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Abstract 

Background: The massive structural variations and frequent introgression highly 
contribute to the genetic diversity of wheat, while the huge and complex genome 
of polyploid wheat hinders efficient genotyping of abundant varieties towards accu-
rate identification, management, and exploitation of germplasm resources.

Results: We develop a novel workflow that identifies 1240 high-quality large copy 
number variation blocks (CNVb) in wheat at the pan-genome level, demonstrating 
that CNVb can serve as an ideal DNA fingerprinting marker for discriminating massive 
varieties, with the accuracy validated by PCR assay. We then construct a digitalized 
genotyping CNVb map across 1599 global wheat accessions. Key CNVb markers are 
linked with trait-associated introgressions, such as the 1RS·1BL translocation and  2NvS 
translocation, and the beneficial alleles, such as the end-use quality allele Glu-D1d 
(Dx5 + Dy10) and the semi-dwarf r-e-z allele. Furthermore, we demonstrate that these 
tagged CNVb markers promote a stable and cost-effective strategy for evaluating 
wheat germplasm resources with ultra-low-coverage sequencing data, competing 
with SNP array for applications such as evaluating new varieties, efficient management 
of collections in gene banks, and describing wheat germplasm resources in a digital-
ized manner. We also develop a user-friendly interactive platform, WheatCNVb (http:// 
wheat. cau. edu. cn/ Wheat CNVb/), for exploring the CNVb profiles over ever-increasing 
wheat accessions, and also propose a QR-code-like representation of individual digital 
CNVb fingerprint. This platform also allows uploading new CNVb profiles for compari-
son with stored varieties.

Conclusions: The CNVb-based approach provides a low-cost and high-through-
put genotyping strategy for enabling digitalized wheat germplasm management 
and modern breeding with precise and practical decision-making.
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Background
Wheat is one of the most widely grown and consumed crops and provides 20% of the 
total protein and calories in human nutrition [1]. Accurate identification and evaluation 
of genomic polymorphism within wheat germplasm resources are crucial to enhancing 
breeding capacity and developing improved varieties with higher yields and resistance 
to biotic and abiotic stresses [2, 3]. Beyond single nucleotide polymorphisms (SNPs) 
and small InDels, there are extensive structural variations (SVs) at a large scale in the 
wheat genome, which includes gene presence/absence variations (PAVs), copy number 
variations (CNVs), and chromosomal translocations, serving as an important source of 
genetic diversity in the wheat breeding population [4–6]. Current methods for identi-
fying SVs generally require high-quality genome assemblies, high sequencing depth, or 
long-read sequencing [7], while the high cost of sequencing hinders profiling SVs at a 
population level.

DNA-based markers have been widely used for describing varieties and assist-
ing breeding [8]. Multiple types of molecular markers derived from genomic varia-
tions have been developed to assist genome-based breeding in wheat, such as simple 
sequence repeats (SSRs), amplified fragment length polymorphisms (AFLPs), and SNPs 
[9]. Hybridization-based and PCR-based markers were the earliest molecular markers, 
which are time-consuming and laborious in genotyping, thus were difficult to apply in 
large-scale population analysis [10]. High-throughput methods such as genotyping-by-
sequencing (GBS)-based and array-based SNP genotyping techniques were utilized to 
identify SNP/InDel markers [11, 12], while these effective markers are still limited and 
the overall cost to genotype one sample is still high to be utilized in assisting the vari-
ety management and breeding design [13]. More stable and effective DNA markers and 
corresponding cost-efficient scanning methods are urgently needed for describing and 
exploiting wheat germplasm resources.

Common wheat is a typical allohexaploid crop, its genome is of considerable toler-
ance to large segmental deletions and duplications [14–16], and highly plastic to take 
in both intraspecific and interspecific introgressions [17]. Furthermore, the genomes of 
modern wheat germplasms have been shaped by introgression from wild relatives dur-
ing domestication [18] and by distant hybridization during the modern breeding process 
[19]. Thus, the characterization of SVs in wheat is important for accurate genotyping of 
massive varieties. Reported cytogenetic and molecular methods for detecting SVs, such 
as fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH), 
are limited in aspects of throughput and resolution and are primarily used to confirm 
known SVs [20, 21]. Thus, there is an urgent need for a high-throughput and cost-effec-
tive method to characterize and exploit SVs across diverse wheat varieties.

The advent of the pan-genomic era brings opportunities for detecting SVs among 
wheat varieties globally [15]. Current main strategies include directly comparing 
genome assemblies and inferring SVs from the mapping of high-coverage resequenc-
ing data against the reference genome [22, 23]. However, the high costs of sequencing-
based strategies hinder the application in genotyping the SVs at a large-scale population 
level [7]. Recently, Keilwagen et al. demonstrated that the depth-of-coverage of GBS or 
low-coverage whole genome sequencing could be used for detecting large chromosomal 
variations [24]. However, there is still a lack of an accurate and cost-efficient method for 
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characterizing depth-of-coverage variations with stable performance across wheat varie-
ties, tackling the highly noisy signals introduced by low-coverage sequencing data.

Here, we identified a set of high-quality CNV block (CNVb) markers by tagging large 
CNV blocks from a worldwide collection of wheat resequencing data using a pan-
genome reference, supporting accurate profiling of the CNVb markers across wheat 
varieties even at an ultra-low sequencing coverage. The link between in silico CNVb 
markers with key introgressions and benefit alleles associated with agronomic traits 
further adds value to the digitalization of wheat germplasm. A free-to-access and user-
friendly web platform (http:// wheat. cau. edu. cn/ Wheat CNVb/) was also developed to 
help access and utilize the CNVb markers. In summary, the in silico CNVb markers 
can serve as new-generation molecular markers facilitating the characterization of the 
germplasm resources and assisting the genomic breeding in crops with high accuracy 
and low cost.

Results
Pervasive large CNV blocks identified in wheat

To comprehensively survey and characterize the genome-wide copy number variations 
(CNVs) in wheat, we collected a panel of whole genome resequencing data of worldwide 
wheat accessions [16, 17, 25–27], including 186 modern cultivars and 342 landraces 
(Additional file 1: Table S1). After mapping reads against the Chinese Spring (CS) refer-
ence genome IWGSCv1 [28], relative read depths were calculated bin-wisely with a bin 
size of 100 Kb. A total of 8430 Mb and 3375 Mb non-redundant bins were identified 
as deletion and duplication in at least one accession, respectively. The CNV bins were 
unevenly distributed across the genome, with higher frequencies observed near the ends 
of chromosomes (Additional file 2: Fig. S1), consistent with observations in maize [29] 
and rice [30]. Our results showed that the total length of CNV regions ranged from 139 
to 1567 Mb across different varieties (Fig. 1a). Notably, the total lengths of CNV regions 
for 81.6% of the accessions exceed 500 Mb, with an average of 2061 CNV regions per 
accession, confirming that large CNV regions are pervasive across diverse wheat varie-
ties. In contrast, maize and rice show fewer CNV regions, with average total lengths of 
382 Kb and 142 Kb, and average counts of 53 and 19 CNV regions, respectively (Fig. 1b), 
highlighting the high-frequent and large CNV blocks as a unique feature of wheat.

As a key feature of CNV regions detected in wheat compared with rice or maize, there 
are more CNV regions exceeding one megabase. There are six extra-large CNV blocks 
with lengths spanning ≥10 Mb detected on chromosomes 1D, 2A, 2D, 5A, 5B, and 6B 
in the wheat cultivar Jagger (Fig. 1c). Many CNV blocks are shared among accessions, 
while positions and lengths of CNV blocks differ (Fig.  1d, e). Taking chromosome 1B 
as an example, a large CNVb-deletion (chr1B: 0–236.7 Mb) across 1BS can be observed 
in both Lunxuan987 and Aikang58 (Fig.  1d), which corresponds to the documented 
1RS·1BL translocation [20]. Rather than the 1RS·1BL-related large CNV block presented 
in Lunxuan987 and Aikang58, several smaller CNV blocks were identified in Mace, CDC 
Stanley, ArinaLrFor, and Julius along the similar chromosome region (Fig. 1d), reflecting 
the diversity of CNV blocks on the genome. The consistent local CNV block landscapes 
observed among accessions may serve as ideal markers to identify genetic relation-
ships of wheat resources. Thus, we proposed a strategy to tag intraspecific shared CNV 

http://wheat.cau.edu.cn/WheatCNVb/
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blocks as in silico markers for wheat germplasm identification. As a prototype exam-
ple, we selected the large CNV regions spanning chromosome 6B shared among CDC 
Landmark, Jagger, ArinaLrFor, and Aikang58, and grouped them into five CNVb mark-
ers, which could effectively compress the comprehensive CNV landscapes into a list of 
digitalized signals (Fig. 1e). The presence or absence of CNVb makers demonstrates an 
alternative and effective strategy in constructing the molecular fingerprints of wheat 
germplasm.

Developing CNVb markers at pan‑genome level

To mitigate the potential bias of CNVb identification introduced by using a single refer-
ence genome and acquire sufficient markers, we constructed a pan-genome reference by 
iterative mapping of the whole-genome resequencing data against 16 de novo assembled 
reference genome sequences [15, 26, 31–35] (Additional file 1: Table S2). This iterative 
process involved using a 1 Mb sliding window to identify sequences present in genomes 
other than Chinese Spring (CS). Starting with the Aikang58 genome as the initial refer-
ence, and progressing through each genome in order of assembly quality, we system-
atically detected and compiled 975 novel genome blocks with a total length of 2.7 Gb 
(Additional file 1: Table S3). These blocks, which represent genomic regions absent in 
CS, were then assembled into a non-Chinese Spring pan-genome chromosome, denoted 
as “chrNCP” (Fig.  2a). The saturation analysis showed that the number of non-CS 
sequence blocks increased by adding new assemblies and approached a plateau when 14 
genomes were included (Additional file 2: Fig. S2), indicating the representativeness of 
the constructed pan-genome by integrating a total of 17 wheat assemblies.

Fig. 1 Characterization of large CNV blocks in wheat. a Distribution of total length and total count of 
CNV regions in each wheat accession. b Comparison of length and count of CNV regions between wheat, 
maize, and rice across the whole genome. c CNV region distribution of Jagger along chromosomes (1D, 
2A, 2D, 5A, 5B, and 6B). Bin size, 100 Kb. d CNV region distribution on chromosome 1B among represent 
accessions (Lunxuan987, Aikang58, Mace, CDC Stanley, ArinaLrFor, and Julius). Bin size, 100 Kb. e Schematic 
representation of the conversion from the large CNV blocks (CNVb) (left) to tagged CNVb markers (right) 
on chromosome 6B. Left panel, CNV blocks with length ≥100 Kb. Right panel, CNVb markers, each color 
represents one unique CNVb marker. A particular CNV block (chr6B:265–278 Mb) was marked by a dashed 
rectangle. Bin size, 100 Kb
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To identify representative and stable CNVb blocks for distinguishing wheat acces-
sions, we developed a pipeline to obtain high-quality CNVb markers by examining 
consistent borders, overlaping ratio, and continuity of CNV blocks based on a panel 
of whole genome resequencing data  with an average coverage of 5.4×, which cov-
ers 528 wheat accessions (Additional file 1: Table S1). The pipeline consists of three 
main steps: detecting raw CNV blocks, deducing low-confident and redundant CNV 
blocks, and removing CNV blocks sensitive to low sequencing depth (Fig. 2a). Step 1, 
we mapped the sequencing data to the pan-genome reference and identified an initial 
set of CNV bins based on the read depth with a window size of 100 Kb. Step 2, we 
applied a hidden Markov model to generate continuous CNV blocks (Additional file 2: 

Fig. 2 Development and evaluation of CNVb markers. a Pipeline to identify CNVb markers against wheat 
pan-genome. Pre-step, the pan-genome was constructed by combining the Chinese Spring assembly and 
the unmapped blocks of Chinese Spring relative to the other 16 wheat assemblies. Step 1, the initial CNV 
blocks of 528 high-quality wheat resequencing accessions were identified with a 100 Kb window. Step 2, a 
hidden Markov model (HMM) was introduced to smooth noisy signals, and then low frequency and short 
CNV blocks were filtered from the retained CNV blocks. CNV blocks with reciprocally overlapped regions 
larger than 80% were merged as a single CNVb cluster, and linkage clusters with close distances were 
further combined. Step 3, the final CNVb markers were extracted by eliminating those with low recall rates 
identified by ultra-low-coverage whole genome sequencing (ulcWGS), using CNVb markers identified by 
high-coverage whole genome sequencing as the ground truth. b Saturation analysis of CNVb markers. Five 
accessions were randomly added each time. The shaded area represents 100 replications for each sampling. 
The blue dot represents the average number of CNVb markers across 100 repetitions. c Comparison of the 
accuracy of SNPs, raw CNVs, and CNVb markers identified at low sequencing depth
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Fig. S3), followed by the removal of short-length and low-frequency CNV blocks. 
CNV blocks sharing one border and have more than 80% overlapping regions were 
merged. CNVs closely linked in one cluster were further grouped. Then, an initial set 
of 8134 CNVb makers were identified genome-widely across the population. Step 3, 
we eliminated CNVb blocks with low recalls in ultra-low-coverage whole genome 
sequencing (ulcWGS) data (0.1×) to develop stable in silico markers (Additional 
file 2: Fig. S4). Finally, our pipeline yielded a total of 1240 non-redundant high-quality 
CNVb markers, comprising 1045 CNVb-deletion markers and 195 CNVb-duplication 
markers. By profiling these CNVb markers across the genome, we observed that these 
CNVb markers are distributed across all chromosomes, with an average of 59 markers 
per chromosome (Additional file 2: Fig. S5). We also showed that these CNVb mark-
ers span most regions of chromosomes, occupying up to 92.6% of each chromosome 
(Additional file  2: Fig. S6), indicating that the developed in silico DNA marker set 
offers the feasibility of representing wheat genomic variation genome-widely. We fur-
ther performed saturation analysis of CNVb markers and showed that 95% of CNVb 
markers could be recalled when the panel size reached 230 (Fig.  2b), indicating the 
selected CNVb markers are sufficient for capturing the large CNV blocks at a popula-
tion level in wheat.

High recalls achieved by scanning CNVb markers in ultra‑low‑coverage sequencing data

To evaluate the performance of scanning the in silico CNVb markers in new varieties, 
we examined the recalls of CNVb markers by scanning sequencing datasets at vari-
ous coverages, which were randomly sampled from high-coverage resequencing data. 
The results showed that the performance of developed CNVb markers exceeded raw 
CNV regions and SNPs, especially for the ultra-low coverage data. The CNVb mark-
ers achieved a mean recall of 99.3% even at coverage of 0.05× (Fig. 2c), highlighting the 
superiority of CNVb as a stable marker compared to traditional strategies. This result 
also suggests that CNVb could serve as a cost-efficient genotyping strategy for con-
structing DNA-based digitalized fingerprints of massive varieties based on ultra-low 
sequencing data.

Linking CNVb markers with known structural variations and beneficial alleles

To fully harness the potential of wheat germplasm carrying beneficial alleles such as 
ones conferring disease resistance for breeding applications, we linked numerous well-
known structural variations and beneficial alleles with CNVb markers (Table 1). The r-e-
z haploblock on chromosome 4B with approximately 500 Kb deletion, characterized by 
simultaneous absence of the Rht-B1, EamA-B, and ZnF-B genes contributing to both the 
compactness and enhanced yield of semi-dwarf wheat [36], was digitized to a CNVb-
deletion marker (CNVb.647, chr4B: 30.5–31.1 Mb) and identified in a total of 10 acces-
sions (Fig. 3a, Additional file 1: Table S4). The pericentric inversion in chromosome 6B 
(perInv-6B), one of the most predominant chromosomal variants in wheat modern cul-
tivars [21], was associated with a CNVb-duplication marker (CNVb.989, chr6B:167.9–
183.4 Mb) on chromosome 6B. This association is based on the identification of a 
duplication block marker that is unique to varieties carrying the 6B inversion (Fig. 3b). 
Our study identified 12 previously reported accessions harboring perInv-6B [20, 21] and 



Page 7 of 20Niu et al. Genome Biology  (2024) 25:171 

21 additional accessions with the perInv-6B associated CNVb markers (Additional file 1: 
Table S5). The high-molecular-weight glutenin Glu-D1d (Dx5 + Dy10) allele is associ-
ated with superior bread-making quality [37]. We developed a CNVb-deletion marker 
(CNVb.162, chr1D: 412.1–412.5 Mb) corresponding to the Glu-D1d allele (Fig. 3c) and 
identified 11 accessions, such as Jagger, carrying the Glu-D1d allele (Additional file  1: 
Table S6), which was proven by SDS-PAGE [37, 38]. We identified 419 additional acces-
sions that may carry the Glu-D1d allele (Additional file  1: Table  S6). These intriguing 
results indicate the current panel of CNVb markers could serve as an alternative way for 
efficiently scanning the presence of beneficial alleles or key structure variations among 
wheat varieties.

CNVb markers associated with reported interspecific introgressions in wheat were 
also annotated (Table  1, Additional file  1: Table  S7). For instance, the well-docu-
mented 1RS introgression from rye (Secale cereale) carries multiple genes (Pm8/Sr31/
Lr26/Yr9) contributing to disease resistance in wheat. In this study, we developed a 
CNVb-deletion marker (CNVb.67.1, chr1B: 0–239.3 Mb) associated with 1RS based 
on the high sequence divergence between the 1RS and 1BS (Fig. 3d). The CNVb.67.1 
was identified in 16 accessions that were convinced as harboring the 1RS·1BL trans-
location by fluorescence in  situ hybridization [20, 21], including Lunxuan987. 
Additionally, we reveal there are 95 more accessions that also have the 1RS·1BL 
translocation-associated CNVb markers (Additional file  1: Table  S7). Our previous 
study showed the read depth pattern of 1B chromosome could well distinguish the 
two subtypes of 1RS-related translocation [16]. Based on the previous effort, we fur-
ther developed a sub-CNVb marker on chromosome 1B (CNVb.67.2, chr1B: 0–236.7 
Mb) in Aimengniu for representing the unique translocation (RT 1RS∙7DL/7DS∙1BL), 
which is different with the typical 1RS·1BL translocation in boundaries (Fig. 3d and 
Additional file 2: Fig. S7). Another example is the cultivar LongReach Lancer carry-
ing two introgressed regions from different species, including a pericentric region 
spanning 427 Mb on chromosome 2B from Triticum timopheevii and a terminal seg-
ment of ~60 Mb on chromosome 3D from Thinopyrum ponticum [15]. Accordingly, 
the Triticum timopheevii related introgression is associated with CNVb markers 

Table 1 Information and genomic features of representative CNVb markers associated with known 
structural variations and predominant haplotypes

Marker ID Chromosome Start 
position 
(Mb)

End 
position 
(Mb)

Associated genome 
feature

Associated gene Number 
of lines

CNVb.67.1 1B 0 239.3 1RS·1BL Pm8/Sr31/Lr26/Yr9 111

CNVb.67.2 1B 0 236.7 1RS·7DL/7DS·1BL Pm8/Sr31/Lr26/Yr9 16

CNVb.162 1D 412.1 412.5 Glu-D1d (Dx5 + Dy10) 
haplotype

430

CNVb.189 2A 0 24.7 2NvS/2AS Lr37/Yr17/Sr38 142

CNVb.290 2B 89.5 769.0 Triticum timopheevii 
introgression

Sr36 2

CNVb.540 3D 592.0 616.0 Thinopyrum ponticum 
introgression

13

CNVb.647 4B 30.5 31.1 r-e-z deletion Rht-B1/EamA-B/ZnF-B 10

CNVb.989 6B 167.9 183.4 perInv-6B 33
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CNVb.290 (chr2B: 89.5–769.0 Mb) (Fig.  3e), and the Thinopyrum ponticum related 
introgression is associated with CNVb markers CNVb.540 (chr3D: 592.2–616.0 Mb, 
Additional file 2: Fig. S8), respectively. By scanning our collection of wheat varieties, 
we showed the variety BAXTER also carries the Triticum timopheevii introgression 
(Fig. 3e). Collectively, we exemplified that structural variations and introgression hap-
lotypes could be transformed into digitalized CNVb markers with application poten-
tial for scanning larger wheat variety panels.

As pervasive independent introgressions have been utilized in modern wheat breed-
ing, we further showed CNVb marker could distinguish introgressions even with 
overlapped genomic coordinates. We identified two CNVb markers at the end of chro-
mosome 2A short arm. The CNVb-deletion marker CNVb.189 (chr2A: 0–24.7 Mb) 

Fig. 3 Associating CNVb markers with known structural variations and predominant haplotypes. a The 
CNVb-deletion marker CNVb.647 (chr4B: 30.5–31.1 Mb) corresponds to the r-e-z haplotype on chromosome 
4B. b The CNV-duplication marker CNV.989 (chr6B: 167.9–183.4 Mb) is associated with the pericentric 
inversion on chromosome 6B (perInv-6B). c The CNVb-deletion marker CNV.162 (chr1D: 412.1–412.5 Mb) 
corresponds to the Glu-D1d (Dx5 + Dy10) allele of the high-molecular-weight glutenin gene Glu-D1. d 
The CNVb-deletion marker (CNV.67.1, chr1B: 0–239.3 Mb) associates with the 1RS·1BL translocation. The 
“s1” denoted the subtype 1RS·1BL translocation associated with CNVb.67.1 (chr1B: 0–239.3 Mb). The “s2” 
denoted the subtype 1RS·7DL/7DS·1BL translocation associated with CNVb.67.2 (chr1B: 0–236.7 Mb). e 
The CNVb-deletion marker CNVb.290 (chr2B: 89.5–769 Mb) corresponds to the introgression from Triticum 
timopheevii on chromosome 2B. f Distribution of three types of CNVb allelic genotypes within the first 
40 Mb region of chromosome 2A. The first type of CNV allele (CNV. 189, chr2A: 0–24.7 Mb) corresponds to 
the introgressed segment from Aegilops ventricosa. g–i PCR validation on three types of CNVb alleles located 
in the 25 Mb telomeric region of chromosome 2A. M, DNA marker 5000. Two primers were designed using 
partial sequences of the introgression fragments in Jagger (g) and Zang1817 (h), respectively, and the other 
was designed using partial sequences from 0 to 24.7 Mb on chromosome 2A of the CS genome (i)
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was detected in Jagger (Fig. 3f ), which is linked to a  2NvS introgression from Aegilops 
ventricosa that conferred resistance to wheat blast and carried the rust disease resist-
ance gene cluster (Lr37/Yr17/Sr38) [15]. An additional 141 varieties were detected 
with the CNVb.189 marker (Additional file 1: Table S8), such as Lankao198 (Fig. 3f ). 
The second CNVb-deletion marker overlapped with CNVb.189 is CNVb.173 (chr2A: 
11.5–21.0 Mb), which was detected in Tibetan semi-wild wheat accession Zang1817 
and Chinese cultivar Bima4 (Fig. 3f ). Collinearity analysis between Zang1817 and CS 
genome showed a degree of collinearity in the deletion region, despite low-quality 
alignment (Additional file  2: Fig. S9), indicating that the CNVb.173 marker corre-
sponds to an interspecific introgression. 50.9% of wheat varieties showed no CNVb 
maker detected in the first 25 Mbp regions of chromosome 2A, indicating three types 
of alleles as distinguished by CNVb markers. To validate the three identified alleles, 
we performed a PCR analysis by designing primers specific to  2NvS introgression 
sequences in the Jagger assembly (Fig. 3g), to the sequences in the Zang1817 assembly 
(Fig. 3h), and to the wild-type Chinese Spring assembly (Fig. 3i), and results showed 
the yielded amplification in Jagger, Lankao198, Zang1817, Bima4, CS, and Aikang58 
matched with the predicted allele types by CNVb markers. This experiment validated 
the accuracy of the CNVb marker and proved the authenticity of the CNVb marker-
based strategy in distinguishing multiple allele types, even without fully assembled 
sequences, saving effort compared to traditional SNP/InDel/SSR markers.

Digital fingerprinting map of wheat varieties utilizing CNVb markers

We constructed a comprehensive CNVb fingerprint map consisting of 1599 accessions, 
by further integrating public resequencing data of 1071 wheat accessions [39–41] (Addi-
tional file  1: Table  S1). Moreover, we created a QR-code-like two-dimensional CNVb 
markers profile for each accession (Fig. 4a). The presence of a CNVb-duplication or a 
CNVb-deletion marker in a variety indicates that this variety contains the duplication 
or deletion block, respectively. For instance, the profile of Lunxuan987 showed that 276 
CNVb markers were detected as present, including the 1RS·1BL translocation marker 
and perInv-6B marker. In the CNVb fingerprint map, the number of CNVb markers pre-
sent in each accession ranges from 119 to 322. The genotypes of 199 markers are dif-
ferent between pairwise accessions on average (Fig.  4b), and there are more than 100 
markers with different genotypes for 99.5% of the accession pairs (Fig. 4b). For example, 
the sibling cultivars Bima1 and Bima4 present 117 distinct markers (Additional file  2: 
Fig. S10). These results indicate a great potential of CNVb markers  for discriminating 
closely related accessions. To further evaluate the accuracy of variety discrimination 
using CNVb markers, we compared CNVb strategy and germplasm resource-based 
Identity-By-Descent (gIBD), a previous strategy evaluating the genome-wide similarity 
that could reflect pedigree relationships in various plant species [16]. The results showed 
that the similarity estimated by the CNVb-based strategy is highly correlated with 
gIBD-based similarity, and the correlation is  especially significant for varieties with a 
close genetic relationship (similarity > 0.4, Pearson’s correlation = 0.85, P < 2.2 ×  10−12) 
(Fig.  4c). Thus, the result demonstrated the CNVb markers can serve as an effective 
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strategy for the reliable estimation of genetic similarity to distinguish the genetic-similar 
wheat accessions.

Boost germplasm identification with ultra‑low‑coverage sequencing

Genetic identification of germplasm resources is crucial for protecting breeders’ rights 
and promoting its digital management. Reliability tests of CNVb markers among vari-
ous depths (0.05×, 0.1×, 0.5×, 1.0×, and 1.5×) showed that the minimum recall and 
precision ratio observed at these reduced depths were above 99.0% and 97.9%, respec-
tively, for each accession (Fig. 4d), demonstrating the robustness of CNVb fingerprints 
in ulcWGS. To further examine the power of CNVb fingerprints in distinguishing germ-
plasm under ulcWGS, we selected 100 accessions from the original CNVb marker library 
and compared the CNVb fingerprints estimated at both the original and downsampled 
sequencing coverages. The similarity between pairwise accessions exhibited a bimodal 
distribution with two distinct peaks, which corresponded to the similarity between the 

Fig. 4 Performance evaluation of CNVb markers in germplasm identification. a The CNVb marker fingerprint 
of Lunxuan987. CNVb marker fingerprint consists of a QR-code-like two-dimensional matrix, with each cell 
representing a CNVb marker. All the markers are ordered by chromosomes and are filled into the matrix 
by rows, from left to right and from top to bottom. Two specific markers were highlighted by arrows with 
annotated descriptions as interspecific introgression or structural variation. b Spectrum of the number of 
CNVb markers in each accession and the number of differential CNVb markers in pairwise accessions. c 
Variety similarity was calculated based on CNVb markers and germplasm resource-based Identity-By-Descent 
(gIBD) block, respectively. Varieties with similarities calculated by both methods above 0.4 are highlighted in 
blue in the upper right corner. The upper right corner also displays the regression trend between a variety of 
similarities calculated based on CNVb markers and gIBD. Vertical and horizontal dashed lines represent variety 
similarity equal to 0.4, respectively. r, Pearson’s correlation coefficient, P value < 2.2 ×  10−12. d The accuracy 
of identifying CNVb fingerprints in accessions at low sequencing coverage. The ulcWGS data are simulated 
from whole genome sequencing data of 100 accessions randomly selected from the original CNVb marker 
library construction. e The similarity of pairwise accessions from two batches of 0.05× simulated sequencing 
datasets, each comprising 100 randomly selected accessions from our dataset. The dashed line represents 
the threshold (85%) for variety identification. f The similarity of pairwise accessions from two batches of 
0.05× sequencing data, each containing 100 accessions not included in the original CNVb marker library. The 
dashed line represents the similarity threshold (85%) for variety identification
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same varieties and between different varieties (Additional file 2: Fig. S11). A similarity of 
85% was selected as the threshold for variety differentiation based on the 99% confidence 
interval of the “distinct variety” distribution to ensure high accuracy in distinguishing 
varieties. The results showed that more than 99.9% of varieties could be accurately clas-
sified when the sequencing depth surpassed 0.05× (Fig. 4e, Additional file 2: Fig. S12), 
verifying the CNVb fingerprint-based germplasm identification strategy at ultra-low 
sequencing coverage. To assess the generalization ability of this strategy, 100 accessions 
not among the original accessions used to construct the CNVb marker library were ran-
domly selected and subjected to two rounds of downsampling to 0.05× ulcWGS data, 
creating two replicate datasets. Pairwise comparisons of these accessions confirmed that 
the strategy with a threshold of 85% can effectively differentiate accessions, as well as 
replications of the same accessions (Fig. 4f ). This demonstrates the practicality and accu-
racy of CNVb markers in ulcWGS for germplasm identification.

WheatCNVb database for exploring and comparing CNVb profiles

To enhance the accessibility of CNVb markers, we developed a database named 
WheatCNVb (http:// wheat. cau. edu. cn/ Wheat CNVb/), based on the profiling of 1599 
hexaploid wheat accessions with 1240 CNVb markers. Generally, the WheatCNVb 
database offers four main functions. First, the “CNVb profile” function allows users to 
query the CNVb profile for each accession. Two visualization modes were offered, as 
a chromosomal profile with colored regions representing the presented markers, and a 
QR-code-like representation of the digital present-absent status of 1240 CNVb mark-
ers (Fig. 5a). Second, the “CNVb marker info” function provides detailed information on 
CNVb marker, including the marker ID, location, annotations, and the accession list that 
harbors this marker (Fig. 5b). Third, the “Variety compare” function supports the com-
parison of CNVb fingerprints for any selected pair of accessions, which can intuitively 
visualize the shared and differential CNVb markers and estimate the similarity based 
on the CNVb profiles (Fig. 5c). For example, a pairwise analysis using the WheatCNVb 
database revealed a 52.6% genetic similarity between Jimai22 and Jimai20 (Fig. 5c). Addi-
tionally, each variety possesses 90 and 80 unique CNVb markers, respectively (Fig. 5c), 
confirming their classification as distinct wheat varieties.

Moreover, the “Geno scan” function enables users to analyze customized wheat acces-
sions. Users can perform an ulcWGS to their material, locally prepare the bin-wised 
read depth file of the accession locally with a pipeline provided on the webpage (http:// 
wheat. cau. edu. cn/ Wheat CNVb/ tutor ial. html), and upload the file to the WheatCNVb 
database (Fig. 5d). The database will facilitate the identification of CNVb markers for the 
accession, obtaining a CNVb fingerprint that can be compared with varieties stored in 
the database or other submitted varieties for comprehensive variety identification.

Discussion
High-throughput, affordable, and rapid detection of DNA-based markers is essential 
for exploring germplasm diversity and protecting breeders’ rights. However, devel-
oping an efficient genotyping tool for crops like wheat, with its huge and complex 
genome, remains challenging. Despite the abundance of SVs (including CNVs), which 
are crucial polymorphisms in crops, efforts to develop automated platforms for CNV 

http://wheat.cau.edu.cn/WheatCNVb/
http://wheat.cau.edu.cn/WheatCNVb/tutorial.html
http://wheat.cau.edu.cn/WheatCNVb/tutorial.html
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typing are limited [13]. In this study, we revealed that the high frequency and poly-
morphism of large CNV blocks in wheat make CNVb an effective DNA-based marker 
for efficient variety identification. We generated a comprehensive reference catalog 
of CNV blocks at the pan-genome level, which captures sequence polymorphisms 
absent in Chinese Spring and provides sufficient CNVb markers to perform accu-
rate variety identification. Additionally, we addressed the high rates of false positives 
and negatives in CNVb calling specific to ulcWGS by refining and merging raw CNV 
blocks. We manually annotated the tagged CNVb markers with known structural 
variations and beneficial alleles, and we developed an ulcWGS scanning strategy for 
new candidate varieties, which demonstrated advanced performance in germplasm 
identification.

Fig. 5 Schematic of the WheatCNVb database. a The “CNVb profile” presents an example of the distribution 
of the CNVb marker and the CNVb fingerprint barcode of Jagger. b The “CNVb marker info” function provides 
a table including marker ID, location, introgression source, and relevant accessions of each CNVb marker. c 
The “Variety compare” function shows the CNVb fingerprints in the mode of pairwise comparison, also with 
the estimated similarity. d The “Geno scan” function allows users to upload a bin-wised read-depth profile, 
which can be calculated with ultra-low whole genome sequencing data, and generate accession-specific 
CNVb fingerprint for variety identification and similarity evaluation
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Genotyping gene bank collections is a crucial first step in harnessing the untapped 
biodiversity of wheat genetic resources [42]. To date, over 560,000 wheat accessions are 
preserved in near 40 gene banks worldwide [11]. Despite significant progress in col-
lecting wheat resources, the capacity to identify, integrate, and utilize such extensive 
germplasm remains markedly insufficient [3, 43]. Compared to conventional methods 
for assessing wheat genetic resources in gene banks, CNVb markers showed multiple 
aspects of advantages (Additional file  2: Table  S9). First, CNVb markers significantly 
reduced the cost for genotyping per marker compared to Southern blot-based mark-
ers like RFLP and chip-based markers like SNP arrays, while being comparable in 
cost-effectiveness to SSRs and GBS. Second, CNVb markers support ultra-low-depth 
high-throughput sequencing and can be fully automated, which is more labor-saving 
and less equipment-dependent than widely used SSR markers, making them more suita-
ble for large-scale applications. Third, CNVb markers provide very high reliability, com-
parable to SNP arrays, and better performance than the GBS strategy. Fourth, CNVb 
markers provide high accuracy in variety identification, capable of distinguishing even 
closely related accessions (>40% similarity), comparable to genome-wide gIBD analysis 
using high-coverage whole genome sequencing (Fig. 4c). Fifth, CNVb markers support 
capturing larger genomic variations, which provides unique genetic information and is 
crucial for identifying traits linked to structural variations. This feature is particularly 
advantageous in polyploid crops like wheat, where large genomic structural variations 
are prevalent. Thus, CNVb markers represent a low-cost, high-throughput, labor-sav-
ing, and highly reliable tool for modern breeding and germplasm management. The cur-
rent plant variety protection system relies on phenotype-based distinctness, uniformity, 
and stability assessments, which can be costly, time-consuming, and often limited to a 
small number of traits influenced by environmental conditions [8]. Moreover, with the 
emergence of new breeding technologies that facilitate minor modifications in varieties, 
yielding specific merits or utilities, the challenge of detecting distinctness between varie-
ties, especially those that are essentially derived, is increasing [44, 45]. CNVb marker is 
cost-efficient, high throughput, and highly accurate, making it a practical alternative to 
morphological trait and traditional molecular markers. It provides a low-cost, thousand-
marker one-time, and rapid technical solution, ideal for establishing an evaluation sys-
tem for essentially derived varieties.

The initial hybridization of bread wheat involved a limited number of individuals, 
where the diploid Aegilops tauschii (DD) was hybridized  with the tetraploid Triticum 
turgidum (AABB) to form the allohexaploid Triticum aestivum (AABBDD), resulting in 
lower genetic diversity compared to its progenitors [46]. To address this, farmers and 
early breeders incorporated members from secondary and tertiary gene pools into wheat 
breeding programs [17, 19]. However, the absence of a high-throughput, cost-effective, 
and precise identification strategy hinders the resolution and utilization of numerous 
SVs and interspecific introgressions within the wheat genome. Our PCR analysis sug-
gests that CNVb markers can be associated with various types of genomic variations, 
indicating their potential as effective signals for tracking documented SVs and introgres-
sion events.

This study serves as a preliminary exploration for the development of wheat CNVb 
markers. Our findings suggest that CNVb is the optimal choice for identifying large SVs 
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and introgression within the wheat genome, as well as for variety identification. Consid-
ering the current limited availability of resequencing data, and the abundance of whole 
exome sequencing and microarray data, our future efforts will focus on integrating these 
data sets to update and expand the CNVb marker collection, which will facilitate the 
discovery of rare CNVbs. Additionally, associating these markers with phenotype data 
will help in nominating key CNVb markers to assist in the wheat breeding programs. 
The CNVb marker identification strategy outlined in this study also shows promise for 
application in other crops.

Conclusions
Our study introduces a CNVb-based genotyping approach that could enhance the 
digitalization and management of wheat germplasm resources using ultra-low-cov-
erage sequencing. The CNVb markers, validated by PCR analysis, not only facilitate 
the discrimination of massive wheat varieties but also link key genetic traits and ben-
eficial alleles. The WheatCNVb platform further supports this approach by providing 
a dynamic, user-friendly interface for the exploration and comparison of CNVb pro-
files, embodying a practical tool for breeders and researchers. Overall, the CNVb-based 
approach promises a low-cost and high-throughput genotyping strategy for enabling 
digitalized wheat germplasm management and modern breeding with precise and prac-
tical decision-making.

Methods
Collection and variation calling of wheat resequencing data

A total of 1599 published wheat accessions with whole genome resequencing data [16, 
17, 25–27, 39–41] (Additional file 1: Table S1) were used in this study. Trimming of raw 
reads was performed using Trimmomatic, followed by the mapping of high-quality reads 
to the wheat pan-genome via BWA-MEM [47]. Bamtools v2.4 [48] was used to filter read 
pairs with either abnormal insert sizes (>10,000 bp or =0 bp) or low mapping quality 
scores (<1). Samtools v1.3 [49] was then employed to remove any potential PCR dupli-
cate reads.

Construct non‑Chinese Spring chromosome at pan‑genome level (chrNCP)

To construct a wheat pan-genome, we first collected de novo assembled genomes of 17 
wheat varieties [15, 26, 28, 31–35], including the reference assembly of Chinese Spring 
RefSeq v1 (CS). Excluding CS, the remaining 16 genomes were ranked based on con-
tig N50 length and whether Hi-C sequencing was used for scaffolding (Additional 
file 1: Table S2). We identified absent sequences in the CS genome from the 16 varie-
ties using a whole-genome iterative alignment strategy. The alignment process involved 
trimming raw reads using Trimmomatic, followed by mapping high-quality reads to the 
wheat pan-genome with BWA-MEM [47]. Bamtools v2.4 [48] was used to filter read 
pairs with abnormal insert sizes (>10,000 bp or =0 bp) or low mapping quality scores 
(<1). Samtools v1.3 [49] was employed to remove potential PCR duplicate reads. Start-
ing with the highest-ranked genome Aikang58 genome as the reference, we aligned CS 
resequencing data to Aikang58, using a 1  Mb sliding window and a read-depth based 
method to detect sequences absent in CS relative to Aikang58. This procedure was 
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iteratively applied, comparing CS and Aikang58 resequencing data against the second-
ranked Fielder genome to identify non-redundant deletion blocks relative to Fielder, and 
continued through all 16 varieties. Through this methodology, we extracted non-redun-
dant deletion block sequences absent in CS, which were assembled in chromosomal 
order into “chrNCP” as a supplementary genome sequence to the CS reference. Thus, 
“chrNCP” combined with the CS genome forms the wheat pan-genome (Additional 
file 1: Table S4).

Identification of CNV blocks

The genome was segmented into 100 Kb nonoverlapping windows to calculate the aver-
age read depth, utilizing the “coverage” function in bedtools v2.27.1 [50]. These counts 
were then normalized by dividing them by the mode of the read depth across the 
genome. According to the distribution pattern of normalized read counts, which showed 
a near-normal distribution centered around a value of 1, windows exhibiting normalized 
read counts below 0.5 or above 1.5 were classified as deletion and duplication windows, 
respectively. Finally, contiguous deletion and duplication windows were merged to delin-
eate whole-genome CNV blocks.

Development of CNVb markers

To develop CNVb markers from 528 resequenced varieties, the identification of raw 
CNV blocks was refined through a systematic process structured into three main steps.

Step 1: Filtering of raw CNV blocks. Initially, for CNV blocks aligned to the CS refer-
ence, we employed a multinomial hidden Markov model (HMM) using the hmmlearn 
Python library (https:// pypi. org/ proje ct/ hmmle arn/) to minimize random noise and 
enhance the clarity of CNV block patterns. This model was configured with parameters 
set to “n_components=3, n_iter=60, tol=0.001” and optimized via the Baum-Welch 
iterative re-estimation algorithm through the “fit()” method. The “decode()” method, 
with “algorithm=viterbi”, was then used to smooth and decode CNV blocks. CNV 
blocks with a value of (length / 100 Kb + N) ≤ 10 were further filtered out, where “N” 
indicates the number of accessions containing the CNV block and “length” indicates the 
length of CNV block. For CNV blocks mapped to the “chrNCP” genome, a similar filtra-
tion and refinement were applied, excluding CNV blocks with a value of (length / 1 Mb 
+ N) ≤ 10 or (length / 1 Mb + n) ≤ 10, where “n” indicates the number of accessions 
without the CNV block.

Step 2: Merging CNV blocks. For CNV blocks within the CS reference regions, redun-
dancy was addressed by merging significantly overlapping blocks (ρo ≥ 0.8) and merging 
linked blocks (those within 5 Mb apart and with ρlink ≥ 0.9). The formulas for ρo and ρlink 
are defined as:

ρo =
Lo

L1 + L2 − Lo

ρlink =
Cs

C1 + C2 − Cs

https://pypi.org/project/hmmlearn/
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where L1 and L2 are the lengths of the CNV blocks, Lo is the overlapping length, C1 and 
C2 are the counts of accessions carrying each CNV block, and Cs is the count of acces-
sions with both CNV blocks. No further processing was needed for already filtered CNV 
blocks corresponding to the “chrNCP” genome. This merging step resulted in a pre-
liminary CNV marker library, encompassing multiple CNV blocks per marker. Markers 
identified in both the CS reference and “chrNCP” sequences were assessed for redun-
dancy with a specific focus on their presence or absence across accessions. If the geno-
type of a marker form “chrNCP” is highly correlated with that of another marker from 
CS, the marker from the “chrNCP” sequence will be filtered out.

Step 3: Filtering CNVb markers for ulcWGS stability. To ensure the applicability of 
CNVb markers for ulcWGS data, markers indistinguishable at low sequencing coverage 
were excluded. CNV blocks were initially genotyped from hcWGS and simulated 0.1× 
coverage data, with the latter obtained by downsampling hcWGS data. Each accession’s 
CNV blocks were compared with the preliminary marker library to ascertain the pres-
ence or absence of CNVb markers in both hcWGS and 0.1× coverage data. A marker 
was considered present if at least one CNV block overlapped with it by ≥90% and the 
length discrepancy between the CNV block and the marker is less than 1 Mb. Markers 
with inconsistent detections in more than 10 accessions were removed. The refined set 
of CNVb markers formed the finalized marker collection.

Construction of the low‑coverage sequencing test set

To create a test set for ulcWGS, 100 accessions with sequencing depths > 5× were ran-
domly selected (Additional file 1: Table S5). Their original BAM files were downsampled 
to depth levels of 0.01×, 0.05×, 0.1×, 0.5×, 1×, and 1.5×, thereby generating simulated 
ulcWGS data using Samtools v1.3.1 [49]. CNV blocks were then genotyped for each 
accession’s ulcWGS data. These identified CNV blocks from each accession were com-
pared with the raw CNVb marker library to ascertain the presence or absence of each 
CNVb marker in the simulated ulcWGS data.

Identification of CNVb markers using ulcWGS

The pipeline is to first identify the type of CNV blocks and then match these CNV 
blocks to the corresponding markers to identify which markers are present in each vari-
ety (Additional file 1: Fig. S4). Initially, the ulcWGS data are aligned to the pan-genome 
to detect raw deletion (copy number = 0) and duplication (copy number ≥ 2) blocks. 
These blocks are then separately compared with their corresponding CNVb marker set. 
The presence of a deletion or duplication marker in a variety is determined based on the 
following criteria, if a deletion or duplication block present in the variety overlaps with a 
deletion or duplication marker by at least 90% and the difference in length between the 
block and the marker is less than 100 Kb.

Evaluating lcWGS recall for SNPs, raw CNVb, and CNVb markers

SNPs were detected in all 100 accessions using GATK v3.868’s HaplotypeCaller mod-
ule in GVCF mode. To assess the recall rates for SNPs, raw CNVb, and CNVb markers 
identified via low-coverage sequencing, these findings were benchmarked against results 
from high-coverage sequencing.
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PCR analysis

The primer sequences for three marker types were designed based on distinct introgres-
sion fragments. Type 1 marker primers were derived from an introgression fragment 
in the Jagger genome, corresponding to the CNVb-deletion type 1 (CNVb.139, chr2A: 
0–24.7 Mb). The forward primer was 5′-TGC ATG TCA CTA CCA CGA CC-3′, and the 
reverse primer was 5′-ACA ACC CGT TTT CTT CAC GG-3′. Type 2 marker primers 
were selected from an introgression fragment in the Zang1817 genome, corresponding 
to the CNVb-deletion type 2 (CNVb.142, chr2A: 12.0–21.3 Mb). The forward primer 
was 5′-TAC TTT CGG ATT GAC AAT TAT CCT CTT ATC -3′, and the reverse primer was 
5′-TGG AAA AAT GGT CTT ACG GTT ATA TGA AAT -3′. For the type 3 marker, prim-
ers were selected from a segment of the CS genome sequence, aligning with the region 
of CNVb-deletion type 2 (CNVb.142, chr2A: 12.0–21.3 Mb). The forward primer was 
5′-GAA CTG ATT ACA AAT GAA TAG TTG TAG GGA -3′, and the reverse primer was 
5′-TTA GTT ACA CCA TGA GTT AGC ATC ATT TAG -3′. The PCR reaction system was 
20 μL, including 10 μL 2× M5 HiPer plus Taq HiFi PCR mix, 1 μL forward primers and 
1 μL reverse primers (10 μmol  L−1), 2 μL template DNA (150 ng μL−1), supplemented 
with  ddH2O to 20 μL. The PCR conditions were 95 °C for 5 min, followed by 35 cycles of 
95 °C for 30 s, 60 °C for 30 s, and 72 °C for 5 min, and finally followed by 72 °C for 5 min.

Calculation of the pairwise similarity

The pairwise similarity between accessions was calculated based on their CNVb finger-
prints. The formula for similarity is defined as:

where MS1 and MS2 represent the number of markers in the first and second acces-
sions, respectively, and Mshare denotes the number of markers shared between the two 
accessions.

Assessing the accuracy of variety identification based on ulcWGS

This study evaluates the accuracy of variety identification using ulcWGS by comparing it with 
hcWGS. The test set of 100 accessions from ulcWGS is designated as replicate 1, while an identi-
cal set of 100 accessions sequenced at a high depth forms replicate 2. CNVb fingerprints are used 
for pairwise comparisons between the replicates to simulate the variety identification process. 
The similarity between each pair is calculated, with a threshold of 85% similarity set to determine 
if the accessions are of the same or different varieties. Power of variety identification is defined as 
the proportion of correctly identified distinct variety pairs out of the total distinct pairs.

In addition, we randomly selected 100 accessions that were not among accessions used to 
construct the CNVb marker library and performed downsampling on their original BAM 
files to 0.05× coverage in two separate batches using Samtools v1.3.1 [49]. This process 

similarity =
Mshare

Ms1 +Ms2 −Mshare
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generated two sets of 0.05× simulated sequencing data. The CNVb fingerprints from both 
data sets were then subject to pairwise comparisons, designating the first data set as repli-
cate 1 and the second as replicate 2. We calculated the similarity between the two replicates, 
setting a similarity threshold of 85% for variety identification. The statistical power (1 − 
β) was also computed as the standard for evaluating the accuracy of varietal identification.
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