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Abstract

DnaK is a chaperone that aids in nascent protein folding and the maintenance of proteome 

stability across bacteria. Due to the importance of DnaK in cellular proteostasis, there have 

been efforts to generate molecules that modulate its function. In nature, both protein substrates 

and antimicrobial peptides interact with DnaK. However, many of these ligands interact with 

other cellular machinery as well. Recent work has sought to modify these peptide scaffolds to 

create DnaK-selective and species-specific probes. Others have reported protein domain mimics of 

interaction partners to disrupt cellular DnaK function and high-throughput screening approaches 

to discover clinically-relevant peptidomimetics that inhibit DnaK. The described work provides a 

foundation for the design of new assays and molecules to regulate DnaK activity.

Introduction

The heat shock protein 70 (Hsp70) family aids in the maintenance of protein homeostasis, 

or proteostasis, across species. In bacteria, the major Hsp70, DnaK, is known as a central 

hub of the molecular chaperone network [1], as it collaborates with chaperonins (GroEL) 

[1,2], disaggregases (ClpB) [3], and other chaperones (HtpG) [4-6], as well as proteolytic 

machinery (Figure 1) [7]. DnaK plays an integral role in nascent protein folding [1], 

especially for multidomain proteins [8] and those with complex tertiary structures [1], and 

responds to stress by aiding in the resolution of misfolded and aggregated proteins [8,9]. 

Due to its varied roles, loss of dnaK can have pleiotropic effects. In Escherichia coli, ΔdnaK 
cells exhibit increased heat sensitivity [10], a hallmark of abrogated chaperone function due 

to proteome instability at higher temperatures. In the pathogen Mycobacterium tuberculosis, 
dnaK is essential for growth, as it is required for folding of proteins departing the ribosome 

[11]. In fact, mutation of dnaK affects the virulence of several pathogenic species [12,13], 

and impacts the evolution of antibiotic resistance mechanisms and antibiotic sensitivity 

[14-17]. Similar to the search for inhibitors of eukaryotic Hsp70s that are implicated in 

cancers, there has been a recent focus on the discovery and design of molecules that can 

disrupt bacterial DnaK activity due to its importance in survival and pathogenesis [18]. 
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Inhibitors of bacterial DnaK hold promise not only as antibiotics, but also as adjuvants that 

promote the bioactivity of existing antibiotics or counteract resistance mechanisms [19]. 

Finally, probes for DnaK would help to distinguish its seemingly redundant functions with 

other chaperones.

Targeting DnaK requires an understanding of its catalytic cycle, which is best studied 

in E. coli. DnaK is an ATP-dependent chaperone that cooperates with two co-chaperone 

or cofactor proteins, DnaJ, a J-domain protein, and GrpE, a nucleotide exchange factor 

[1,20-22]. DnaK is composed of a nucleotide binding domain (NBD) and substrate binding 

domain (SBD) connected by a flexible linker domain (Figure 1a). DnaJ binds non-native 

protein substrates and delivers them to DnaK in its ATP-bound “open” state, stimulating 

its ATPase activity and leading to formation of the ADP-bound “closed” state, which has 

up to 20-fold higher affinity for substrate than the open state (Figure 1b) [23-26]. It should 

be noted that DnaJ alone can interact with DnaK to stimulate its ATP hydrolysis activity 

[27,28]. GrpE then exchanges ADP for ATP, leading to substrate release. The cycle repeats 

to facilitate preferred folding trajectories and promote unfolding of misfolded states [8].

The SBDs of eukaryotic and bacterial Hsp70s show a preference for 5–7 amino acid 

sequence motifs with hydrophobic residues flanked by basic residues [29]. The heptameric 

DnaK/Hsp70 ligand NRLLLTG [30] was first discovered in peptide binding assays, and has 

since been studied in complex with various Hsp70 family members along with structurally 

similar peptides (Figure 1c). Structural work indicates that the peptide binding cleft in the 

SBD of Hsp70s is similar in bacteria and eukaryotes. SBDs make key contacts with five 

consecutive amino acid residues in protein substrates, as well as other peptide-based ligands 

[30-32].

While several recent reviews have highlighted current strategies for small molecule 

inhibition of bacterial and eukaryotic Hsp70s [18,33,34], here we focus on reports of 

peptide-based molecules that target different regions of DnaK. Many of these peptides have 

been inspired by primary sequences that are known to bind DnaK in nature, which we will 

discuss first. Based on growing structural information on DnaK, we highlight opportunities 

for Chemical Biologists to design new ligands that may represent antibiotic adjuvants or 

enable chemical genetic experiments to understand chaperone function across microbes.

Naturally-derived antimicrobial peptides non-selectively bind bacterial 

Hsp70s

Starting in the late 1980s, Proline-rich Antimicrobial Peptides (PrAMPs) were discovered 

from natural sources that were eventually shown to inhibit bacterial chaperones. PrAMPs are 

a subclass of antimicrobial peptides (AMPs) produced by insects and mammals, as detailed 

elsewhere [53-57]. These short (15–50 residue) host-defense peptides are primarily active 

against Gram-negative bacteria [54,58,59]. Their main structural characteristic is a high 

content of Pro residues (>25%) typically accompanied by an enrichment of basic residues 

in repeat sequence motifs [53]. While many sequences have a net positive charge, PrAMPs 

do not exhibit the non-specific membranolytic mechanism of action typically observed with 

other cationic AMPs [56]. In contrast, studied PrAMPs are stereospecific inhibitors that are 
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internalized by bacterial cells via transporter or permease activities [53,56]. Hence, PrAMPs 

have been proposed as an alternative strategy to existing antibiotics, as they do not lyse 

mammalian cells and do not show cytotoxicity at antibacterial concentrations used in host 

infection experiments [56]. Several well-studied PrAMPs are derived from insects, most 

notably pyrrhocoricin [60], drosocin [61], oncocin [62], and apidaecin, [63,64]; all of which 

have been shown to interact directly with DnaK (Table 1, Figure 2a) [42,46,47,63,65]. As a 

representative example, inspection of pyrrhocoricin-bound DnaK highlights that in addition 

to hydrogen-bonds with the peptide backbone, there is an abundance of van der Waals 

contacts between defined DnaK binding clefts and hydrophobic side chains of the peptide 

(Figure 2b) [42]. Across co-complex structures, the peptide binding cleft contains a buried 

surface area of approximately 600 Å2 [42]. Structural analysis of E. coli DnaK bound to 

insect PrAMPs indicates that peptide ligands typically possess a Leu or Ile residue that fills 

a central deep hydrophobic pocket within the peptide binding cleft (Figures 2a-c), similar 

to key interactions between DnaK and NRLLLTG (Figure 1c). Interestingly, incubation 

of insect PrAMPs with DnaK can lead to activation of its ATPase activity, similar to the 

substrate analog NRLLLTG (Table 1). Some PrAMPs, such as bovine-derived Bac7, have 

been shown to inhibit E. coli DnaK-cofactor mediated protein folding in vitro at micromolar 

concentrations [36]. Hence, DnaK-PrAMP co-complexes provide an excellent resource for 

understanding peptide recognition by the SBD.

Cellular studies with PrAMPs have indicated that DnaK is not the primary target. Analysis 

of E. coli wild-type versus ΔdnaK strains showed that deletion strains remained susceptible 

to Bac7 [36], as well as apidaecin [45]. Photocrosslinking, binding, and translation 

inhibition experiments with apidaecin and oncocin analogs have demonstrated that the 

primary target is the 70S ribosome [45]. Other studies have indicated that PrAMPs can also 

disrupt the expression of chaperonins and outer membrane glycolipids in Gram-negative 

bacteria, as reviewed elsewhere [54]. Hence, there is opportunity for the development of 

engineered PrAMPs that possess greater selectivity for desired chaperone targets.

Modification of natural PrAMP scaffolds led to improved ligands for 

bacterial DnaK

Since PrAMPs have more than one molecular target in vivo, they are unsuitable for 

mechanistic studies on the role of DnaK in a cellular environment. Hence, several groups 

have sought to take inspiration from PrAMPs to produce peptides that selectively bind 

DnaK. Among the most promising is a PrAMP-like molecule called ARV-1502 that 

has reached the early stages of pre-clinical development. ARV-1502 was designed in 

2005 through optimization of pyrrhocoricin-apidaecin chimeras using the sequences of 

thirteen insect-derived PrAMPs (Table 1, Figure 2d) [50]. An N-terminal amino-cyclohexyl 

carboxylic (Chex) moiety was added to the N-terminus to prevent aminopeptidase cleavage 

and weaken interactions with mammalian Hsp70s [65]. To promote cell permeability 

and proteolytic stability, ARV-1502 (also called Chex1-Arg20) was dimerized through a 

C-terminal 2,4-diaminobutyric acid linker, creating A3-APO (Figure 2d). ARV-1502 is 

believed to bind DnaK via interactions between the YLPRP motif and the peptide binding 

cleft of DnaK [42], along with possible contacts to the α-helical lid [69]. A3-APO is 
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viewed as a potential therapeutic, since it shows synergy with some antibiotics against 

Gram-negatives [70], and improves host survival in infection models, which has been 

reviewed by others [71].

Recently ARV-1502 has been further derivatized to improve its affinity for DnaK. Hoffmann 

and coworkers synthesized 182 derivatives to identify sequences that bound E. coli and 

Staphylococcus aureus DnaK by replacing at least one of the seven core residues with 

various side chains (Asp, Lys, Ser, Leu or Phe) (Figure 2d) [49]. One of the most 

hydrophobic sequences (peptide 102) bound 10- and 20-fold better to E. coli and S. aureus 
DnaK, respectively, than ARV-1502. It should be noted that E. coli and S. aureus DnaK 

have approximately 58% sequence identity, yet can still be distinguished by a peptide-based 

ligand [72]. Peptide 102 showed weak binding to E. coli and S. aureus cofactors DnaJ and 

GrpE, and inhibited E. coli chaperone-cofactor folding activity. However, peptide 102 only 

slightly modulated the basal ATPase activity of E. coli and S. aureus DnaK. In cell-based 

assays, 102 showed two-fold increased minimum inhibitory concentration (MIC) values 

against E. coli compared to ARV-1502, but there was only a two-fold further increase in 

MIC when dnaK was deleted compared to wild-type. This data reinforces that DnaK is not 

the primary cellular target of PrAMPs. While this work provides information on a wealth of 

PrAMP-like sequences, it also demonstrates that different biochemical assays (e.g., ATPase 

versus binding) might lead to conflicting predictions for optimal inhibitor sequences.

The same collection of ARV-1502 derivatives were then tested for targeting of bacterial 

ribosomes [73]. Fluorescently-labeled ARV-1502 bound to the 70S ribosome with almost 

equal affinity as observed for E. coli DnaK. The D3KxxYLPRP11 motif is thought to 

mediate interactions with the 50S subunit of the ribosome (Figure 2d). Only 3 out of 

the 182 peptides were found to bind the 70S ribosome, including a sequence with Leu9 

replaced with Lys (peptide 15). Addition of positive charge generally promoted binding to 

the ribosome, perhaps through enhanced electrostatic interactions [74]. Accordingly, peptide 

2, which contains a Lys3 residue, was one of the most potent inhibitors of the ribosome, 

and demonstrated slightly better growth inhibition of E. coli than ARV-1502 (Figure 2d). 

Interestingly, the hydrophobic peptide 102 showed modest inhibition (~ 25%) of translation 

in vitro at 50 μM, while an equal concentration of ARV-1502 had no effect, reinforcing 

that binding data does not always reflect effects in activity assays. Analysis of derivatives 

against E. coli strains with deletions in the sbmA and mdtM transporter genes thought to 

mediate cell uptake showed little change in growth compared to wild-type strains for most 

derivatives tested, suggesting alternative modes of uptake that have not yet been explored.

As an alternate approach to using PrAMP-like sequences, Dalphin et al. designed a 14-

residue DnaK inhibitor, KLR-70 (Figure 2e), which resembles consensus client sequence 

motifs, to selectively target DnaK over ribosomal machinery [39]. A predictive algorithm 

for peptide substrate recognition based on rules developed by Rudiger et al. was used 

to computationally screen a library of 13–14 residue ligands against DnaK [29]. Then 

sequences were biased to bind DnaK over the cofactor DnaJ by replacing aromatic 

residues with aliphatic residues, and flanking positively charged residues were added 

[67,68]. Finally, Gly residues were introduced to reduce the charge density of the resulting 

peptide to avoid membrane lysis and/or non-specific electrostatic interactions. KLR-70 
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displays a stereo-selective, high nanomolar binding affinity for DnaK, as indicated by 

fluorescence polarization assays (Table 1). Since KLR-70, which lacks Pro residues, 

resembles NRLLLTG, it achieves enhanced binding to the peptide binding cleft, compared 

to the PrAMPs oncocin and pyrrhocoricin that may also bind elsewhere on DnaK [47] 

(Figure 2c). However, the exact binding site of KLR-70 was never confirmed. Micromolar 

concentrations of KLR-70 disrupted DnaK-cofactor-mediated refolding of a model substrate, 

but not translation in cell free extracts, and only showed slight perturbation of GroEL/ES-

mediated folding. While KLR-70 binds DnaK at sub-micromolar concentrations, the authors 

rationalized that even small amounts (nM) of unbound DnaK can catalyze protein folding, 

necessitating the need for higher concentrations of peptide to inhibit chaperone activity. 

Further, KLR-70 must compete with DnaJ-delivered client protein in folding assays, which 

does not occur in DnaK binding experiments. Additionally, perhaps because dnaK is not 

essential in E. coli, KLR-70 is a less potent inhibitor of E. coli growth than the PrAMP 

oncocin. Interestingly, the all D-amino acid isomer of KLR-70 inhibits translation in vitro 
and shows greater toxicity against E. coli. While further testing is needed to confirm the 

targets of these peptides in living cells, along with analysis against other bacterial strains, the 

L- and D-KLR-70 sequences represent useful scaffolds to probe protein synthesis and folding 

in bacterial lysates.

KLR-70 is unique among other peptide ligands, as it shows high affinity for DnaK in the 

absence of any unnatural chemical modifications that often appear in designer PrAMPs [48], 

such as A3-APO. While it is unclear if derivatization of ARV-1502 can lead to improved 

selectivity for bacterial DnaK over other cellular targets, the non-proline containing KLR-70 

sequence shows preference for binding to DnaK over the ribosome, indicating that DnaK-

specific targeting in cells is possible.

Design of DnaJ proteomimetics enable multi-domain targeting of DnaK

While PrAMPs primarily interact with the SBD of DnaK and many small molecules that 

target Hsp70s bind to the NBD [33], larger molecules have the potential to target multiple 

domains of DnaK. Structural work has indicated that the N-terminal J-domain, which is 

conserved in DnaJ proteins, makes direct contacts with DnaK even in the absence of 

client [27,28]. In 2022, Nelson et al. synthesized mimics of mycobacterial DnaJ domains 

to disrupt DnaK-cofactor interactions that are essential in the pathogen M. tuberculosis 
(Mtb) [40] and other mycobacteria. Mtb contains two DnaJ proteins, DnaJ1 and DnaJ2, 

which each possess a conserved helix-turn-helix subdomain in the N-terminal J-domain 

that contacts DnaK (Figure 3a). Mutation of the His-Pro-Asp motif in the loop region is 

known to abrogate function [75-77]. Protein mimics of the helix-turn-helix of DnaJ1 and 

DnaJ2 were synthesized that maintained the turn region of each protein, and contained 

an optimized helix III to improve helical packing, and a consensus sequence of helix II 

of each DnaJ (Figure 3b). A rigid dibenzyl ether linker [78] could be installed via Cys 

residues to stabilize the proteomimetics. The resulting 30-mer peptide sequences, termed 

J1 and J2, were evaluated in both the constrained (C) and unconstrained (U) forms. The 

U-series lack the linker that is present in the C-series, and as a result, showed less α-helical 

content and stability in the presence of protease than their respective C-series sequences. 

While most J peptides showed low-micromolar inhibition of DnaK’s cofactor-stimulated 
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ATPase activity (Table 1), only the constrained peptides (J1C and J2C) demonstrated high 

inhibition of chaperone activity at 50 μM (Figure 3b). Crosslinking experiments indicated 

that the structured peptides, J1C and J2C, formed contacts with both domains of DnaK 

[28,79], similar to native J-domains; however, the U-series mimicked unstructured substrate 

and only bound the SBD. Cell-based experiments using the non-pathogenic model organism 

Mycobacterium smegmatis showed that J1C was the most effective inhibitor of cell recovery 

following heat stress (>4-log10 loss of viability). J2C and the U-series only caused a 2-log10 

and 1-log10 decrease in recovery, respectively. Deletion of either dnaJdid not impact the 

sensitivity of cells to J1C.

While J1C shows similar growth inhibition potency in mycobacteria as PrAMPs demonstrate 

against Gram-negatives (Table 1), it requires heat shock for cellular activity and additional 

cellular targets have not yet been evaluated. Further, the sequence of J1C is not optimized, 

as it differs from J2C by only three residues in the turn region. The ability to target multiple 

domains of DnaK using structures that are constrained and protease-resistant may prove 

to be advantageous compared to traditional peptides for downstream cellular experiments. 

Others have recently taken a cofactor proteomimetic approach to inhibit Hsp70 in cancer 

cells using the sequence of the cofactor HOP [80], similar to a previous study based on 

the interaction partner AIF [81], which provide additional examples of protein mimicry to 

inspire future work.

High-throughput screens for the discovery of peptidomimetic DnaK 

inhibitors

Due to the dearth of available chaperone ligands, many groups have sought to discover 

DnaK and Hsp70 inhibitors via high-throughput methods. The Gestwicki laboratory initially 

used ATPase activity as a readout in small molecule E. coli DnaK inhibitor and activator 

screens, as well as mechanistic studies [82-85]. Others have used computational-aided 

rational design [86] and NMR-based analysis [87] to discover small molecules that bind to 

eukaryotic Hsp70 or DnaK, respectively.

Recently, Hosfelt and Richards et al. conducted an ATPase-based high-throughput screen 

against Mtb DnaK and its cofactors DnaJ2 and GrpE to discover anti-infective leads against 

tuberculosis (TB) [35,88]. Out of >25K compounds, the authors showed that telaprevir 

(TP), a peptidomimetic first designed to target the Hepatitis C Virus NS3/4A protease, 

disrupted ATPase activity at low micromolar concentrations (Table 1, Figure 3c). TP binds 

with high nanomolar affinity to the peptide binding cleft of Mtb DnaK, as indicated by 

binding and fluorescence polarization assays, as well as photocrosslinking experiments 

using the analog, probe 7 (Figure 3c). In cell-based assays, TP decreased cell recovery 

following heat stress in M. smegmatis ΔdnaJ1 cells that only contained DnaJ2, but did not 

affect wild-type or ΔdnaJ2 cells. Further, folding experiments showed that DnaJ2-mediated 

chaperone reactions are more sensitive to TP than reactions containing DnaJ1 (Figure 3d, 

top). Concurrent work indicated that dnaJ2 is necessary for chaperone-mediated resistance 

to the frontline TB drug rifampin in mycobacteria [14]. Accordingly, TP decreased the 

frequency of resistance of M. smegmatis to rifampin by ~ 10-fold (Figure 3d, bottom), 
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presumably through inhibition of DnaK-DnaJ2 function. Further, TP potentiated the growth 

inhibitory effect of aminoglycosides by 2- to 4-fold against mycobacteria. While TP has 

poor activity against wild-type M. smegmatis (MIC >100 μM), these results suggest that TP 

could be a promising adjuvant scaffold. Notably, TP has similar inhibitory activity against 

other members of the Hsp70 family, such as E. coli DnaK and human Hsc70, most likely 

due to high sequence [89] and structure conservation among homologs (Figure 1c), which 

precludes its use in host cells. Analysis of structural analogs of TP against various Hsp70s 

and DnaKs, along with studies on cellular uptake, may lead to more selective bacterial 

probes in the future.

The use of screening approaches offers expanded options to discover peptide-like ligands 

for bacterial versus eukaryotic Hsp70s. Others have recently used labeled NRLLLTG for 

fluorescence polarization-based assays to discover amino acid-based inhibitors of eukaryotic 

Hsp70s [18,90,91]. Oligopeptide libraries have been generated to discover ligands for 

the human Hsp70, HspA1A [92], along with yeast 2-hybrid-derived peptide aptamers for 

binding to Hsp70 in cancer cells [93]. Similar approaches for peptide library development 

could be leveraged for the selection of new bacterial DnaK peptide ligands.

Conclusions and implications

Although peptides are obvious scaffolds for the design of DnaK inhibitors, Chemical 

Biologists have only begun to expand upon peptide-based chaperone ligands and inhibitors. 

Much previous effort has focused on the discovery of allosteric small molecule inhibitors 

of DnaK that primarily bind the NBD. However, these molecules are typically micromolar 

inhibitors of DnaK with low selectivity, and few have been tested as antibacterials [100], 

as summarized elsewhere [33,34]. Many of the described DnaK peptide ligands bind to the 

SBD, as it contains a defined peptide binding cleft. The SBD is less conserved than the 

NBD across bacterial DnaKs and human Hsp70s [18]. Others have highlighted that this 

difference is due mainly to variation in the α-helical lid of the SBD and have proposed 

potential “hot spot” residues that may facilitate discrimination between different bacterial 

DnaKs [89]. A key advantage to targeting the SBD is that ligands do not need to compete 

with millimolar concentrations of cellular ATP [94,95], which is necessary for competitive 

inhibitors of the NBD active site [33]. However, a downside of targeting the DnaK peptide 

binding cleft with inhibitors is competition with client proteins that bind to the same 

site with low to mid-micromolar affinities [33,96-99]. Further, these unfolded substrates 

often increase in concentration under stress conditions. Since many of the peptide ligands 

described here only show high nanomolar to low-micromolar affinities to DnaK due to 

the shallow nature of the peptide binding cleft, a remaining challenge in the design and 

discovery of SBD inhibitors is improving affinities to the low nanomolar range. While 

some PrAMPs show sub-micromolar activity against bacterial cells, this is likely due to 

off-target effects. The behavior of PrAMPs with different eukaryotic Hsp70 isoforms and 

the effect of PrAMP glycosylation on Hsp70 interaction has also not yet been thoroughly 

explored. Further analysis of PrAMP cellular mechanisms might provide insight into how 

these peptides achieve a lack of toxicity in mammalian cells and promote specificity in 

targeting bacterial DnaK [54,56]. The optimization of cofactor proteomimetics, as described 

here, might facilitate higher potency and selectivity through increased contacts with both 
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the NBD, linker and SBD of DnaK. The decreased cellular permeability of larger ligands, 

however, may necessitate the addition of permease-targeting sequences for bacterial uptake 

to promote antibacterial activity [55,73,101].

Bacterial studies with ARV-1502 and TP indicate that chaperone inhibitors may serve as 

adjuvants that can be used to potentiate existing antibiotics or combat resistance mechanisms 

in Gram-negative and -positive bacterial species. Similar to connections between drug 

resistance and chaperones in eukaryotes, bacterial chaperone genes have recently been 

implicated in antibiotic resistance [14,15,102,103], which motivates continued efforts to 

find more potent and selective DnaK inhibitors. DnaK-binding assays with counter-screens 

against translation inhibition in a cell-based high-throughput format might facilitate the 

discovery of stable, cell-permeable molecules with desired function. There are a breadth 

of non-natural amino acid building blocks that could facilitate the development of leads to 

validate chaperones as clinically-relevant adjuvant targets.
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Figure 1. The DnaK cofactor network promotes protein folding.
(a) A cartoon depiction of E. coli DnaK bound to ATP (PDB: 5NRO) and ADP (2KHO). 

DnaK is composed of an N-terminal nucleotide binding domain (NBD, salmon) and a 

C-terminal substrate binding domain (SBD, blue) connected by a flexible linker (yellow). 

The SBD is further divided into a beta-sandwich subdomain (purple) and a C-terminal 

alpha-helical lid (blue). (b) Non-native and misfolded proteins are folded by DnaK and 

cofactor proteins DnaJ and GrpE. DnaJ dimers deliver non-native client proteins to DnaK 

in the ATP-bound state, which stimulates its ATPase activity and leads to a conformational 

change and increased affinity for client in the ADP-bound state. The nucleotide exchange 

factor (NEF) GrpE then helps exchange ADP for ATP to release client protein and restart 

the bind and release cycle until the protein is partially or fully folded. Binding of inhibitors 

to the NBD or SBD can interfere with the ATPase or chaperone activities of DnaK, leading 

to an increase in misfolded or unfolded proteins, which can be catastrophic for the cell. 

The representative protein substrate is shown in black (PBD: 3IEP). (c) Superposition of 

the crystal structures of the SBDs of E. coli DnaK, human Hsp72, human HscA, and 

human Grp78 bound to their representative peptide substrates. Root mean square deviation 
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(RMSD) values (all atoms) of the protein structures and peptide ligands were calculated 

separately based on comparison to E. coli DnaK SBD and ligand NRLLLTG, respectively. 

Alignment indicates structural similarity between E. coli DnaK and each Hsp70 homolog 

with complexed peptides. Parts (a) and (b) were modified from a previous report [35].
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Figure 2. Proline-rich antimicrobial peptides (PrAMPs) interact with bacterial Hsp70s and other 
cellular targets.
(a) Superimposed crystal structures of the E. coli DnaK SBD bound to the PrAMPs 

pyrrhocoricin (orange, PBD: 4EZN), apidaecin 1b (blue, 4E81) and oncocin (pink, 3QNJ). 

(b) Hydrophobicity map of E. coli DnaK SBD bound to pyrrhocoricin (PBD: 4EZN) from 

(left) the entrance of the peptide-binding pocket and (middle) red-eye view of the pocket. 

The side-chains of the residues are colored as indicated (Hydrophobicity plugin used in 

PyMOL) [66]. (c) Table with the sequences of natural PrAMPs indicates that the deep 

hydrophobic pocket is typically occupied by nonpolar or hydrophobic residues (highlighted 

in red). Residues in green are hydrophobic residues that reside N-terminal to the deep 

hydrophobic pocket (except for drosocin, for which the residues are C-terminal to this 

pocket). Underlined and bolded residues indicate the DnaK-peptide binding region. (d) 

Table showing the sequences and behavior of designer PrAMPs that have been evaluated for 

interactions with DnaK and the 70S ribosome based on the chimeric PrAMP sequence in the 

first line. The predicted ribosome binding motif is underlined; residues that were varied in 

ARV-1502 derivatives are highlighted in blue. (e) (top) The predicted client peptide binding 
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motif that interacts with DnaK’s SBD [29,39]. (bottom) The amino acid sequence of the 

KLR-70 peptide that targets bacterial DnaK but not the ribosome.
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Figure 3. DnaK-cofactor interactions can be disrupted using mimics of cofactors or substrates.
(a) A cartoon representation of the E. coli N-terminal J-domain structure depicting helices 

II—IV, with the conserved HPD motif highlighted as sticks (PDB: 5NRO). DnaJ shown 

is from a co-complex with DnaK, which resembles the unbound DnaJ structure (PDB ID: 

1BQ0, not shown). (b) Sequence alignment and behavior of the Mtb J-domain helix-turn-

helix subdomains (J1D and J2D) with their respective unconstrained (J1U and J2U) and 

constrained (J1C and J2C) proteomimetics. Helices II and III are highlighted in blue while 

the HPD motif is highlighted in salmon. Residue differences between the J-proteomimetics 

are highlighted in green. See Table 1 for IC50 values for ATPase inhibition; inhibitory 

activity is indicated at 50 μM for in vitro and cellular assays based on a published report 

[40]. (c) Chemical structures of telaprevir (TP) and the photoreactive analog 7, which 

interact with Mtb DnaK as indicated by fluorescence polarization (FP) and crosslinking 

assays. (d) (top) Denatured luciferase reactivation by Mtb chaperones DnaK and GrpE 

containing either DnaJ1 or DnaJ2 ± 100 μM TP demonstrates that DnaJ2 reactions are more 

sensitive to TP than DnaJ1 reactions. (bottom) TP reduces the frequency of resistance (FOR) 

of M. smegmatis exposed to high concentrations of rifampin (RIF). Data was originally 

reported by Hosfelt and Richards et al. [35].
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