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Abstract 

Background Epigenetic scores (EpiScores), reflecting DNA methylation (DNAm)-based surrogates for complex traits, 
have been developed for multiple circulating proteins. EpiScores for pro-inflammatory proteins, such as C-reactive 
protein (DNAm CRP), are associated with brain health and cognition in adults and with inflammatory comorbidities 
of preterm birth in neonates. Social disadvantage can become embedded in child development through inflamma-
tion, and deprivation is overrepresented in preterm infants. We tested the hypotheses that preterm birth and socioec-
onomic status (SES) are associated with alterations in a set of EpiScores enriched for inflammation-associated proteins.

Results In total, 104 protein EpiScores were derived from saliva samples of 332 neonates born at gestational age 
(GA) 22.14 to 42.14 weeks. Saliva sampling was between 36.57 and 47.14 weeks. Forty-three (41%) EpiScores were 
associated with low GA at birth (standardised estimates |0.14 to 0.88|, Bonferroni-adjusted p-value < 8.3 ×  10−3). 
These included EpiScores for chemokines, growth factors, proteins involved in neurogenesis and vascular develop-
ment, cell membrane proteins and receptors, and other immune proteins. Three EpiScores were associated with SES, 
or the interaction between birth GA and SES: afamin, intercellular adhesion molecule 5, and hepatocyte growth 
factor-like protein (standardised estimates |0.06 to 0.13|, Bonferroni-adjusted p-value < 8.3 ×  10−3). In a preterm 
subgroup (n = 217, median [range] GA 29.29 weeks [22.14 to 33.0 weeks]), SES–EpiScore associations did not remain 
statistically significant after adjustment for sepsis, bronchopulmonary dysplasia, necrotising enterocolitis, and histo-
logical chorioamnionitis.

Conclusions Low birth GA is substantially associated with a set of EpiScores. The set was enriched for inflammatory 
proteins, providing new insights into immune dysregulation in preterm infants. SES had fewer associations with EpiS-
cores; these tended to have small effect sizes and were not statistically significant after adjusting for inflammatory 
comorbidities. This suggests that inflammation is unlikely to be the primary axis through which SES becomes embed-
ded in the development of preterm infants in the neonatal period.
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Graphical abstract

Background
Preterm birth (delivery  <37  weeks’ gestation) affects 
around 10% of births worldwide and is closely asso-
ciated with increased likelihood of cerebral palsy, 
neurocognitive impairment, behavioural, social and 
communication difficulties, and mental and cardio-
metabolic health diagnoses across the life course [1–5]. 
These adverse outcomes can be explained, in part, by 
deleterious effects of early exposure to extrauterine life 
on brain and cardiac development, and they are often 
accompanied by changes in blood proteins, includ-
ing those reflecting the perinatal innate and adaptive 
immune response [6–8].

Socioeconomic status (SES) is also associated with 
the adverse neurodevelopmental and health outcomes 
listed above [9–12], and social deprivation is consist-
ently overrepresented among preterm children and 
their families [13, 14]. In a meta-analysis of 43 stud-
ies (n = 111,156 individuals), low SES associated 
with increased inflammatory markers of disease risk 
(C-reactive protein [CRP] and interleukin-6 [IL6]), 

which suggests that pro-inflammatory pathways may 
be important mechanisms for translating social ine-
qualities into health disparities [15]. However, only four 
studies included participants under 10  years of age, 
leaving uncertainty about SES-inflammation correla-
tions in early life [16–19].

Although protein levels are commonly used as bio-
markers of exposure and disease risk, their use is  limited 
because they are often phasic in the systemic circula-
tion, rely on venepuncture, and may not capture baseline 
status or chronicity. For example, inflammation is often 
measured using acute-phase inflammatory proteins such 
as CRP [20, 21], but it is not always reliable [22], particu-
larly in neonates, and a single-time-point measure may 
not reflect baseline inflammation or capture chronic 
inflammation [23]. These challenges have been addressed 
by the development of DNA methylation (DNAm) mark-
ers of protein expression (EpiScores), which are derived 
from a linear weighted sum of DNAm sites that are cor-
related with protein levels. Several EpiScores are associ-
ated with magnetic resonance imaging (MRI) measures 
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of brain health, cognition, child mental health, stroke, 
ischaemic heart disease, Alzheimer’s disease, and lung 
cancer [24–31]. In neonates, DNAm CRP is associated 
with birth gestational age (GA), perinatal inflammatory 
processes, and MRI features of encephalopathy of pre-
maturity [32]. Childhood SES is associated with differen-
tial DNAm in inflammation-related genes [33, 34] and at 
CpG sites that correlate with an inflammation index [35]. 
Adult SES and social mobility are associated with varia-
tions in DNAm in inflammation-related genes [33, 36]. 
Importantly, SES-related DNAm variations are associ-
ated with differences in gene expression so may have 
functional consequences [33, 36].

Several maternal factors are associated with DNAm in 
term infants sampled soon after birth, including mater-
nal smoking [37], diabetes [38, 39], obesity [40, 41], and 
mode of delivery [42, 43]. It is unknown whether these 
associations apply in preterm infants, who have a cur-
tailed in utero exposure, and are sampled after prolonged 
exposure to neonatal intensive care, which is known to 
have widespread effects on the methylome [44].

We investigated relationships between preterm birth, 
SES, and 104 EpiScores enriched for inflammation-
related proteins [26–28, 31, 45]. We tested the following 
hypotheses: First, low GA is associated with differences 
in EpiScores; and second, SES is correlated with EpiS-
cores, and interacts with birth GA, but the relationship 
is attenuated by inflammatory disease burden in preterm 
infants.

Methods
Participants
Participants were preterm infants (born ≤ 33-weeks’ 
gestation) and term-born infants born at the Royal Infir-
mary of Edinburgh, UK. These infants were recruited to 
a longitudinal cohort study designed to investigate the 
effect of preterm birth on brain development and out-
comes with multimodal data collection [46]. Infants were 
recruited between February 2012 and December 2021.

Exclusion criteria were congenital malformation, 
chromosomal abnormality, congenital infection, cystic 
periventricular leukomalacia, haemorrhagic parenchymal 
infarction, and post-haemorrhagic ventricular dilatation. 
These criteria mean the cohort is representative of the 
majority of survivors of modern intensive care practices 
[46].

Final participants included were 217 preterm infants 
(born ≤ 33-weeks’ gestation) and 115 term-born infants, 
with median birth GA of 29.29 and 39.71 weeks, respec-
tively. Their demographic characteristics are shown in 
Table 1. The three SES measures (Scottish Index of Mul-
tiple Deprivation (SIMD 2016) [47], maternal education, 
and maternal occupation) differed between the preterm 

and term groups (Cohen’s d effect sizes 0.52–0.68). Eth-
nicity did not differ between groups and is representative 
of the Edinburgh area [48].

DNA methylation
Saliva samples for DNAm were collected at term equiva-
lent age using Oragene OG-575 Assisted Collection kits 
(DNA Genotek, ON, Canada), and DNA was extracted 
using prepIT.L2P reagent (DNA Genotek, ON, Canada). 
Saliva sampling was used due to accessibility and the 
non-invasiveness of the method; DNAm patterns meas-
ured via saliva samples correlate with brain and other tis-
sue DNAm patterns [49, 50]. We chose to sample at the 
term equivalent gestation time point to include the allo-
static load of both prenatal and early postnatal exposures.

DNA was bisulphite converted and methylation lev-
els were measured using Illumina HumanMethylatio-
nEPIC BeadChip (Illumina, San Diego, CA, USA) at the 
Edinburgh Clinical Research Facility (Edinburgh, UK). 
The arrays were imaged on the Illumina iScan or HiScan 
platform, and genotypes were called automatically using 
GenomeStudio Analysis software version 2011.1 (Illu-
mina). DNAm was processed in four batches.

Raw intensity (.idat) files were read into the R envi-
ronment using minfi. wateRmelon and minfi were 
used for preprocessing, quality control, and normali-
sation [51]. The pfilter function in wateRmelon was 
used to exclude samples with 1% of sites with a detec-
tion p-value > 0.05, sites with beadcount < 3 in 5% of 
samples, and sites with 1% of samples with detection 
p-value > 0.05. Cross-hybridising probes, probes target-
ing single-nucleotide polymorphisms with overall minor 
allele frequency ≥ 0.05, and control probes were also 
removed. Samples were removed if there was a mismatch 
between predicted sex (minfi) and recorded sex (n = 3), 
or if samples did not meet preprocessing quality con-
trol criteria (n = 29). Data were danet normalised, which 
includes background correction and dye bias correction 
[51]. Saliva contains different cells types, including buccal 
epithelial cells. Epithelial cell proportions were estimated 
with epigenetic dissection of intra-sample heterogene-
ity with the reduced partial correlation method imple-
mented in the R package EpiDISH [52]. Probes located 
on sex chromosomes were removed before analysis. 
The cohort includes twins (n = 32); these were randomly 
removed leaving one participant per twin pair. This left a 
final sample size of n = 332.

EpiScore calculation
The 104 protein EpiScores included 100 EpiScores from 
Gadd et  al. [26], a study enriched for inflammatory-
related proteins, excluding those where the required 
CpGs were not available, owing to differences in assay 
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Table 1 Participant characteristics

A  Preterm n = 216, term n = 115, B “Other Asian” includes Sri Lankan (n = 1), Malay (n = 1), C “Other ethnic group” includes Arab (n = 1), Iraqi (n = 1), white Bulgarian 
(n = 1), Fijian (n = 1), Japanese (n = 1), Hong Kong (n = 1), D “Other mixed ethnic background” includes Pakistani/Scottish (n = 2), British/Arab (n = 1), Sri Lankan/Black 
(n = 1), Sri Lankan/Indian (n = 1)

GA Gestational age, SIMD Scottish index of multiple deprivation

Demographic measure Preterm (n = 217) Term (n = 115)

Sex Male 114/217 (52.5%) 64/115 (55.7%)

Female 103/217 (47.5%) 51/115 (44.3%)

Birth GA (weeks)—median (range) 29.29 (22.14–33.0) 39.71 (37.0–42.14)

Birthweight (g)—median (range) 1200 (370–2510) 3450 (2346–4670)

Birthweight z-score—median (range) 0.10 (-3.13–2.07) 0.43 (-2.3–2.96)

SIMD rank—median (range)A 3720 (6–6966) 5344 (267–6967)

Maternal ethnicity African 1/217 (0.5%) 0/115 (0%)

Bangladeshi 0/217 (0%) 1/115 (0.9%)

Caribbean 0/217 (0%) 0/115 (0%)

Chinese 0/217 (0%) 1/115 (0.9%)

Indian 3/217 (2.4%) 1/115 (0.9%)

Pakistani 4/214 (1.8%) 1/115 (0.9%)

White 195/217 (89.9%) 106/115 (92.2%)

White/Asian 2/217 (0.9%) 0/115 (0%)

White/Black African 0/217 (0%) 1/115 (0.9%)

White/Black Caribbean 1/217 (0.5%) 1/115 (0.9%)

Other  AsianB 1/217 (0.5%) 2/115 (1.7%)

Other ethnic  groupC 6/217 (2.8%) 0/115 (0%)

Other mixed ethnic  backgroundD 4/217 (1.8%) 1/115 (0.9%)

Maternal education None 7/208 (3.4%) 0/115 (0%)

Basic high school qualification (1–4) 5/208 (2.4%) 2/115 (1.7%)

Basic high school qualification (≥5) 8/208 (3.8%) 1/115 (0.9%)

Advanced high school qualification 32/208 (15.4%) 3/115 (2.6%)

College qualification 46/208 (22.1%) 8/115 (7.0%)

University undergraduate 61/208 (29.3%) 50/115 (43.5%)

University postgraduate 49/208 (23.6%) 51/115 (44.3%)

Maternal occupation Unemployed 12/213 (5.6%) 1/115 (0.9%)

Homemaker 10/213 (4.7%) 1/115 (0.9%)

Still in full time education 9/213 (4.2%) 1/115 (0.9%)

Sheltered employment 1/213 (0.5%) 0/115 (0%)

Unskilled 11/213 (5.2%) 3/115 (2.6%)

Partly skilled 7/213 (3.3%) 2/115 (1.7%)

Manual skilled 25/213 (11.7%) 9/115 (7.8%)

Non-manual skilled 44/213 (20.7%) 11/115 (9.6%)

Professional 94/213 (44.1%) 87/115 (75.7%)

Sample GA (weeks)—median (range) 40.57 (36.57–45.86) 42.0 (39.86–47.14)

Batch 1 92/217 (42.4%) 46/115 (40.0%)

2 62/217 (28.6%) 56/115 (48.7%)

3 32/217 (14.7%) 1/115 (0.9%)

4 31/217 (14.3%) 12/115 (10.4%)

Maternal smoking 41/214 (19.2%) 3/115 (2.6%)

Maternal diabetes 12/217 (5.5%) 6/115 (5.2%)

Maternal obesity 44/212 (20.8%) 19/114 (16.7%)

Mode of delivery Vaginal delivery 72/217 (33.2%) 43/115 (37.4%)

Instrumental delivery 4/217 (1.8%) 17/115 (14.8%)

Caesarean delivery 141/217 (65.0%) 55/115 (47.8%)
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platform CpG coverage relative to Gadd et  al. [26]. 
For duplicate proteins, those developed using Olink 
platform-identified proteins (antibody-based assays) 
were prioritised over those from SOMAscan platforms 
(aptamer-based assays), due to specificity and repro-
ducibility, and the variable correlation between the two 
methods [53–56] (for details see Supplementary eMeth-
ods, Additional File 1). In addition, we included EpiS-
cores for IL6 [28], growth and differentiation factor 15 
(GDF15) and N-terminal-pro B-type natriuretic peptide 
(NTproBNP) [45], and CRP. The CRP EpiScore used was 
Barker et al.’s seven-CpG variation of Ligthart et al.’s CRP 
EpiScore [27, 31], as this is known to correlate with birth 
GA, perinatal pro-inflammatory exposures, and neonatal 
brain development [32].

For each individual, EpiScores were obtained by mul-
tiplying the methylation proportion at a given CpG by 
the effect size from previous studies. This was performed 
using the MethylDetectR platform [57] for those inflam-
matory proteins currently included and using R for those 
not currently included (CRP, GDF15, IL6, NTproBNP). 
All CpG sites and coefficients required to calculate the 
104 EpiScores are in Supplementary Table 1 (Additional 
File 2).

Statistics
The predictor variables were SES and birth GA. SES was 
operationalised in three ways: neighbourhood-level SES 
using the Scottish Index of Multiple Deprivation (SIMD) 
[47], and two measures of family-level SES, which were 
maternal education (highest educational qualification) 
and maternal occupation (current or most recent occupa-
tion). For further details, see Supplementary eMethods, 
Additional File 1. Birth GA was a continuous variable to 
maximise statistical power [58, 59]. We adjusted for GA 
at saliva sampling, DNAm batch, infant sex, and birth-
weight z-score.

All statistical analyses were performed in R (version 
4.3.1) and were preregistered [60].

Principal component analysis (PCA) was used to deter-
mine the significance threshold for controlling type 1 
error in analyses of multiple EpiScores [61]. We began 
with a correlation analysis, which showed correlation 
coefficients between EpiScores of |0.01 to 0.93| (Fig. 1A). 
To determine the number of statistical “families” among 
the 104 EpiScores, PCA was performed. This yielded 
two principal components with eigenvalues > 1, our pre-
specified threshold, which explained 59.5 and 17.2% of 
variance, respectively (Fig. 1B). Standardised component 
loadings are provided in Supplementary Table  2 (Addi-
tional File 1). In all subsequent analyses, we corrected for 
multiple comparisons across EpiScores and SES meas-
ures using a Bonferroni-adjusted p-value threshold of 

8.3 ×  10−3. This is 0.05/(2 × 3), with two reflecting the two 
principal components for EpiScores and three reflecting 
the number of SES measures used.

We constructed general linear regression models for 
each EpiScore as outcome measure to assess associa-
tions between GA, each of the three SES measures (sepa-
rate models for each of SIMD, maternal education, and 
maternal occupation), and the product interaction term 
SES*birth GA (removing the term if not significant), and 
adjusting for GA at sampling, sex, and batch.

For the preterm subgroup, we additionally adjusted for 
perinatal inflammatory exposures known to be associated 
with the CRP EpiScore as, to our knowledge, this is the 
only DNAm proxy of an inflammatory protein that has 
been studied in this context [32]. These were histological 
chorioamnionitis (HCA), sepsis, bronchopulmonary dys-
plasia (BPD), and necrotising enterocolitis (NEC). Mater-
nal smoking and preeclampsia were not associated with 
DNAm CRP, so are not included as covariates [32, 44]. 
For definitions see Supplementary eMethods (Additional 
File 1) and for frequencies see Supplementary Table  3 
(Additional File 1).

For EpiScores with significant associations with GA or 
SES, we performed a post hoc sensitivity analysis, adjust-
ing for maternal factors that have been associated with 
neonatal methylome in term infants in prior research: 
maternal smoking, diabetes, obesity, and mode of deliv-
ery. A change of standardised β by ≥ 20% or change of 
p-value to ≥ 0.05 was considered significant, and we 
report adjusted  R2 values of each model. For definitions, 
see Supplementary eMethods (Additional File 1), and for 
frequencies, see Table 1.

Results
Associations between gestational age and EpiScores
Gestational age associated with 43 of the 104 EpiScores 
after adjustment for SIMD, maternal education, or mater-
nal occupation (Fig. 2A–C). The proteins represented by 
the 43 EpiScores are listed in Table 2 categorised by func-
tional annotation adapted from the STRING database 
[62], and their broader roles in immune processes and 
inflammation, and the pathogenesis of neonatal diseases, 
where known, are described in Supplementary Table  4 
(Additional File 1).

Twenty-nine (67%) EpiScores negatively associated 
with birth GA (standardised estimates |0.14–0.76|, 
adjusted p-value < 8.3 ×  10−3), and 14 (33%) EpiScores 
positively associated with birth GA (standardised esti-
mates 0.14–0.88, adjusted p-value < 8.3 ×  10−3).

Thirty-three EpiScores associated with low GA irre-
spective of SES measure used in the model. The results 
for all 104 EpiScores are provided in Supplementary 
Figs. 1–9 (Additional File 1).
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Fig. 1 Determining significance threshold. Principal component analysis was used to determine the adjusted statistical significance threshold, 
given multiple statistical comparisons. A A correlation matrix of 104 EpiScores, showing correlation coefficient as red for positive and blue 
negative associations when significant (p < 0.05). B A scree plot of principal components, with the eigenvalues for each component. Standardised 
component loadings for principal components one and two are provided in Supplementary Table 3 (Additional File 1)
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Associations between SES, EpiScores, and the effect 
of inflammatory comorbidities of preterm birth.
Three out of 104 EpiScores associated with SES meas-
ures or the interaction between SES and GA (Fig.  3). 
There was a small effect size association between 
higher afamin EpiScore and higher maternal occupa-
tion (standardised β = 0.06, 95% confidence interval 
(CI) 0.02–0.11, p = 0.0082), and DNAm afamin associ-
ated with the birth GA*maternal education interaction 
term such that afamin positively correlated with birth 
GA among babies with mothers without university edu-
cation, and negatively correlated with birth GA among 
babies with mothers with university education (under-
graduate or postgraduate) (standardised β = , 95% CI 
− 0.20 to − 0.04, p = 0.0041, Supplementary Fig.  10, 
Additional File 1).

Higher intercellular adhesion molecule 5 (ICAM5) 
EpiScore associated with higher SIMD (standardised β = 
0.13, 95% CI 0.03–0.23, p = 0.0079). Hepatocyte growth 
factor-like protein (HGFI) associated with the birth 
GA*maternal occupation interaction term (standardised 
β = −0.10, 95% CI − 0.16– − 0.04, p = 0.0021, Supple-
mentary Fig. 11, Additional File 1), such that HGFI EpiS-
core positively correlated with birth GA among babies 
with mothers who were unemployed, homemakers, in 
full time education, or in unskilled or manual occupa-
tions, but negatively correlated with birth GA among 

babies with mothers in partly skilled, non-manual skilled 
or professional occupations.

In the planned analysis of preterm-born babies only, 
when controlling for inflammatory exposures (sepsis, 
HCA, NEC, and BPD), a greater proportion of  R2 was 
explained (adjusted  R2 = 0.031–0.262 in unadjusted 
models, adjusted  R2 = 0.047–0.392 in adjusted models), 
but the EpiScores no longer met our statistical thresh-
old (p-values > 0.045 with adjusted p-value thresh-
old < 8.3 ×  10−3, see Supplementary Table  5, Additional 
File 1).

Sensitivity analyses
There were few changes to the significant associa-
tions between 43 EpiScores and GA, when models were 
adjusted for maternal smoking, diabetes, obesity, and 
mode of delivery (see Supplementary Table  6, Addi-
tional file  1). There were minor changes in proportion 
of  R2 explained  (change in adjusted  R2 =|0.0001–0.051|) 
and change in standardised β was by 0–12%. All adjusted 
models retained the threshold of p < 0.05, although 4/43 
(6.2%) EpiScores no longer met the adjusted p-value 
threshold < 8.3 ×  10−3.

For associations between EpiScores and SES or an 
interaction between SES and birth GA, there was change 
in adjusted  R2 = |0.002–0.004| and in standardised β by 
6–11% (see Supplementary Table 6, Additional file 1). All 

Table 2 Protein EpiScores associated with birth gestational age

Forty-three EpiScores associated with birth gestational age in regression models adjusted for socioeconomic status. Roles adapted from the STRING database [62]. 
See Supplementary Table 4, Additional File 1, for further details of the functional roles of each protein, including roles in immunity and inflammation, and in preterm 
infants specifically

CCL11 C-C chemokine 11, CCL18 C-C chemokine 18, CCL21 C-C chemokine 21, CCL22 C-C chemokine 22, CCL25 C-C chemokine 25, CD5L CD5 antigen-like protein, 
CD6 T-cell differentiation antigen, CD163 Scavenger receptor cysteine-rich type 1 protein M130, CRP C-reactive protein, CRTAM cytotoxic and regulatory T-cell 
molecule, CXCL9 C-X-C motif chemokine 9, CXCL10 C-X-C motif chemokine 10, FAP fibroblast activation protein alpha, FCGR3B low-affinity immunoglobulin gamma Fc 
region receptor III-B, FcRL2 Fc receptor-like protein 2, FGF21 fibroblast growth factor 21, GDF15 growth/differentiation factor 15, GHR growth hormone receptor, HCII 
heparin cofactor II, HGF hepatocyte growth factor alpha chain, IGFBP4 insulin-like growth factor-binding protein 4, MMP9 matrix metalloproteinase-9, NCAM1 neural 
cell adhesion molecule 1, PIGR polymeric immunoglobulin receptor, SCGF stem cell growth factor, SIMD Scottish Index of Multiple Deprivation, SKR3 serine/threonine 
protein kinase receptor R3, SLITRK5 SLIT and NTRK-like protein 5, VCAM1 vascular cell adhesion protein 1, VEGFA vascular endothelial growth factor A, WFIKKN2 WAP 
Kazal immunoglobulin Kunitz and NTR domain-containing protein 2

Chemokines Growth factors Neurogenesis Vascular development Cell membrane 
proteins/receptors

Other immune 
response

CCL11 FGF21 NCAM1 SKR3 Afamin Complement C9

CCL18 GDF15 Semaphorin 3E VCAM1 CD5L CRP

CCL21 GHR SLITRK5 VEGFA CD6 CRTAM

CCL22 HGF CD48 FAP

CCL25 IGFBP4 CD163 HCII

CXCL9 SCGF alpha CD209 L-selectin

CXCL10 SCGF beta Contactin-4 Lactotransferrin

WFIKKN2 FcRL2 MMP9

FcGR3B S100A9

PIGR Sialoadhesin

Thrombopoeitin recep-
tor

Trypsin-2
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adjusted models retained p < 0.05, although 3/4 models 
no longer met the adjusted p-value threshold < 8.3 ×  10−3.

Discussion
In this study, we identified several associations between 
a set of EpiScores enriched for inflammatory proteins 
and low GA at birth. Few EpiScores associated with SES 
within the whole sample and these associations were 
partially attenuated in preterm infants who experienced 
inflammatory comorbidities. This is the first study to 
assess the impact of preterm birth and social status using 
epigenetic signatures designed to reflect the circulating 
proteome.

Associations between birth GA and EpiScores
43 EpiScores associated with preterm birth when sam-
pled at term equivalent age. The EpiScores reflect 
chemokines, growth factors, proteins required for neu-
rogenesis and vascular development, cell membrane 
proteins and receptors, and immune response proteins 
(Table  2). As well as having specific immunoregulatory 

roles, in the neonatal setting or relevant animal models, 
these proteins are associated with several comorbidities 
and developmental consequences of preterm birth. These 
include lung development and disease such as BPD [63–
75], in utero and postnatal growth failure [76–79], HCA 
[7, 80, 81], patent ductus arteriosus [82–85], retinopathy 
of prematurity [86–90], NEC [91–93], hyperglycaemia 
[94], sepsis [93, 95–98], brain injury [32, 99–102], and 
neurodevelopmental outcomes [103–107].

Associations between SES measures and EpiScores
SES appears to play a much smaller role in the pattern-
ing of EpiScores compared to birth GA. SES measures, or 
interactions between birth GA and SES measures, were 
associated with only three of the 104 EpiScores studied: 
afamin, ICAM5, and HGFI. Afamin and ICAM5 posi-
tively associated with maternal occupation and SIMD, 
respectively. Afamin and HGFI both associated with the 
interaction term between SES and birth GA. Afamin 
is involved in vitamin E transport [108], ICAM5 has a 
role in microglial regulation [109], and HGFI is a mac-
rophage-stimulating protein [110]. The relationships 

Fig. 2 EpiScores associated with gestational age in regression models adjusted for socioeconomic status. EpiScores associated with gestational 
age in regression models with A Scottish Index of Multiple Deprivation, B maternal education, and C maternal occupation. A (n = 331) shows 39 
associations, B (n = 323) shows 35 associations, and C shows (n = 328) shows 39 associations. Points and bars represent standardised beta and 95% 
confidence intervals, with red indicating positive and blue negative associations. Covariates included in all models: age at sample, birthweight 
z-score, sex, and methylation processing batch. Bonferroni-adjusted p-value < 8.3 ×  10−3 CCL11 C-C chemokine 11, CCL18 C-C chemokine 18, 
CCL21 C-C chemokine 21, CCL22 C-C chemokine 22, CCL25 C-C chemokine 25, CD5L CD5 antigen-like protein, CD6 T-cell differentiation antigen, 
CD163 scavenger receptor cysteine-rich type 1 protein M130, CI confidence interval, CRP C-reactive protein, CRTAM cytotoxic and regulatory 
T-cell molecule, CXCL9 C-X-C motif chemokine 9, CXCL10 C-X-C motif chemokine 10, FAP fibroblast activation protein alpha, FCGR3B low-affinity 
immunoglobulin gamma Fc region receptor III-B, FcRL2 Fc receptor-like protein 2, FGF21 Fibroblast growth factor 21, GDF15 growth/differentiation 
factor 15, GHR growth hormone receptor, HCII heparin cofactor II, HGF hepatocyte growth factor alpha chain, IGFBP4 insulin-like growth 
factor-binding protein 4, MMP9 matrix metalloproteinase-9, NCAM1 neural cell adhesion molecule 1, PIGR polymeric immunoglobulin receptor, 
SCGF stem cell growth factor, SIMD Scottish Index of Multiple Deprivation, SKR3 serine/threonine protein kinase receptor R3, SLITRK5 SLIT 
and NTRK-like protein 5, VCAM1 vascular cell adhesion protein 1, VEGFA vascular endothelial growth factor A, WFIKKN2 WAP Kazal immunoglobulin 
Kunitz and NTR domain-containing protein 2



Page 9 of 14Mckinnon et al. Clinical Epigenetics           (2024) 16:84  

between these proteins and SES have not previously 
been investigated, although afamin is associated with the 
development of metabolic syndrome [111], which varies 
with SES [112].

Among preterm infants, no SES-EpiScore associations 
survived adjustment for inflammatory exposures, which 
suggests that the weak effects of SES on the neonatal 
proteome that we observed in a small number of EpiS-
cores are at least partially accounted for by inflammatory 
pathologies in early life. Taken together, the results sug-
gest immune dysregulation, proxied by EpiScores, may 
not be the primary axis through which SES becomes 
embedded in the development of preterm infants during 
neonatal intensive care.

SES has been consistently associated with inflammation 
in adulthood, including in relation to childhood depriva-
tion [15, 113], but less is known about the relationship 
between SES and inflammation in the neonatal period. A 
longitudinal study by Leviton et al. [114], with five sam-
pling time points during the first month of life after pre-
term birth, showed that maternal eligibility for Medicaid 
associated with levels of 14 inflammatory proteins (IL6R, 
TNFR1, TNFR2, IL8, ICAM1, VCAM1, TSH, EPO, bFGF, 
IGF1, VEGF, PIGF, Ang-1, Ang-2). However, only three 
were significant at more than one time point during the 
month after preterm birth (TSH, bFGF, Ang-1), and none 
was associated at all five measurement time points. These 
studies, taken together with our results, suggest that the 
impact of SES on immune regulation is relatively mod-
est and inconsistent in the newborn period but accrues 
through to adulthood. Further research is required to 
understand how and when SES becomes embedded in 
child development and whether early life events such as 
preterm birth modify that process; EpiScores could be a 
powerful tool for investigating the temporal dynamics of 
social determinants of child health.

Sensitivity analyses
Post hoc analyses showed potential small effect of mater-
nal variables on the neonatal methylome in this  cohort 
enriched for preterm birth sampled at term equivalent 
age. This is consistent with previous findings of no asso-
ciation between smoking or preeclampsia and DNAm 
within this cohort [32]. This may be due to the reduced 
in utero exposure to maternal factors for preterm infants, 
or that the samples were taken at term equivalent age, so 
neonatal unit exposures may outweigh maternal factors.

Strengths and limitations
Strengths of this study include the large sample of term 
and preterm neonates; to the best of our knowledge, this 
is the first examination of multiple DNA methylation-
based estimators of circulating proteins in a neonatal 
sample. We derived EpiScores from minimally invasive 
sampling (buccal cells from saliva) which overcomes the 
ethical challenge of venepuncture for research in chil-
dren. The EpiScores, serving as proxies of inflammatory 
proteins and sampled at term  equivalent age in pre-
term infants, were selected for their potential to capture 
chronic, cumulative inflammation associated with pre-
term birth and neonatal intensive care exposures [23–
25]. We adjusted for variables associated with DNAm, 
and additionally for inflammatory exposures to increase 
the clinical validity of our results.

The study has some limitations. The EpiScores used 
were developed in adult cohorts [26–28, 45] and have 
not been validated with neonatal protein levels. A vali-
dation study would be challenging because the phasic 
nature of circulating proteins and maturational variation 
in protein expression would require serial venepuncture, 
which presents ethical and practical barriers in preterm 
infants. Of note, we have previously established that 
neonatal DNAm CRP scores correlate with cumulative 
clinical inflammatory exposures, which is corroborative 
evidence that the score developed in adults is relevant 

Fig. 3 EpiScores associated with socioeconomic status or an interaction between socioeconomic status and birth gestational age. EpiScores 
associated with socioeconomic status (Scottish Index of Multiple Deprivation, maternal education, or maternal occupation), or with an interaction 
between socioeconomic status and birth gestational age. Regression models with gestational age at birth, gestational age at sample, birthweight 
z-score, sex, and methylation processing batch. Sample sizes: for the Scottish Index of Multiple Deprivation n = 331, for maternal education 
n = 323, and for maternal occupation n = 328. 3/104 EpiScores were significant (Bonferroni-adjusted p-value < 8.3 ×  10−3). Points and bars represent 
standardised beta and 95% confidence intervals, with red indicating positive and blue negative associations. CI Confidence interval, GA Gestational 
age, HGFI Hepatocyte growth factor-like protein alpha chain, ICAM5 Intercellular adhesion molecule 5, SIMD Scottish Index of Multiple Deprivation
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in neonates [32]. The 104 EpiScores we tested explain 
1–58% of variance of protein levels [26–28, 45]. However, 
even those that capture a relatively low proportion of the 
variance associate with incident diseases such as cardio-
vascular disease, type 2 diabetes, cognitive function and 
brain health [26, 115–117]. This magnitude of variance 
explained is also comparable to that achieved with poly-
genic risk scores, which have proved useful in risk strati-
fication [118–120]. The EpiScores were also trained using 
blood samples [26–28, 45], whereas we have projected 
these scores into saliva samples. However, previous stud-
ies have successfully used similar cross-tissue techniques 
[32, 121, 122], and in neonates saliva provides a nonin-
vasive and accessible sample method. Not all inflamma-
tory-related proteins are represented, as we were limited 
by available EpiScores, so we may have underestimated 
the full complexity of the relationship between birth GA, 
SES, and inflammation. Longitudinal investigations are 
imperative for elucidating whether the DNA methylation 
signatures associated with gestational age identified in 
this study exert a causal influence on the inflammation-
associated mechanisms in preterm birth. It remains cru-
cial to discern whether these signatures represent a direct 
downstream consequence of GA itself or are induced by 
specific factors correlated with GA, yet not necessarily 
driven by chronic inflammation. Mendelian randomisa-
tion studies, integrating genomic and epigenomic deter-
minants, are a promising methodological approach to 
disentangle the directionality of these intricate relation-
ships. The sensitivity analyses suggested a potential weak 
effect of maternal exposures on associations between 
GA and EpiScores at term equivalent age. However, the 
prevalence of some of the maternal factors was low, for 
example 18/332 (5.4%) mothers had diabetes. Therefore, 
larger sample sizes enriched for the variable of interest, 
with longitudinal sampling from birth, would be required 
to investigate the relative contributions of antenatal/
intrapartum versus postnatal events on the associations 
we observed.

The study population is comparable to other neonatal 
populations in high-income, majority white settings, but 
these results may not generalise to settings with differ-
ent socioeconomic or ethnicity profiles. We studied sev-
eral measures of SES but were not able to include all that 
could be relevant, such as household income.

Conclusion
We identified 43 EpiScores enriched for inflammatory 
proteins that associated with low birth GA. These 43 pro-
teins offer novel insights into the physiological response 
to preterm birth and warrant further study to explore 
their role in the relationship between preterm birth, 

inflammation, and longer-term outcomes. We found 
only three EpiScores associated with SES in the neonatal 
period, none of which survived adjustment for perina-
tal pro-inflammatory exposures, suggesting that inflam-
mation is unlikely to be the primary axis through which 
SES becomes embedded in the development of preterm 
infants in the neonatal period.
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