design trials all achieve satisfactory design results,
demonstrating high accuracy of theMLmodel. Based on the results of
the two targets (Supplementary Figs. 9 and 11), the performanceofML-
EA andML-GD is case-dependent. Furthermore, it is also seen that with
ML-GD, the optimal design is highly sensitive to the initial solution,
which is expected for such a highly nonlinear inverse problem. In

Relative error

Top

FE-derived targets Optimal designs and shapes Error maps Experiments

Target Achieved

Target Achieved

Bottom

Target Achieved

Fig. 5 | Inverse design results for the FE-derived target shapes based on given
voxel patterns. From left to right: intuitive or random designs, the corresponding
FE-derived target shapes (green), optimal designs, the corresponding actuated
shapes predicted by ML (blue grid) and FE (orange grid) plotted against the target
(gray surface), approximation error maps of the actuated shapes by FE with the

maximum and average error values (relative to the edge length), and experimental
comparisons of 4D-printed, actuated shapes of the given and optimal designs.
Experimental results for the three targets are also shown in Supplementary
Movies 1–3, respectively. All scale bars: 10mm.
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particular, the solution tends to vary away less from the initial one to
achieve an optimal shape approximation, implying that it easier to
identify a local minimal closer to the initial point in the high-
dimensional loss-design parameter space.

Note that the optimization iterations directly use the ML predic-
tions whose error will be inevitably forwarded to the design process.
Nonetheless, excellent agreement is achievedbetween theoptimal and
the target shapes, demonstrating the high performance of the ML-
based inverse design approach. In addition, the ML-GD achieves the
optimal design in ~3min through 1000 generations, and the ML-EA in
~12min through 100 generations, the latter requiring roughly 200,000
evaluations of different designs. It can be inferred that for the same
target shapes, the FE-EA22 would consume more than 2200–5600 h
(91–233 days), which are estimated using the benchmark time cost for
FE based on a single core (see Table 1). Using the same benchmark, the
FE-based GD (FE-GD) would require 11–28 h, not considering the time
for gradient computation. The time cost for the inverse design with
different algorithms are summarized in Table 2. The time for identi-
fying a subdomain is less than 0.1 s and thus not shown. As the results
shown in Fig. 5 are the best-achieved ones from different design trials,
the time cost for different targets can be different, which are also given
in Table 2. Despite the difference in time cost, the performance of ML-
EA and ML-GD is case-dependent. The proper selection of the algo-
rithm is in general nontrivial and dependent on the specific target
shape. Therefore, in the later examples, we use the global ML-GD and
the global ML-EA, both followed by subdomain ML-EA, and report the
final optimization results.

Design results for algorithmically generated target shapes
We now consider the algorithmically generated target shapes, which
are more challenging for the optimization. This is because the ML-
predicted shapes are represented by 16 × 16 grid points, and hence it is
difficult to well define a target shape, i.e., to accurately give the target
grid points that is physically attainable (i.e., that the actuated shape
can achieve). For example, problematic sampling of grid points (too
large or too small grid spacing) may cause difficulties in the optimi-
zation. Therefore, to make the problem tractable, we generate the
target surface ðx̂ij ,ŷij ,ẑijÞ basedona uniform, reference grid ðûij ,v̂ijÞ on a
square region (see details in “Methods”). Similar to our previous
work40, we then scale the generated surface such that its mean edge
length is 41mm (original length 40mmwith half of the thermal strain
0.05). This approximation may still give errors in the target such as
those in grid point spacing, but the resulting surface can serve as a
reasonable target for the optimization.

Figure 6 shows optimization results for multiple generated target
surfaces with specific forms given in Table 3 (see “Methods” for
descriptions). The target surfaces, optimal designs, optimal shapes
compared against targets, error maps, and experimentally 4D-printed,

actuated shapes are shown in five columns (from left to right). The
color in column 1 indicates the height. In column 5, all printed square
sheets are initially flat and only the actuated shapes are shown.
The first two targets are bow shapes that share the same parabolic
feature while having different heights (rows 1 and 2). Such parabolic
shapes are not easy to achieve through intuitive designs but are well
captured by the ML-optimal designs, as seen in columns 2 to 4. In
addition, the two shapes with distinct heights are not achieved
through different magnitudes of actuation strains in active voxels, but
rather through distinct pattern designs on the identical 15 × 15 × 2
space, which also implies a nontrivial task. The experimental results
eventually validate our optimal designs (column 5). Next, we further
consider two nonuniform bending target shapes, also with identical
form but varying heights (rows 3 and 4). Optimal designs are again
obtained for the two distinct targets based on the same magnitude of
actuation strain in active voxels and are further validated by experi-
ments. Note that these target shapes (rows 1 to 4) are all developable
surfaces,which cannotbeachievedby the design approaches basedon
metric changes47 but can be achieved by the non-intuitive voxel-level
design with heterogeneities in the thickness direction. In the latter
case, our approach proves to be very useful.

In the last example, we consider a non-developable target sur-
face, the twisted parabolic shape (row 5 of Fig. 6)18. Our approach
again yields the optimal design and the corresponding actuated
shapes predicted by ML (blue grid) and FE (orange grid) agree well
with the target (gray surface). Experiments are then conducted to
validate the optimal design, where, to facilitate the validation, we
compare the 4D-printed, actuated shapes with the 3D-printed target,
which achieve remarkable agreement (Fig. 6 and Supplementary
Movie 4). For the same case, we further implement our design in a
smaller AC plate halved in size. As shown in Supplementary Movie 5,
the printed sheet morphs upon heating and eventually achieves the
target, which validates our design on such a smaller length scale.
Moreover, we print our optimal design using two additional material
systems that employ distinct actuation mechanisms and successfully
achieved the target shape change in both cases (see Supplementary
Movie 6 for the shape-morphing process and the actuated sheet).
Details on the length scale and material systems are provided in
“Methods”.

These results demonstrate the great accuracy and efficiency of
our inverse design approach in achieving algorithmically generated,
developable and non-developable surfaces that may not have corre-
sponding true designs and where the generated target points may
involve problematic geometric features (e.g., spacing in grid) due to
sampling. Moreover, our design approach demonstrates general
applicability across various material systems, actuation mechanisms,
and length scales.

Design results for irregular target shapes
Next, we consider the irregular target shapes. In this case, the chal-
lenge in well defining a target becomes particularly severe. First, as
discussed above, it is hard to appropriately specify the grid points with
physically attainable spacing. Second, it is even harder to give the
boundary of the target surface. In extreme cases, general irregular
surfaces may involve boundaries that are physically unattainable by a
square sheet, which would make the optimization intractable. To
resolve thesedifficulties, weuse a patch representation rather than the
grid point representation for the target surface, and this new repre-
sentation allows for extracting the surface normal of each patch and
thus using a new measure of approximation errors (or loss) based on
the normal distance of the achieved grid points to the target surface
(Fig. 7a). This is schematically illustrated in Fig. 7a, where the black
lines denote the measure of approximation errors, or distances
between the target (gray surface, representedbypurplepoints (top) or
patches (bottom)) and the achieved surface (represented by blue

Table 2 | Time cost for the inverse design: ‘min’ for minutes
and ‘h’ for hours, ‘gens’ for generations

Algorithm or design Time cost

ML-GD (1000 gens) 3min

ML-EA, global (100 gens) 12min

ML-EA, subdomain (5 gens) 0.6min

FE-EA (100 gens) 2200–5600h (estimated)

FE-GD (1000 gens) 11–28h (estimated)

Row 1 of Fig. 5 3.6min

Row 2 of Fig. 5 12min

Row 3 of Fig. 5 13.2min

The estimation for time cost is based on a single CPU core (Intel Core i9-10900) and one GPU
(NVIDIA Quadro P620).
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points). Therefore, the new loss can be expressed as

L=
1

ðNx + 1ÞðNy + 1Þ
XNx

i =0

XNy

j =0

wij

���dijðŜÞ
���
2

ð6Þ

where dij(S) denotes the distance of achieved point (xij, yij, zij) to the
target surface Ŝ. With the new target representation and loss function,
there are no strict requirements for the appropriate boundary of targets
or sampling of grid points, as the optimization is essentially to achieve
an actuated surface or patch that conforms to the target surface.

Figure 7b shows an example to illustrate the new strategy. We
define the target again based on the reference grid ðûij ,v̂ijÞ on a square
region, but a rather irregular shape is specified using the form given in
Table 3. Due to the irregularity, the edge length scaling is inappropriate
as the lengths of four edges are unequal; also, the grid points sampled
based on the reference grid have the problematic spacing. As a result,
using the grid point-based target shape and loss function, the optimal
shape is missing where the target has complicated features. In con-
trast, using the triangular patch-based target shape, the optimal shape
well captures the target. In this case, we do not expect the achieved
shape to approximate all grid points, e.g., the corner points, but rather
to conform to the target surface.

To further demonstrate the new strategy, we show two examples
of more irregular target shapes. In the first example, we crumple and
unfold a square piece of paper, which naturally forms a random shape
and is then scanned to serve as the target (Fig. 7c–i). The fine
unsmooth features (or kinks) make it difficult to well define a grid
point-based target shape, i.e., to determine the target points in which
the actuated (optimal) shape should be located. As shown in
Fig. 7c–ii–iv, here, using the triangular patch-based target and the loss
function Eq. (6), the optimization achieves excellent agreement among
the target (gray surface), the ML-optimal shape (blue grid) and the FE-
predicted shape (orange grid). Further, experimental results show
remarkable agreement between the experimentally actuated shape

Targets Optimal designs and shapes Error maps Experiments

h/
L

0.3

0

Target

h/
L

0.25

0

Relative error

Fig. 6 | Inverse design results for the algorithmically generated target shapes.
From left to right: target surfaces, optimal designs, the corresponding actuated
shapes predicted by ML (blue grid) and FE (orange grid) plotted against the target
(gray surface), approximation error maps of the actuated shapes by FE with the

maximum and average error values (relative to the edge length), and experimen-
tally 4D-printed, actuated shapes of the optimal designs. In experiments of row 5,
the target shape is 3D-printed to facilitate the comparison. All scale bars: 10mm.

Table 3 | Mathematical forms for algorithmically generated
targets: x = u, y = v, and z(u,v)

Design Form of zðu,vÞ
Fig. 6 Row 1 z =0:2ðu+ vÞð2� u� vÞ

Row 2 z =0:3ðu+ vÞð2� u� vÞ
Row 3 z =0:1ðu+ vÞ2ð2� u� vÞ
Row 4 z =0:2ðu+ vÞ2ð2� u� vÞ
Row 5 z = � 0:1ð2u� 1Þ2 sin½ðv � 0:5Þπ�+0:1

Fig. 7b z =0:2ðu + vÞð2� u� vÞð� 4
19u + 15

59 vÞ
�ð�5u2 � 3

4u+ 1Þð103 v2 � 2
5 v + 1Þ
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and the original crumpled paper, validating the ML-optimal design, as
seen in Fig. 7c–v and SupplementaryMovie 7. This movie also shows a
complete design-fabrication process from the paper crumpling to final
4D-printed shape.Note that for targetswith severe unsmoothness, one
can pre-smooth the target before the design, as shown in Supple-
mentary Fig. 13. Here, without pre-smoothing, our algorithm implicitly
smooths the target during thedesign. In the secondexample,we scan a
surgical mask as our target shape, which has irregular boundaries

(Fig. 7d–i). To reduce computational cost, we take a part (more than
half) of the mask surface as the target for the actual optimization
(Fig. 7d–ii). Figure 7d–iii–iv show the optimization results where the
actuated shapes predicted by ML (blue grid) and FE (orange grid)
excellently conform to the target (gray surface). Experimental results
further validate that the final actuated shape indeed conforms to the
3D-print target (surgical mask), as shown in Fig. 7d–v and Supple-
mentary Movie 8. These results demonstrate the capability of our

ML optimalTarget FE verification 

Target representation Optimal shapes Error mapsAchieved

Target (points)

Target (patches)

Errors
(pairs of points)

Errors
(point to surface)

Max 3.9%, Avg 0.8%

(a) (b)

(c)

(d)
i ii iii

i ii iii

iv

iv

v

v
Target

Achieved

Max 4.3%, Avg 1.2%

9.8%0

Fig. 7 | Inverse design results for irregular target shapes or patches. a Two
representations of the target surface, the grid point representation (top) and patch
representation (bottom), and corresponding approximation errors for the loss
calculation, the point-pair distances (top) and the normal point-to-surface dis-
tances (bottom). b Comparison of design results obtained through the two stra-
tegies for an algorithmically generated irregular target shape. c Design result for

the scanned target of a crumpled paper. A complete design-fabrication process is
shown in Supplementary Movie 7. d Design result for the patch target of a surgical
mask. Show in (c, d) include the raw target (i) and patch representation (ii), the
optimized shape (iii) and errormap (iv), and the 4D-printed, actuated shape (v). All
scale bars: 10mm. All the error maps are measured for the FE-evaluated actuated
shapes versus the target, and the error values are relative to the edge length.
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design approach in achieving a variety of irregular target shapes,
through the direct approximation or the conforming patches. Equip-
ped with our approach, the voxel-level design strategy is also
demonstrated to be promising in facilitating applications of 4D-
printed shape-morphing structures, such as the customized
smart mask.

Discussions and potential improvements
Our approach that integrates ML with certain optimization algo-
rithms (GD or EA) demonstrates high efficiency in solving inverse
design problems in a complex design space. Although training the
ML model requires a large number of FE simulations (~56,000), this
number is much lower than that of the shape predictions (200,000)
needed in an EA for complicated target shapes, and therefore ML-EA
is always more efficient than FE-EA. In addition, ML allows for rapid
shape predictions and efficient gradient computations via AD,
thereby enabling the computationally low-cost GD process. This thus
offers new possibilities for addressing the challenges faced by TO
(which can be seen as FE-GD), the local minima problem and the
complicated gradient derivation32. More importantly, once an accu-
rateMLmodel is trained, it can be reused for efficient inverse designs
of many different target shapes. Therefore, the time cost for
obtaining the ML model is offset by the significant time savings of
inverse design, when compared to conventional design
methods18,22,23. Furthermore, both data generation and model train-
ing can be further parallelized to improve computational efficiency.
For example, in our 10-group parallelized FE simulations, the use of
10 cores of a CPU does not represent a substantial computational
resource. By using more CPU cores (e.g., 60), which are readily
available across multiple computers or within a cluster, the FE
simulation time can be significantly reduced. This also suggests the
feasibility of scaling our design space (e.g., to 45 × 45 × 2 or
90 × 90× 2 voxels) without leading to prohibitive time costs.

There are potential improvements to our approach. First, we
demonstrate the possibility to design irregular target shapes that are
attainable by a square sheet. For the caseswhere the initial shape is not
square, e.g., triangular or rectangular, or those with finer features that
cannot be adequately captured by the current design space (15 × 15 × 2
voxels), our design approachmay still be applicable without training a
new ML model. For example, one can use cutting if the initial shape is
triangular or rectangular, or combine multiple conforming patches to
construct surfaces containing a larger number of voxels. These
potential modifications could expand the design space of our current
MLmodel and are our ongoing efforts. This ideawasdemonstrated for
AC beams in our recent study41. Second, our printed AC sheets exhibit
some unsmooth features at the voxel boundaries, which arise from
variations in the curing distance for different grayscale levels of DLP
printing. This issue could potentially be addressed through the opti-
mization of printing parameters66 to achievemore accurate printing of
our optimized material distributions. This is our ongoing work. Third,
our ML model is purely supervised by data. A physics-informed ML
model67,68 that incorporates appropriate physical constraints into the
loss function could potentially reduce the amount of data needed,
which will be explored in our future research.

It is worth noting that the proper selection of boundary condi-
tions (BCs) is important in the forward and inverse problems of active
plates. The original BCs preserve all physical symmetries and thus
enable easy data augmentation. On the other hand, the converted BCs
endow the deformed shape (in terms of coordinates) with the spatially
sequential dependency, which is proven to be beneficial for the ML
prediction and the ML-EA optimization. These insights are useful for
the application of MLmodel to other shape-morphing problems of AC
structures.

In addition, our design approach is generally applicable across
various material systems, actuation mechanisms, and length scales.

This also implies the general applicability to other voxelated printing
techniques. The MLmodel and design approach can also be extended
to the cases with multiple (>2) material phases which provides greater
design flexibility. Therefore, our approachwill be useful formotivating
the design for various 4D-printed ACs.

Discussion
We present an approach for shape-change prediction and inverse
design of a 4D-printed active composite plate based on ML and EA. A
residual net (ResNet) based ML model is utilized to predict the shape
change based on the material distribution of the active plate. By
combining key ingredients such as the data augmentation by sym-
metries and the proper selection of boundary conditions, the ML
model achieves excellent accuracy on the validation set with R2

reaching 0.999 for the coordinate (x, y) and 0.995 for (z). In addition,
the ML prediction is much more rapid and computationally inexpen-
sive than the FE model. We then incorporate the trained ML (ResNet)
model into both the GD (gradient-based) and the EA (gradient-free)
algorithms for the inverse design of thematerial distribution based on
the desired shape change. The ML accelerates the GD by enabling not
only the fast-forward prediction but also the efficient computation of
exact gradients via AD. On the other hand, the ML allows the EA to
search solutions in a large design space that is impossible to be
explored by FE simulations. As a result, using a global-subdomain
design strategy with the two algorithms, optimal designs in terms of
material distributions for a variety of numerically generated target
shapes (or surfaces) are rapidly achieved. By further combiningML-EA
with a patch representation of the target and a normal distance-based
loss, optimal designs are achieved for multiple irregular target shapes
and validated by computations and experiments. Therefore, our voxel-
level inverse design approach empowered byMLpaves the way for the
intelligent design and fabrication of 4D printing, and is thus promising
in facilitating broader applications of 4D-printed shape-morphing AC
structures.

Methods
Finite element model
We perform FE simulations using the commercial software Abaqus
(version 2018, Simulia, Providence, RI) to generate the dataset to be
fed into the ML model. In the FE model, both active and passive
materials are modeled using the incompressible neo-Hookean model
with the same modulus. Expansion is achieved through the thermal
expansion in the simulation, although it is not limited to thermal
expansion. To achieve the expansion mismatch, the coefficient of
thermal expansion is set to be 0.001 for active material and 0 for
passive material. A 50 °C temperature increase is applied to the entire
plate, upon which the active material phase is subjected to a linear
strain of 0.05. The plate has a dimension of 40mm×40mm× 1mm,
which is meshed into 45 × 45 × 4 = 8100 C3D8H (eight-node linear
brick, hybrid) elements. Mesh convergence study has been performed
to ensure the mesh independence of FE results. The two materials are
assigned to Nx × Ny × Nz (i.e., 15 × 15 × 2) voxels and each voxel has (45/
Nx) × (45/Ny) × (15/Nz) elements.During the shape change, thepotential
self-contact of the plate is not accounted for. The building and running
of the entire FE model are automated through a Python script, which
reads in binary number arrays of ‘1’s (active) and ‘0’s (passive) and
yields the corresponding actuated shapes.

Dataset preparation and statistics
The FE model is used to obtain the true actuated shapes of 56,250
randomly generated designs, which include two types: 31,250 fully
random designs and 25,000 island designs. Example patterns of each
type are shown in Supplementary Fig. 1a. As these designs are repre-
sented by 3D binary arrays with a shape of 15 × 15 × 2, the first type of
design is simply obtained through the function randint of NumPy
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library, giving random arrays without any pattern constraints; whilst
the second type is obtained through certain combinations of random
island images with connected domains of “1”s or “0”s, which are
detailed in Supplementary Note 1. Next, FE simulations are performed
using the original BCs (Fig. 2), and pairs of material distributionM and
actuated shape S constitute the dataset, which is then augmented 16
times following the symmetric rules. Supplementary Fig. 2 illustrates
the symmetries and augmented designs, whose actuated shapes can
be calculated without the need for new simulations (see the caption).
With the original BCs, the dataset is augmented 16 times, yielding
900,000 data in total, which is then converted to the other set of BCs.
Finally, the dataset is split into training and validation datasets with
fractions of 0.9 and 0.1.

For the dataset generation, we perform FE simulations in parallel
across 10 groups, each using a single core of a CPU (Intel Core i9-
10900), which takes about 95 h. This setup does not represent a sub-
stantial computational resource. In fact, our current CPU supports
running 20 simulations simultaneously owing to its 10 physical cores
with hyper-threading. Therefore, the FE simulation time may be sig-
nificantly reduced depending on a user’s computational resource.
Moreover, this is faster than the benchmark tests of FE simulations
shown in Table 1, which is based on a single CPU core.

We study the statistics of the dataset. For each data (pair ofM and
S), the maximum displacement is calculated. The distributions of the
maximumdisplacement for different datasets are then obtained. First,
we compare the distributions of the fully random dataset and the
island dataset under both original BCs (Supplementary Fig. 3a) and
converted BCs (Supplementary Fig. 3b). In both sets of BCs, the island
dataset overall exhibits a larger maximum displacement than that of
the fully random dataset. In converted BCs, for example, the mean
value of the maximum displacements is 8.4mm for the fully random
dataset and 33.0mm for the island dataset, respectively. This implies
large displacements compared to the edge length (40mm). Second,
the training and validation datasets, which are based on the converted
BCs, follow similar distributions (Supplementary Fig. 3c). This is
expected since the twodatasets (training and validation) are randomly
sampled from the entire dataset.

Construction and training of the ML models
Our ResNet consists of an image input layer, Nblock residual blocks,
and a regression layer (Fig. 3a, b). For the input layer, a single
material distribution has three dimensions (x, y, and z), which are
modeled as two spatial dimensions and one channel dimension of an
image, respectively. All convolutional layers are 2D convolutional
layers with filter size of [3 3]. The implementation, training, and
testing are conducted using MATLAB (2022a, MathWorks, Natick,
MA). Before the training, all the input and output data are normalized
using the z-score method, i.e., x’ = (x-mean(x))/std (x), where x and x’
are the raw and normalized feature values, respectively, and mean is
the mean value and std is the standard deviation. The randomly
generated raw inputs (numerous “1” and “0”) show a mean value of
0.5 and a standard deviation of 0.5. As a result, the input state “0” and
“1” become “-1” and “1” after normalization. Such normalization is
found to improve the network performance. Regarding the hyper-
parameters, the initial learning rate is set to 0.001, which decreases
by multiplying a factor of 1=

ffiffiffi
2

p
every 12 epochs. The training stops

after the validation loss converges. The mini-batch size during
training is set to 512. The adaptive moment estimation (Adam)69

optimizer is used to train the network. The model training takes
about 10 h on a single GPU (NVIDIA Tesla V100). The total time for
preparing the dataset and training the ResNet model is thus about
105 h. In addition to ResNet, we also build the plain CNN and GCN
models. Our CNN has the same architecture as ResNet but without
skip connections. Details on our GCN implementation are provided
in Supplementary Note 4.

Leveraging symmetries to enhance the ML prediction accuracy
The symmetries can also be used to enhance the ML prediction
accuracy. With a given design, three symmetric designs are obtained
using the transpose (“Swap X,Y”) and “Flip Z” operations as shown in
Supplementary Fig. 2. The ML model is used to predict the shapes of
the three transformed designs, which are then converted back into
shapes corresponding to the original design. We thus have four pre-
dicted shapes for the same design, which are averaged to give the final
prediction. Note that the other symmetries are not used, as the
adopted converted BCs prevent us from recovering the shapes of the
original design. Applying such an averaging approach to the coordi-
nate (z) improves the prediction accuracy, increasing R2 from 0.995 to
0.999. The prediction of (x, y) already achieves R2 > 0.999, so the
averaging approach is not used. Note that using symmetry to achieve
higher accuracy will require four times the computational time of one
regular prediction. Therefore, in our inverse design tasks, we use this
enhanced ML model in the final evaluation of the achieved solution,
but not in the optimization process.

ML-GD approach for global design
InML-GD approach (Fig. 4b), the pre-trainedMLmodels (ResNet-51 for
(x,y) and (z)) are used to predict the actuated shape. To minimize the
error between the achieved shape and the target, we use the mean
squared error (MSE), i.e., the L2 norm of the shape difference divided
by the number of coordinate data, as a loss term:

L1ðθ;MÞ= 1
3ðNx + 1ÞðNy + 1Þ

XNx

i =0

XNy

j =0

ðxij � x̂ijÞ2 + ðyij � ŷijÞ2 + ðzij � ẑijÞ2
h i

,

ð7Þ

where (xij, yij, zij), components of (x, y, z) ( =F (θ; M), see Eq. (3)), are
the ML-predicted coordinates of all sampling points (voxel mesh
points on themid-surface) of an individual designM; ðx̂ij ,ŷij ,ẑijÞ are the
target coordinates of the corresponding points; i and j represent the
indices for the grid points in the x- and y-directions; and θ denotes the
parameter set of the pre-trained forward model, F . Here, the design
variableMi (component ofM) must be discrete values of -1 (passive) or
1 (active) to be physicallymeaningful (these are normalized values of 0
and 1, as described in “Construction and training of the ML models”,
“Methods”). This poses a discrete variable optimization problem,
which is difficult asM has to be continuously updated in a GD process.
In addition, unphysical values ofM, in particular |Mi | >1, may produce
unexpected outputs F (θ; M) in Eq. (7) during the optimization. To
address these issues, we enforce the design M to be an output of the
hyperbolic tangent function, such that |Mi | <1,

M= tanhðM’Þ ð8Þ

where M’ takes place of M to be the new design variable and can be
continuously updated. Further, to enforce the discrete variable con-
straint, we propose a second loss term that penalizes the deviation of
Mi from its constrained values (−1 or 1),

L2ðMÞ= 1
Nvoxel

XNvoxel

i = 1

ð1�M2
i Þ, ð9Þ

where Nvoxel is the number of design voxels. Adding up the two loss
terms and using Eq. (8), the total loss function for the inverse problem
is thus given as

LGDðM’Þ=L1 +βL2, ð10Þ

where β is the weighting factor for the constraint penalty, which is a
hyperparameter.We use β =0.1 in our optimizations. Then, the goal of
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the optimization is to minimize the loss function Eq. (10) by iteratively
adjusting M’, which can be expressed as

min
M0

LGD: ð11Þ

The Adam optimizer is used in theML-GD. Themaximumnumber
of generations (i.e., “iterations” commonly used in GD) is set as
Ngen = 1000. Once the entire process is complete, the optimizedM’will
be processed through Eq. (8) and then rounded off to either −1 or 1.
Note that a gradient-based approach requires computing the deriva-
tives ∂LGD=∂M’, which could be complicated and time-consuming by
the conventional approach. Here, the ML-based forward model
involves differentiable operations only and thus naturally allows
tracking of gradients via AD. Thus, exact ∂LGD=∂M’ values can be
computed efficiently.

ML-EA approach for global or subdomain design
EA is a population-based stochastic search technique that utilizes the
principles of natural selection to seek optimal inputs producing
desired outputs70. The ML-EA therefore performs the optimization
on a population of designs or individuals (Fig. 4b). In a design gen-
eration, we use the pre-trained ML model to predict the actuated
shapes and calculate the loss values of all individuals. The population
is then evolved via the selection,mutation, and crossover operations,
such that good individuals survive and reproduce whilst bad indivi-
duals are eliminated. More details can be found in Supplementary
Note 7. In ML-EA, the loss function is modified from Eq. (7) to the
following form

LEA =
1

3ðNx + 1ÞðNy + 1Þ
XNx

i=0

XNy

j =0

wij ðxij � x̂ijÞ2 + ðyij � ŷijÞ2 + ðzij � ẑijÞ2
h i

,

ð12Þ

which is still ameasure of how close the actuated shape is to the target,
but a weighting factor wij for sampling points is introduced. We use
wij = 1/(i + j + 1) for the global optimization step, where i + j + 1 repre-
sents a topological distance of the sampling point from the starting
point (i.e., the fixed point). Similar to ref. 40, this yields a distance-
weighted loss function that favors to sequentially optimize the plate
shape from the fixed boundary to the distant free boundary, such that
the later improvement in the distant part would not affect the shape in
the nearer part, thereby benefiting the EA iterations. In the subdomain
optimization step, we usewij = 1 such that Eq. (12) recovers Eq. (7), the
normal loss based on shape MSE. Note that no additional loss is
included since the binary constraint of a design (array of ‘1’s and ‘0’s)
can be naturally met under selection, mutation and crossover
operations in an integer-valued EA process. To summarize, the goal
of the optimization can be expressed as

min
M

LEA subject toMi 2 f0,1g: ð13Þ

The following EAparameters are used: population size (number of
individuals) =2000; Ngen = 100 for the global optimization and Ngen = 5
for the subdomain optimization.

Materials and 4D printing
The ML-optimal designs are validated by the 4D printing experiments
with an ink that enables volatilization for shape morphing71. The resin
was formulated with a volatile monoacrylate component with a low
boiling point (isobornyl acrylate) and a nonvolatile oligomer diacrylate
(aliphatic urethane diacrylate) as a crosslinker. The grayscale digital
light processing (g-DLP) printing technique is used to print the
designed structure, where the degree of conversion (DoC) of the resin
can be spatially controlled by the assigned grayscale level (and thus

light intensity)15,40. Our ML-optimal designs are converted into grays-
cale printing slices such that the active (“1”) andpassive (“0”) voxels are
printed using brighter (0% grayscale) and dimmer (60% grayscale)
lights and thus lead to well-cured (higher-DoC) and partially cured
(lower-DoC) material phases, respectively. The printed structure is
then heated to facilitate the monomer volatilization. The partially
cured phase (“0”) contains more residual monomers that can volatize
at elevated temperatures and thus showsmore volume shrinkage than
the well-cured phase (“1”). The mismatch of the shrinkage strain thus
induces the shape transformation.

The photocurable resin is prepared by mixing isobornyl acrylate
(IOBA, Sigma-Aldrich) and aliphatic urethane diacrylate (AUD, Ebe-
cryl 8402, Allnex, GA, USA) in a weight ratio of 1:1. Then, 1 wt%
photoinitiator (Irgacure 819, Sigma-Aldrich), 0.08wt% photo-
absorber (Sudan I, Sigma-Aldrich), and 0.04wt% fluorescent dye
(Solvent green 5, Orichem International Ltd., Hangzhou, Zhejiang,
China) were added. The resin is thoroughly mixed before printing.
After printing, the sample is placed in an 80 °C oven for 8 h to
facilitate the volatilization of IOBA, inducing shape-shifting. Subse-
quently, the sample with the obtained shape is post-cured for 1min
on each side using a UV lamp to further cure the nonvolatile AUD
residuals and stabilize the structure. This resin is used throughout
the paper unless otherwise specified. Note that the material prop-
erties in experiments are different from those used in FE simulations.
The printed twomaterial phases show amodulus ratio of 0.053 and a
strain mismatch of 0.057, while the FE (or ML) model assumes the
identical modulus and a strain mismatch of 0.05. Such a property
difference would result in different shape changes between ML
predictions and 4D-printed parts. This issue can be resolved by
retraining a new ML model based on practical material parameters
and rerunning the design. Here, instead of retraining a new model,
we adopt a strategy similar to that of our previous work40,41, i.e., tune
the print dimension to approximately compensate for the effect of
property differences through an analytical model for the local cur-
vature. Details are provided in Supplementary Note 9. This dimen-
sion modification strategy offers an efficient way to applying our ML
model across different materials and length scales.

Alternatively, two additional grayscale DLP printable material
systems are presented in SupplementaryMovie 6. The first one, which
undergoes deformation under the same heating conditions, consists
of trimethylolpropane triacrylate (Sigma-Aldrich), Ebecryl 8402, and
n-butyl acrylate (Sigma-Aldrich) in aweight ratio of 1:2:2, with the same
loading of additives (1wt% photoinitiator, 0.08wt% photoabsorber,
and 0.04wt% fluorescent dye, the same for the second one). The
second material system is composed of poly(ethylene glycol) diacry-
late (Sigma-Aldrich) and 2-hydroxyethyl acrylate (Sigma-Aldrich) in a
weight ratio of 1:1. Activation is achieved by swelling in acetone for
~7min, followed by drying in air.

Mathematical forms for algorithmically generated targets
The surface equations x, y, and z are constructed from 2D parametric
variables u and v that range between 0 and 1. For simplicity, all the
complexity of the surface is confined to z, as such, x u,vð Þ=u,y u,vð Þ= v.
We then use a group of simple functions to construct different target
surfaces that satisfy certain boundary conditions (see Supplementary
Note 10). Themathematical forms of generated targets are provided in
Table 3. Using these forms, the target surfaces in terms of points,
ðx̂ij ,ŷij ,ẑijÞ, are sampled based on a uniform, reference 16 × 16 grid,
ðûij ,v̂ijÞ. Therefore, the target ðx̂ij ,ŷij ,ẑijÞ may have nonuniform spacing
depending on the specific forms, but can still serve as a reasonable
target for the optimization.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and its supplementary information files.
The generated dataset and the pre-trained model are available in
Kaggle72: https://www.kaggle.com/datasets/sunxiaohao/dataset-for-
active-shapes-of-ac-plates. Source data are provided with this paper.

Code availability
The codes for the dataset generation, themachine-learningmodel, and
the inverse design are available in Zenodo73: https://github.com/
XiaohaoSun/ML_4DP_AC_plates.
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