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The nasal microbiota is a potential diagnostic biomarker for 
sepsis in critical care units
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ABSTRACT This study aimed to characterize the composition of intestinal and nasal 
microbiota in septic patients and identify potential microbial biomarkers for diagnosis. 
A total of 157 subjects, including 89 with sepsis, were enrolled from the affiliated 
hospital. Nasal swabs and fecal specimens were collected from septic and non-septic 
patients in the intensive care unit (ICU) and Department of Respiratory and Critical Care 
Medicine. DNA was extracted, and the V4 region of the 16S rRNA gene was amplified 
and sequenced using Illumina technology. Bioinformatics analysis, statistical processing, 
and machine learning techniques were employed to differentiate between septic and 
non-septic patients. The nasal microbiota of septic patients exhibited significantly lower 
community richness (P = 0.002) and distinct compositions (P = 0.001) compared to 
non-septic patients. Corynebacterium, Staphylococcus, Acinetobacter, and Pseudomonas 
were identified as enriched genera in the nasal microbiota of septic patients. The 
constructed machine learning model achieved an area under the curve (AUC) of 89.08, 
indicating its efficacy in differentiating septic and non-septic patients. Importantly, 
model validation demonstrated the effectiveness of the nasal microecological diagno­
sis prediction model with an AUC of 84.79, while the gut microecological diagnosis 
prediction model had poor predictive performance (AUC = 49.24). The nasal microbiota 
of ICU patients effectively distinguishes sepsis from non-septic cases and outperforms 
the gut microbiota. These findings have implications for the development of diagnostic 
strategies and advancements in critical care medicine.

IMPORTANCE The important clinical significance of this study is that it compared the 
intestinal and nasal microbiota of sepsis with non-sepsis patients and determined that 
the nasal microbiota is more effective than the intestinal microbiota in distinguishing 
patients with sepsis from those without sepsis, based on the difference in the lines of 
nasal specimens collected.
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S epsis is a severe illness with a high mortality rate between 29.9% and 57.5%.1–3 
Despite the establishment of the third international consensus definition of sepsis 

and septic shock (Sepsis-3) in 2016 (4), there are still many aspects of sepsis that warrant 
further exploration in order to improve its diagnosis. The evolution of the diagnostic 
criteria from Sepsis-1 to Sepsis-3 is evidence of this need for continued investigation. 
Additionally, sepsis diagnostic criteria have shifted from focusing solely on the inflamma­
tory response to also including organ failure caused by infection (4). While considerable 
progress has been made in the diagnosis of sepsis, no biological indicators with strong 
sensitivity and specificity have been identified (5). Furthermore, the low culture positivity 
rate and the presence of few culturable microorganisms limit the diagnosis of clinical 
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sepsis (6). Therefore, the identification of a new, effective, and reliable biomarker for 
sepsis has long been a goal of researchers.

Previous studies have demonstrated an association between sepsis and dysbiosis of 
the gut microbiome (7, 8). Literature reports suggest that an imbalance in the intesti­
nal microbiota is a likely cause of sepsis (9). Recent research has indicated that an 
imbalance in the intestinal microbiota can adversely impact the human immune system 
by damaging the integrity of intestinal epithelial tissues, thereby creating favorable 
conditions for the invasion of microbes that cause sepsis (10). Due to the complexity 
and diversity of intestinal microbiota, humans lack a sufficient understanding of their 
structural diversity and functional importance (11). It is only in recent years that the 
development of second-generation sequencing and other technologies has facilitated a 
deeper understanding of the microbiome (8, 12). Some studies have reported differences 
in the abundance of certain bacterial genera between patients with sepsis and those 
without, with a significant increase in pathogenic species such as Enterococcus observed 
in deceased septic patients (13). These findings suggest that these species may serve as 
potential biomarkers for monitoring during intensive care unit (ICU) hospitalization (13) . 
However, due to the high complexity of intestinal flora, it is still challenging to describe 
the disorders and specific characteristics of the intestinal flora (14).

In intensive care unit patients, sepsis is most commonly induced by pulmonary 
infection (13, 15). Previous studies have reported an association between sepsis and 
dysbiosis of the lung microbiome (16–18). Recent studies have indicated that the nasal 
microbial community can reflect the status of deep pulmonary infection due to the 
similarity in microbial community compositions between the upper and lower airways 
(19–21). Additionally, acquiring nasal microorganisms is far less invasive than broncho­
scopy. Compared to the complexity and diversity of gut microbes, nasal microbes are 
relatively less complex. This lower complexity provides a foundation for the occurrence 
of diseases, making it possible to identify common pathogen combinations to build 
models.

We conducted an observational study by enrolling a cohort of 89 patients diagnosed 
with sepsis and 65 patients without sepsis. The objectives of this study were to describe 
the characteristics of the gut and nasal microbiota in both septic and non-septic patients 
and identify potential microbial biomarkers for diagnosis. Our overarching aim was to 
characterize the composition of the intestinal and nasal microbiota in septic patients and 
identify potential microbial biomarkers for the identification of sepsis.

MATERIALS AND METHODS

Study design and clinical information collection

The Medical Ethics Committee of the Ethics Committee of Southern Medical University 
(SMU) approved this study (approval number 2015-GRGLK-002), which involved the 
collection of clinical information from subjects who provided informed consent . The 
data collection period extended from January 2015 to May 2017, we desensitized 
subjects, removed their names and other information, renumbered them, and included 
them in the study. The information collected included the subject’s sex, age, underlying 
diseases, catheter placement, antibiotic use, hormone use, inflammatory indicators, and 
daily blood gas analysis results.

To minimize the impact of antibiotic-related factors, we enrolled non-septic patients 
who received antibiotic treatment comparable to that administered to the septic 
patients as the control group.

Septic patients

The inclusion criteria were as follows: infection +Sequential Organ Failure Assessment 
(SOFA score) ≥2 points. The exclusion criteria were as follows: 1) history of significant 
inflammatory disease other than sepsis; 2) history of lung surgery and tuberculosis; 3) 
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blood transfusion within 4 weeks of enrollment; 4) diagnosis of autoimmune diseases; 
and 5) enrollment in a blinded drug trial.

Non-septic patients

The inclusion criteria were as follows: infection +use of third-generation cephalospor­
ins, quinolones, carbapenems, and/or penicillin plus enzyme inhibitors. The exclusion 
criteria were as follows: single medication with first­ or second-generation cephalospor­
ins and/or macrolides.

Following these inclusion and exclusion criteria, we ultimately enrolled 89 septic 
patients in the ICU and 65 non-septic patients in the Department of Respiratory and 
Critical Care Medicine. All subjects provided written informed consent in accordance 
with the principles of the Declaration of Helsinki.

Sample collection

For the nasal swab collection, subjects were either seated or placed in a recumbent 
position to expose the nasal cavity fully. Experienced physicians collected nasal swabs 
in the morning using disposable swabs. Each swab was inserted into each nostril and 
rotated ten times.

For the anal swab collection, experienced physicians obtained samples in the 
morning using disposable swabs. The anal swab was inserted 1–2 cm into the patient’s 
anus and rotated three times.

All collected samples were temporarily stored in a biological sample transport box 
and then transferred to a −80°C freezer within 4 hours, where they were stored until the 
total bacterial DNA was extracted.

DNA extraction, 16S RRNA gene amplification, and sequencing

Total bacterial DNA magnetic bead extraction kits from Shenzhen Bioeasy Biotech­
nology Co.,  Ltd. were used to extract bacterial DNA. PCR amplification targeting 
the V4-16S rRNA region was performed to prepare 16S rRNA amplicon sequencing 
samples (22), and the resulting PCR products were mixed at specific ratios using 
a Qubit fluorometer (InvitrogenTM). Further sequencing was performed using the 
Illumina HiSeq PE250 platform.

Bioinformatics analysis and statistical processing

We processed the raw Illumina sequences primarily based on the Greengenes database 
(23) in QIIME (1.9.1) software (24) , following the same protocol as described in our 
previous reports (25).

We employed a random forest classification model used for classification, clustering , 
and regression analyses (26). To construct the model, we utilized the same grouping 
scheme employed for 16S rRNA gene sequencing. Community data were classified 
according to the clinical information of the septic patients (metadata). We randomly 
selected some of the data as the training set and the remaining data as the validation set. 
The training set was used to train a classifier, and the validation set was used to test the 
model obtained from the training set (Model) using the R caret package (27). The model 
aimed to predict outcomes such as sepsis (septic shock and death). During modeling, 
we randomly divided all samples into ten subsamples for tenfold cross-validations and 
optimization to obtain the optimal area under the receiver operating characteristic curve 
(AUC) (28).

Data visualization and statistical analyses were performed using R (3.2.2) statistical 
software r. The Wilcoxon rank-sum test was used to determine the significance of 
differences between two groups. Spearman’s rank correlation test was used to analyze 
the correlations between two variables, while the χ test was employed to compare the 
ratios of two groups. P < 0.05 was considered statistically significant.
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RESULTS

Patient characteristics

We recruited 157 subjects (89 with sepsis) of both sexes at the Affiliated Hospital of 
Southern Medical University. The sepsis group consisted of 22 females and 67 males, 
with participants aged between 22 and 88 years, among which 74 of 89 septic patients 
had lung infections. The non-sepsis group consisted of 22 females and 46 males, with 
participants aged between 24 and 94 years, among which 56 of 65 non-septic patients 
had lung infections, two had tuberculous pleurisy, one had bronchitis, and one had 
bronchiectasis. No significant differences were found in terms of gender, age, and 
the number of antibiotic types and days used between the two groups. The patient 
characteristics are shown in Table 1.

Nasal microbiota alterations in septic patients compared with non-septic 
patients

We utilized 16S rRNA sequencing to examine the microbiota of the gut and respiratory 
tracts. In comparison to the non-septic patients, the nasal microbiota of the septic 
patients demonstrated lower community richness according to the Shannon index (P = 
0.002, Fig. 1A) and PD whole tree index (P = 0.019, Fig. 1B). The nasal bacterial commun­
ity in the non-septic patients differed significantly from that in the septic patients in 
terms of beta diversity, as indicted by the binary jaccard distance (P = 0.001, Fig. 1C).

Given the disparities in nasal microbiota community diversity, we sought to deter­
mine which key bacteria were dominant in both patient groups. The dominant phyla 
were Proteobacteria, Actinobacteria, and Firmicutes (Fig. 1D). In the nasal microbiota of 
the septic patients, the most abundant taxa were Corynebacterium, Staphylococcus, 
Acinetobacter, and Pseudomonas (Fig. 1E). In comparison to the non-septic patients, the 
septic patients demonstrated an increase in the abundance of Pseudomonas and 
Klebsiella (Fig. 1F and G), a slight decrease in the abundance of Corynebacterium, and 
indiscriminateness in the abundance of Staphylococcus (Fig. 1H).

Gut microbiota in the septic and non-septic patients

We conducted an analysis of the gut microbiota in the study subjects. Based on the PD 
whole tree index, we found that the gut microbiota diversity was significantly higher in 
the septic patients than in non-septic patients (P = 0.015, Fig. 2B). Conversely, no 
significant differences were observed in the Shannon index between the two groups (Fig. 

TABLE 1 Baseline characteristics of the septic and non-septic patients

Clinical variable Septic patients Non-septic patients Statistical value P value
(n = 89) (n = 68)

Age (mean ± SD; years) 57.980 ± 16.527 59.4 ± 17.286 t;=0.523 0.602
Sex (male/female; n) 67/22 46/22 χ2=1.114 0.291
ICU time (median; interquartile; days) 10 (5.0–24.0) 0 (0.0–0.00) U = 5386 0.000
Time (median; interquartile; days) 26 (12.0–42.5) 13 (9.00–22.00） U = 4123.5 1.00E-04
ICU time before sampling (median; interquartile; days) 4.5 (1.0–9.0) 0 (0.0–0.00) U = 5125 3.09E-14
Time before sampling (median; interquartile; days) 6 (2.0–14.0) 7.00 (4.00–11.00） U = 2685 0.226
SOFA score (median; interquartile; n) 8 (4.0–10.0) 0 (0–1.0) U = 6052 0.000
Combination_antibiotic (median; interquartile; n) 2 (1.00–2.00) 2 (1.00–2.00) U = 2592.5 0.102
Antibiotic_time_before_sampling (median; interquartile; days) 5 (2.00–10) 6 (3.00–10.00) U = 2571.5 0.106
Hormone (yes/no) 49/40 30/38 χ2 = 1.845 0.174
Nasogastric tube (yes/no) 66/23 10/58 χ2 = 54.554 1.51E-13
Smoking (yes/no) 17/72 25/43 χ2 = 6.138 0.013
Diarrhea (yes/no) 4/85 1/67 Fisher = 0.278 0.390
Diabetes (yes/no) 23/66 8/60 χ2 = 4.821 0.028
Hypertension (yes/no) 39/50 17/51 χ2 = 5.950 0.015
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2A). We additionally performed a principal coordinate analysis (PcoA) using the binary 
jaccard distance, a dimensionality reduction method that illustrates the relationships 
between samples based on a distance matrix. The result of the PcoA showed no 
significant differences in gut microbiota between the non-septic and septic patient 
groups (P = 0.126, Fig. 2C).

Furthermore, we evaluated the relative abundances of intestinal bacteria at the 
phylum and genus level. We found that the most abundant gut bacteria detected in this 
study belonged to four phyla: Firmicutes, Bacteroidetes, Actinobacteria, and Proteobac­
teria (Fig. 2D). At the genus level, Enterococcus was the most abundant bacteria, followed 
by Corynebacterium and Bacteroides (Fig. 2E).

Machine learning model based on nasal microbiota as the basis for the 
differences in septic and non-septic patients

The results obtained in this study demonstrated significant differences in the nasal 
microbiota between the septic and non-septic patients. These differences may provide 
the basis for the development of a diagnostic tool for sepsis. To this end, a machine 
learning model using the random forest method was constructed to establish a micro­
ecological diagnosis model of sepsis based on the nasal microbiota data. We analyzed 
100 nasal microbiota samples from septic and non-septic patients and found that the 
AUC was 89.08 (95% CI: 86.13–92.04, (Fig. 3B). This result suggested that the nasal 
microbiota could be used to distinguish between septic and non-septic patients. 
Additionally, we employed Linear discriminant analysis Effect Size (LEfSe) to identify the 
bacterial taxa that differed significantly between septic and non-septic patients. The 

FIG 1 Nasal microbiota alterations in septic patients compared with non-septic patients. (A): The Shannon index of nasal microbiota in septic patients and 

non-septic patients. (B): The PD whole tree index of nasal microbiota in septic patients and non-septic patients. (C): The nasal bacterial community of septic 

patients compared with non-septic patients in terms of beta diversity. (D): The key bacteria at the phylum level. (E): The most abundant taxa at the genus level. 

(F): The abundances of Pseudomonas in septic patients compared with non-septic patients. (G): The abundances of Klebsiella in septic patients compared with 

non-septic patients. (H): The abundances of Staphylococcus in septic patients compared with non-septic patients.
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result revealed increased abundances of Pseudomonadaceae and Pseudomonas , as well 
as reduced abundances of Alphaproteobacteria, Rhizobiales, Prevotella, Betaproteobacte­
ria, Bradyrhizobiaceae, Xanthomonadaceae, Bradyrhizobium, Burkholderiales, Clostridiales, 
Clostridia, and Dyella (Fig. 3A).

Model validation indicated that the nasal microecological diagnosis predic­
tion model was effective

Given the robust predictive performance of the random forest nasal microbiota classifier, 
we conducted further analysis by classifying an additional 39 nasal bacterial species from 
septic patients and 15 nasal bacterial species from non-septic patients. This was done to 
better evaluate the potential of using the nasal microbiota classifier as a diagnostic tool 
for sepsis. The result of this analysis showed that the AUC was 84.79 (95% CI: 71.25–98.33; 
Fig. 3C), indicating that the nasal microecological diagnosis prediction model was 
effective for diagnosing sepsis.

FIG 2 Gut microbiota alterations in septic patients compared with non-septic patients. (A): The Shannon index of gut microbiota in septic patients and 

non-septic patients. (B): The PD whole tree index of gut microbiota in septic patients and non-septic patients. (C): The gut bacterial community of septic patients 

compared with non-septic patients in terms of beta diversity. (D): The key bacteria at the phylum level. (E): The most abundant taxa at the genus level. (E): The 

most abundant taxa at the genus level.
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The gut microecological diagnosis prediction model had poor predictive 
performance

LEfSe analysis revealed only minor differences between septic and non-septic patients, 
with increased abundances of Bacillales, Clostridium, and Rikenellaceae and reduced 
abundances of Anaeromusa and Micrococcus (Fig. 4A). In an attempt to distinguish 
between septic and non-septic patients using the intestinal microbiota data, we 
constructed a random forest classifier using 80 septic and 14 non-septic patient 
specimens. However, the model only achieved an AUC of 49.24 (95% CI: 42.35–56.14, 
Fig. 4B), indicating weak predictive performance in distinguishing septic and non-septic 
patients based on the intestinal microbiota.

FIG 3 A machine learning model based on nasal microbiota as the basis for the diagnosis of sepsis. (A): Linear discriminant analysis Effect Size (LEfSe) based 

on the nasal microbiota data between the septic and non-septic patients. (B): A machine learning model using the random forest method based on the nasal 

microbiota data with an AUC of 89.08 (95% CI: 86.13−92.04). (C): An AUC of 84.79 (95% CI: 71.25−98.33) which was yielded using the nasal microbiota classifier for 

the diagnosis of sepsis.
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DISCUSSION

At present, the diagnosis of sepsis remains challenging due to the lack of specificity 
in the diagnostic methods used. Sepsis is a broad term applied to an incompletely 
understood process, and there are currently no simple and unambiguous clinical criteria 
or biological, imaging, or laboratory features that uniquely identify sepsis (4). The lungs 
are the most common source of sepsis (29). While numerous studies have shown that the 
nasal microbial community can reflect the deep pulmonary infection status, it remains 
unclear whether nasal microbiota can be used to diagnose sepsis . To address this issue, 
we conducted 16S rRNA sequencing and utilized a machine learning approach. Our 
results showed that sepsis was associated with a distinct nasal microbiota signature 
that could distinguish septic patients from non-septic patients. Specifically, the most 
abundant genera in the nasal microbiota of the septic patients were Corynebacterium, 
Staphylococcus, Acinetobacter, and Pseudomonas. Compared with those in the non-sep­
tic patients, Pseudomonas was one of the most significantly abundant genera , which 
is usually related to pneumonia (30, 31). Klebsiella pneumoniae causes healthcare-asso­
ciated pneumonia worldwide (32, 33). Polymicrobial, Streptococcus pneumoniae, and 
Staphylococcus aureus were the most common bacteria in lower respiratory infections 
(34). Thus, our study provides a novel approach based on the nasal microbiota to 
identifying sepsis in the ICU environment.

We observed little differences in intestinal microbiota between septic and non-sep­
tic patients, despite the gut being another important source of sepsis. The similarity 
in the gut microbiota of septic and non-septic patients may be attributed to the 
administration of antibiotics during hospitalization, which has a significant impact on 
intestinal microbiota (13, 35–40). To address this issue, we collected control samples 
from non-septic patients who were administered the same antibiotics used in the septic 
patients. Our findings showed that intestinal microbiota in both septic and non-septic 
patients changed dramatically with the administration of a large number of antibiotics. 
In the septic patients, the main enriched phyla were Actinomycetes, Proteobacteria, 
and Firmicutes, while in the non-septic patients, they were Firmicutes, Bacteroides, and 
Actinomycetes (41). Interestingly, we found that the changes in the nasal microbiota of 
septic patients were smaller than those in the gut microbiota, suggesting that a large 
number of antibiotics have less influence on the nasal microbiota than on the intestinal 

FIG 4 The gut microecological prediction model of sepsis. (A): LEfSe based on gut microbiota between the septic patients and non-septic patients. (B): An AUC 

of 49.24 (95% CI: 42.35–56.14) was achieved by a random forest classifier using the intestinal microbiota data.
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microbiota. Given the widespread use of antibiotics in the ICU, the nasal microbiota may 
be more suitable than intestinal microbiota for identifying septic patients.

Compared to the complex and diverse range of gut microbes, nasal microbes are 
relatively less complex. Low α-diversity indicates a low number of microbial species in a 
single sample. The gut is known to harbor hundreds or thousands of microbes, whereas 
the nasal flora is about half of that. Low β-diversity refers to little variation between 
individuals, i.e., the nasal flora among different individuals contains more common 
species than the intestinal flora. This relatively low complexity provides a common 
foundation for disease occurrence, making it possible to identify common pathogen 
combinations for building models. This relatively low complexity provides a common 
foundation for disease occurrence, making it possible to identify common pathogen 
combinations for building models. Furthermore, the relatively simple composition of 
the nasal microbiota suggests that it will be easier to establish rapid PCR diagnostic 
technology based on this model in the future. On the other hand, due to the relatively 
low complexity, traditional culture-based and PCR-based studies provide more effective 
information, which provides clues for our understanding and interpretation of the 
model.

In summary, the important clinical significance of this study is that it compared 
the intestinal and nasal microbiota of patients with sepsis and those without sepsis 
and determined that the nasal microbiota is more effective than the intestinal micro­
biota in distinguishing patients with sepsis from those without sepsis, based on the 
difference in the lines of nasal specimens collected. A machine learning model based 
on nasal microbiota provides a basis for identification of sepsis. The model verification 
showed that the prediction model of nasal microecological diagnosis was effective in 
providing a reference for the clinical application of nasal microflora in the identification 
of sepsis in ICU patients. There are some limitations to the study: in view of the fact 
that extensive use of broad-spectrum antibiotics can significantly alter the intestinal 
flora of severely ill patients (42, 43). The diversity of intestinal microbiota in patients 
with critical sepsis decreased significantly, and the bacterial composition was dominated 
by multidrug-resistant bacteria (44). We acknowledge the complexities associated with 
microbiological analysis in the context of prior antibiotic use, which indeed complicates 
the microbial landscape. However, the reality of clinical practice often involves patients 
receiving antibiotics before a definitive diagnosis of sepsis is made, particularly those 
who are critically ill and subsequently admitted to the ICU. It is pertinent to note that 
our study aimed to reflect the real-world clinical scenario where most sepsis patients 
have been pretreated with antibiotics by the time of ICU admission. This pretreatment, 
while challenging, provides a unique insight into the microbiota dynamics post-antibi­
otic intervention, which is a critical aspect of sepsis management and its prognostic 
evaluation. The complexity introduced by antibiotics is not merely a limitation but an 
integral part of the sepsis pathology that deserves attention for its implications on 
patient outcomes and disease prognosis (45). Looking forward, we suggest the potential 
for further research, possibly through animal models or larger patient cohorts, to deepen 
our understanding of the role of microbiota in sepsis beyond the antibiotic effect.
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