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Abstract

Background: In cardiac T1 mapping, a series of T1 weighted (T1w) images are collected and 

numerically fitted to a 2 or 3-parameter model of the signal recovery to estimate voxel-wise T1 

values. To reduce the scan time, one can collect fewer T1w images, albeit at the cost of precision 

or/and accuracy. Recently, the feasibility of using a neural network instead of conventional 2- or 

3-parameter fit modeling has been demonstrated. However, prior studies used data from a single 

vendor and field strength, therefore the generalizability of the models has not been established.

Purpose: To develop and evaluate an accelerated cardiac T1 mapping approach based on 

MyoMapNet, a convolution neural network T1 estimator that can be used across different vendors 

and field strengths by incorporating the relevant scanner information as additional inputs to the 

model.

Study Type: Retrospective, multi-center.

Population: 1423 patients with known or suspected cardiac disease (808 male, 57 ± 16 years), 

from three centers, two vendors (Siemens, Philips) and two field strengths (1.5T, 3T). The data 

were randomly split into 60% training, 20% validation and 20% testing.

Field Strength/Sequence: 1.5T and 3T, Modified Look-Locker inversion recovery (MOLLI) 

for native and post-contrast T1.

Assessment: Scanner-independent MyoMapNet (SI-MyoMapNet) was developed by altering 

the deep learning architecture of MyoMapNet to incorporate scanner vendor and field strength as 
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inputs. Epicardial and endocardial contours and blood pool (by manually drawing a large region of 

interest in the blood pool) of the left ventricle were manually delineated by three readers, with 2, 

8 and 9 years of experience, and SI-MyoMapNet myocardial and blood pool T1 values (calculated 

from 4 T1w images) were compared with conventional MOLLI T1 values (calculated from 8 – 11 

T1w images).

Statistical Tests: Equivalency test with 95% confidence interval (CI), linear regression slope, 

Pearson correlation coefficient (r), Bland-Altman analysis.

Results: The proposed SI-MyoMapNet successfully created T1 maps. Native and post-contrast 

T1 values measured from SI-MyoMapNet were strongly correlated with MOLLI, despite 

using only 4 T1w images, at both field-strengths and vendors (all r >0.86). For native T1, 

SI-MyoMapNet and MOLLI were in good agreement for myocardial and blood T1 values in 

institution1 (Myocardium: 5 ms, 95%CI [3, 8]; Blood: −10ms, 95%CI [−16, −4]), in institution2 

(Myocardium: 6ms, 95%CI [0, 11]; Blood: 0ms,[−18, 17]), and in institution3 (Myocardium: 7ms, 

95%CI [−8,22]; Blood: 8ms, [−14, 30]). Similar results were observed for post-contrast T1.

Data Conclusion: Inclusion of field-strength and vendor as additional inputs to the deep 

learning architecture allows generalizability of MyoMapNet across different vendors or field 

strength.
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INTRODUCTION

Cardiac magnetic resonance myocardial T1 mapping enables quantitative assessment of 

diffuse myocardial fibrosis (1–3). Several sequences have been developed for T1 mapping 

with a trade-off between accuracy and precision (4–11). The modified Look-Locker 

inversion recovery (MOLLI) sequence is the most widely used sequence for myocardial 

T1 mapping due to its high precision and wide availability by vendors (12). In MOLLI, three 

sets of Look-Locker inversion recovery experiments are performed for the collection of 3, 3, 

and 5 T1-weighted (T1w) images with a rest of 3 heartbeats in between (MOLLI3(3)3(3)5), 

in a single 17 heartbeat breath hold. Other variants of MOLLI have been proposed to 

shorten the acquisition time. For instance, MOLLI5(3)3 for native T1 and MOLLI4(1)3(1)2 

for post-contrast T1 shorten the time to 11 heartbeats (13,14). The shortened modified 

Look-Locker inversion recovery (ShMOLLI) sequence (7) has also been proposed to reduce 

the scan time to 9 heartbeats.

Alternative solutions based on deep learning (DL) have recently been proposed to further 

reduce acquisition time, improve accuracy, and precision (15–18). Guo et al. proposed a 

fully connected neural network named MyoMapNet to estimate T1 using only four T1w 

images (19). A Look-Locker 4 (LL4) sequence was developed to collect four T1w images 

in a single Look-Locker experiment. Then, the T1w images along with the inversion times 

(TI) were used as input to MyoMapNet to estimate the T1 value. Amyar et al. studied the 

impact of choice of DL architectures on accelerated T1 mapping with MyoMapNet (20). 

Among the various DL architectures developed in the study, fully-connected and U-Net 
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(21) yielded similar accuracy and precision when compared with the MOLLI sequence, 

albeit with reduction in scan time (4s vs. 11s). Le et. al (22) also used a recurrent network 

with a fully-connected network for accelerating cardiac T1 mapping to reduce the scan 

time to only 3 heartbeats. Therefore, these recent developments support the use of DL in 

reducing the scan time for cardiac T1 mapping. However, these studies have used data from 

a single vendor and field strength, which limits their generalizability. There are differences 

in myocardial and blood T1 at 1.5T vs. 3T (23). In addition, changes in sequence parameters 

and imaging schemes are inevitable in myocardial T1 mapping. Therefore, there is an unmet 

need to improve the robustness of the architecture so that it can consider scanner-specific 

information.

Thus, the aim of this study was to develop a scanner-independent MyoMapNet (SI-

MyoMapNet) DL model for accelerated cardiac T1 mapping by including information about 

vendor and field strength as additional inputs. A further aim was to train and evaluate the 

new model using data from different vendors and field strengths collected at three different 

medical centers.

MATERIALS AND METHODS

SI-MyoMapNet

The SI-MyoMapNet architecture was developed by incorporating the scanner information 

into MyoMapNet (Figure 1). The MyoMapNet is a fully convolutional deep neural network 

based on U-Net (21) architecture with an encoder, a decoder and skip connections, that uses 

four inversion time and corresponding T1w images to estimate voxel-wise T1 values.

To incorporate scanner information in the model to make it more generalizable, we modified 

the MyoMapNet architecture by adding vendor and field strength as additional inputs to the 

model. The input to SI-MyoMapNet is a ten-channel image where the first four channels 

consist of the T1w images, the next four channels comprise the inversion times, and the 

ninth and tenth channels consist of vendor and field strength respectively (Figure 1A-E). The 

model is composed of four encoding blocks followed by three decoding blocks. An encoding 

block is defined as two consecutive convolutional layers followed by a Maxpooling. The 

number of feature maps for the convolutional layers is 64 in the first encoding block, 128 

in the second one, 256 in the third block and 512 in the last. The encoding blocks learn a 

hierarchical representation of the input data specific to T1 map generation. These features 

are translated to the desired output of the network, the T1 map, through three decoding 

blocks. The structure of the decoding blocks is similar to that of the encoding blocks, except 

that Maxpooling is replaced by an up-sampling layer. Up-sampling enables the restoration 

of spatial dimensions equal to those of the T1 map. All convolutions are of size 3×3 with 

a stride of 1×1, a padding of 1×1 and the Maxpooling kernel size is 2×2. To capture 

nonlinearities between features, a Rectified Linear Unit (ReLU) activation function is 

applied after each convolution. Skip connections are used to ensure that learning progresses 

smoothly without vanishing gradient problems (24). The final layer is a convolution with a 

size of 1×1 and a linear activation function to output the T1 map (Figure 1F).
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Image Acquisition and Analysis

This was a retrospective study with cardiac MR images from three different medical centers. 

The institutional review boards in the three centers approved the use of cardiac MR data 

for research with a consent waiver. Patient information was handled in compliance with 

the Health Insurance Portability and Accountability Act. Cardiac MR images containing 

myocardial tissue characterization with T1 mapping images from the three medical centers 

were included in the study. The three institutions included Beth Israel Deaconess Medical 

Center (BIDMC), Weill Cornell Medical Center (Cornell) and Boston Medical Center 

(BMC). All anonymized DICOM images were transferred to BIDMC for development 

of the model and evaluation. Patients were referred for a clinical cardiac MR scan for 

different cardiac indications, resulting in a heterogeneous patient cohort, necessary for better 

evaluation of the model performance. Table 1 summarizes the data characteristics. The 

images from 1249 (708 male, 56±16 years), 99 (50 male, 52±19 years) and 75 (50 male, 

59±14 years), patients from BIDMC, Cornell and BMC respectively were used for training, 

validation, and testing. The images were collected between 2018 and 2021 using Siemens 

3T at BIDMC (MAGNETOM Vida, Siemens Healthineers, Erlangen, Germany), Siemens 

1.5T at Cornell (MAGNETOM Sola fit, Siemens Healthineers, Erlangen, Germany), and 

Philips 1.5T at BMC (Achieva, Philips Healthcare, Best, The Netherlands). MOLLI T1 

mapping was performed at each institution using a vendor-provided imaging protocol. Due 

to retrospective nature of data collection, different institutions used different vendor imaging 

protocols. Table 1 provides a detailed description of the imaging protocol from each of the 

participating medical centers. The native and (or) post-contrast T1 maps were acquired by 

vendor provided MOLLI5(3)3 or MOLLI4(1)3(1)2 sequences in BIDMC and Cornell, and 

by MOLLI5(2)5 or MOLLI5(1)3(1)3 in BMC. Only native T1 images were available from 

Cornell. All images were cropped to a matrix size of 160×160 and T1w intensities were 

normalized between 0 and 1 prior to processing. Images from BIDMC and Cornell were 

corrected for motion using vendors-provided inline motion-correction algorithms. Images 

from BMC were not corrected for motion.

Pixel-wise MOLLI T1 maps were reconstructed offline by fitting T1w signals (Si) at each 

pixel to a three-parameter model: Si = A − B*exp − TIi/T1
* , where A is the equilibrium 

magnetization of the tissue, B represents the difference between the magnetization at the 

first inversion time and the equilibrium magnetization, and T1* is the apparent T1 relaxation 

time. T1 was calculated as T1 = B A − 1 *T1
*. Epicardial and endocardial contours and blood 

pool (by manually drawing a large region of interest in the blood pool) of the left ventricle 

were manually delineated by three readers (K.N. with 8 years of experience in cardiac MR 

contoured 146 cases, E.S. with 9 years of experience contoured 89 cases, and J.C. with 2 

years of experience contoured 50 cases). For each subject, T1 precision was measured by 

calculating the standard deviation (SD) of pixel-wise T1 values over myocardium or blood 

pool. The reported precision is the mean SD over all subjects. The mean and SD of left 

ventricular myocardial and blood pool T1 were calculated. The image quality was visually 

assessed by A.A.
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SI-MyoMapNet Training

The training strategy is described in Figure 2. We created the training data by randomly 

selecting 60% of patients from each of the participating medical centers, with the remaining 

40% being equally divided into validation and testing data. The model was trained by 

minimizing the mean absolute error (MAE) between the reference MOLLI and the estimated 

T1 from SI-MyoMapNet from the first four T1w images extracted from the MOLLI 

sequence. The model optimization was performed using Adam with an initial learning 

rate of 0.001, and a weight decay of 0.0001 when the validation loss plateaued, with 

a mini batch of 64. The MAE for both training and validation was monitored to avoid 

overfitting and underfitting. The model was implemented using PyTorch version 1.11.0 and 

trained on an NVIDIA DGX-1 system equipped with 8 Tesla V100 graphics processing 

units (each with 32 GB memory and 5120 cores) and a central processing unit of 88 

cores: Intel Xeon CPU E5–2699 2.20 GHz each, and 512 GB RAM. All codes for training 

and testing with SI-MyoMapNet model are freely available online (https://github.com/HMS-

CardiacMR/Multicenter_MyoMapNet).

Statistical Analysis

Continuous variables are expressed as mean ± SD. The equivalence test (25) was used 

to determine whether SI-MyoMapNet and MOLLI were clinically equivalent. The 95% 

confidence interval (CI) for the mean of the paired differences was calculated, and a 

margin of equivalence between SI-MyoMapNet and MOLLI of 30 ms was established, 

based on the reproducibility of the MOLLI sequence (10,11,26). We formulated the null 

hypothesis that the difference between SI-MyoMapNet and MOLLI is greater than the 

threshold for equivalence. Errors within the 95% CI were not deemed clinically significant. 

Linear regression (Pearson correlation coefficient, r) and Bland-Altman analysis were used 

to investigate the agreement and relationship in T1 measurements between MOLLI and 

SI-MyoMapNet. All data analysis was performed using MATLAB R2009b and R2018b 

(MathWorks, Natick, MA, USA) and Python 3.9.6. Statistical analyses were performed 

using GraphPad Prism version 9.2.0 (GraphPad Software, San Diego, CA, USA), and 

Python library scikit-learn (0.19.1).

RESULTS

All T1 maps were successfully created using SI-MyoMapNet. Figure 3 shows representative 

native T1 maps from 3 different subjects, imaged at BIDMC (Siemens 3T), Cornell (Siemens 

1.5T) and BMC (Philips 1.5T) from the testing dataset. The SI-MyoMapNet T1 maps had 

visually similar image quality as MOLLI sequence.

Figure 4 shows post-contrast maps collected from BIDMC (Siemens 3T) and BMC 

(Philips 1.5T), demonstrating excellent image quality. Table 2 lists mean and SD values 

of native and post-contrast T1 (when available) for the SI-MyoMapNet model and MOLLI 

measured across BIDMC, Cornell and BMC. Native myocardial and blood T1 values 

strongly correlated with MOLLI in BIDMC (Myocardium: r=0.93; Blood: r=0.90), Cornell 

(Myocardium: r=0.97; Blood: r=0.91), and in BMC (Myocardium: r=0.86; Blood: r=0.90) 

(Figure 5). SI-MyoMapNet had a mean T1 difference and SD of 6±1 ms and −10±11 ms in 
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BIDMC, a mean T1 difference of 6±0 ms and 0±0 ms in Cornell, and a mean T1 difference 

of 7±8 ms and 9±11 ms in BMC, for myocardial and blood T1, respectively.

In Bland-Altman analysis (Figure 6), good agreement was obtained between SI-MyoMapNet 

and MOLLI in the three institutions. The 95% CI for Bland-Altman of T1 differences 

between SI-MyoMapNet and MOLLI ranged from −34 ms to 44 ms for myocardial T1 and 

from −93 ms to 73 ms for blood T1 in BIDMC, from −17 ms to 28 ms for myocardial T1 and 

from −74 ms to 74 ms for blood T1 in Cornell, and from −45ms to 60 ms for myocardial T1 

and from −70 ms to 86 ms for blood T1, in BMC.

The linear regression (Figure 7) and Bland-Altman (Figure 8) analyses demonstrated SI-

MyoMapNet was in excellent agreement with MOLLI for post-contrast T1 in BIDMC and 

BMC. Post-contrast myocardial and blood T1 values strongly correlated with MOLLI in 

BIDMC (Myocardium: r=0.99; Blood: r=0.99), and in BMC (Myocardium: r=0.95, Blood: 

r=0.99). The 95% CI for Bland-Altman of T1 differences between SI-MyoMapNet and 

MOLLI ranged from −16 ms to 15 ms for myocardial T1 and from −9 ms to 9 ms for blood 

T1 in BIDMC, and from −27 ms to 27 ms for myocardial T1 and from −19 ms to 10 ms for 

blood T1 in BMC.

DISCUSSION

In this study, we presented and evaluated an accelerated scanner-independent cardiac T1 

mapping technique that incorporated the scanner information (vendor and field strength) 

into the T1 estimation step. The SI-MyoMapNet was successfully trained and tested on 

data collected using two vendors (Siemens and Philips) and two field strengths (1.5T and 

3T). A strong correlation was observed between SI-MyoMapNet and the reference MOLLI 

across vendors and field strength, demonstrating potential generalizability of the trained 

model. Although the mean and SD of T1 values from MOLLI and SI-MyoMapNet were 

nearly identical for BIDMC: Post contrast T1, Cornell: native bloodT1, BMC: post-contrast 

myocardium T1, there were still differences in T1 values between the two techniques, which 

are not accurately described by the mean and standard deviation of the data (Supplementary 

Materials).

Standardization in cardiac T1 mapping remains challenging, and there are known differences 

in quantitative cardiac T1 values measured across different vendors (1). Additionally, T1 

values are field strength-dependent. Therefore, a model trained using a single center data 

may not perform well in other centers, field strengths, or vendors. Various approaches can 

be used to improve the generalizability of the model, including transfer learning (27,28), 

using large data representing all scanners, vendors, centers, or domain adaptation (29). 

By including scanner/vendor information as inputs to the model, the model can learn to 

account for these differences and adjust its predictions, accordingly, improving its ability 

to generalize to new datasets. In the proposed architecture, the four T1w images with 

their corresponding inversion times were transformed through a series of convolution and 

max-pooling to a non-linear representation called a latent space. The representation of the 

data from the three institutions was mixed in the latent space, thus, adding vendors and 

field strength information could, in theory, help the model to better separate the data from 
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the different systems. Then, the latent space was mapped to the output (T1 map) that is 

independent of the scanner by using the decoder.

Statistical methods such as ComBat (30), originally proposed in genomics to adjust for batch 

effects in gene expression microarray data, have been used to account for the variability 

in imaging equipment (31,32). Although promising, ComBat has been mainly applied for 

feature harmonization instead of raw images. De Fauw et. al. (33) used a device adaption 

branch for optical coherence tomography (OCT) data of the retina to deal with different 

OCT devices for retina imaging. In SI-MyoMapNet, scanner information was used directly 

in the model to account for multi-scanner effects. Similarly, an adaption branch could 

potentially be used in MyoMapNet for data harmonization. Recently, DL-based domain 

adaptation methods have been proposed as an alternative solution. One of the most important 

challenges in DL applications is the model generalizability (34). Models may fail when 

presented with images that were acquired in a different setting or with different parameters 

from the development dataset (29). Several regularization techniques have been proposed to 

reduce overfitting and enhance model generalizability, such as reducing model complexity, 

L1|L2 regularization, dropout or parameter sharing through multi-task learning (35,36). 

Although these techniques aim to improve generalization, they fail when the external data 

distribution is different from the development data distribution (37). The basic idea of 

domain adaptation is to learn a good representation from the training data set (source 

domain) while approximating the distribution of the test data set (target domain). Further 

investigation is warranted to study the potential of DL-based domain adaptation in SI-

MyoMapNet.

Efficient training of DL-based neural networks requires large datasets. A “sufficient 

number” of samples is required to ensure the generalizability of the neural network, however 

estimating the sample size is very challenging (38). In addition to a large sample size, 

the distribution of the training dataset must represent all data that the model will use in 

the future. Despite the common belief that additional training samples will yield better 

model performance, recent studies have reported that large datasets may hurt the model 

performance (39,40). An alternative solution could be the use of transfer learning, where the 

model is trained on one dataset, and then fine-tuned on a different smaller dataset to learn 

the new data distribution. Further studies are needed to evaluate the performance of transfer 

learning in SI-MyoMapNet.

Limitations

All data were acquired retrospectively for model development and validation. Further studies 

should be pursued to evaluate the potential of SI-MyoMapNet on a prospectively acquired 

dataset. Institutes 2 and 3 had smaller databases compared to Institute 1, which implies that 

Siemens 3T dataset could have influenced the results. Therefore, additional assessments are 

required to determine the effectiveness of SI-MyoMapNet on alternative datasets. We also 

only included two vendors, Siemens and Philips and did not have access to suitable data 

from GE Healthcare. Of further note is that there were differences in the implementation of 

the MOLLI sequence across different vendors and standardization has been difficult. There 

are differences in implementation of the MOLLI sequence (e.g., inversion pulse shape, 

Amyar et al. Page 7

J Magn Reson Imaging. Author manuscript; available in PMC 2025 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bandwidth, or inversion efficiency), number of phase-encode lines, and image reconstruction 

techniques. There are also differences in motion correction techniques used for T1 mapping. 

These differences could impact blood and myocardium T1 measurements by different 

vendors used for training and testing of SI-MyoMapNet. Finally, this study only used data 

collected using MOLLI and generalizability to other T1 mapping sequences was not studied. 

Since, the model was trained using MOLLI data, similar confounders may impact accuracy 

of the measurements.

Conclusion

In conclusion, the addition of field-strength and vendor as additional information to the deep 

learning architecture allows generalizability of MyoMapNet, allowing cardiac T1 mapping 

using different vendors or field-strength.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Scanner-independent MyoMapNet (SI-MyoMapNet) architecture.
(A) The first four T1-weighted images extracted from MOLLI are used in SI-MyoMapNet. 

(B) The corresponding inversion times are encoded into four channels. (C) Vendor is 

encoded into one channel where 1 for Siemens and 2 for Philips. (D) Field strength is 

encoded into one channel. (E) The four T1-weighted images along with the inversion times, 

vendor and field strength are combined into ten channels, along the c direction and then fed 

to (F) SI-MyoMapNet, an encoder-decoder neural network to generate a T1 map.
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Figure 2. Study overview.
(A) SI-MyoMapNet is trained on a multicenter multivendor dataset with different vendors 

and field strengths. (B) The model is then tested on a hold-out dataset from the three 

institutions.
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Figure 3. Native T1 maps generated using MOLLI and SI-MyoMapNet.
SI-MyoMapNet successfully generated T1 maps with small errors when compared to 

MOLLI for data collected using different vendor or field strength.
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Figure 4. Post-contrast T1 maps generated using MOLLI and SI-MyoMapNet across BIDMC 
and BMC with two different scanners.
SI-MyoMapNet successfully created excellent T1 maps compared to MOLLI using only four 

T1-weighted images.
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Figure 5. Linear regression plots for T1 values estimated with SI-MyoMapNet versus MOLLI for 
native myocardial and blood T1 values as calculated for BIDMC, Cornell and BMC.
Excellent correlation was observed between SI-MyoMapNet and MOLLI on the three 

institutions.
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Figure 6. Bland-Altman plots demonstrating agreement between MOLLI and SI-MyoMapNet 
for native myocardial and blood T1 values as calculated for BIDMC, Cornell and BMC.
Mean differences and 95% limits of agreement are indicated in red and dotted lines, 

respectively.
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Figure 7. Linear regression plots for T1 values estimated with SI-MyoMapNet versus MOLLI for 
post-contrast myocardial and blood T1 values as calculated for BIDMC and BMC.
Excellent correlation was observed between SI-MyoMapNet and MOLLI on the two 

institutions.
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Figure 8. Bland-Altman plots demonstrating agreement between MOLLI and SI-MyoMapNet 
for post-contrast myocardial and blood T1 values as calculated for BIDMC and BMC.
Mean differences and 95% limits of agreement are indicated in red and dotted lines, 

respectively.
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