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Bladder cancer is a global health issue with sex differences in incidence and prognosis. Bladder 

cancer has distinct molecular subtypes with multiple pathogenic pathways depending on whether 

the disease is non-muscle invasive or muscle invasive. The mutational burden is higher in 

muscle-invasive than in non-muscle-invasive disease. Commonly mutated genes include TERT, 

FGFR3, TP53, PIK3CA, STAG2 and genes involved in chromatin modification. Subtyping of 

both forms of bladder cancer is likely to change considerably with the advent of single-cell 

analysis methods. Early detection signifies a better disease prognosis; thus, minimally invasive 

diagnostic options are needed to improve patient outcomes. Urine-based tests are available for 

disease diagnosis and surveillance, and analysis of blood-based cell-free DNA is a promising tool 

for the detection of minimal residual disease and metastatic relapse. Transurethral resection is the 

cornerstone treatment for non-muscle-invasive bladder cancer and intravesical therapy can further 

improve oncological outcomes. For muscle-invasive bladder cancer, radical cystectomy with 

neoadjuvant chemotherapy is the standard of care with evidence supporting trimodality therapy. 

Immune-checkpoint inhibitors have demonstrated benefit in non-muscle-invasive, muscle-invasive 

and metastatic bladder cancer. Effective management requires a multidisciplinary approach that 

considers patient characteristics and molecular disease characteristics.

Introduction

In 2020, 573,278 people were newly diagnosed with bladder cancer worldwide1,2, and this 

number is expected to double by 2040 based on World Health Organization predictions3. If 

detected early before muscle invasion, this disease is often treatable and can be managed 

with minimal effects on survival. Muscle-invasive disease can metastasize, predominantly 

to lymph nodes, bones, lungs and liver4, and is associated with a median survival of ~15 

months5.

The bladder wall consists of 5–7 epithelial cell layers with surface umbrella cells 

(urothelium) with underlying layers of fibroconnective tissue and vessels (lamina propria), 

thick muscular bundles (muscularis propria or detrusor muscle) and perivesical fat (Fig. 1). 

Urothelial cells are the primary cells of origin of bladder cancer, and urothelial cancer is 

the most common form of bladder cancer, affecting ~95% of patients6,7. Tobacco use is the 

primary risk factor in ~50% of bladder cancer diagnoses8,9 as the urothelium is exposed 

to carcinogenic tobacco metabolites eliminated via the urine10. Other urothelial cell-derived 

bladder cancer types, occurring in <2% of patients, include small cell carcinoma, squamous 

cell carcinoma and adenocarcinoma7.

At diagnosis, urothelial cancer is categorized as either non-muscle-invasive bladder cancer 

(NMIBC; stages Tis, Ta and T1) or muscle-invasive bladder cancer (MIBC; stages T2–

T4) when the disease has grown into the muscularis propria. The overall categorization 

of the disease into NMIBC or MIBC is used frequently as treatment modalities differ 

substantially between these entities; however, within the NMIBC category, Ta tumours 

have a much more benign disease course than T1 and Tis tumours, and treatment of 

these subtypes is also markedly different7. The various tumour stages are associated with 

different genetic features, which can be used as markers for minimally invasive diagnostics 

and disease aggressiveness11,12. The importance of these markers in disease management 
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will further increase as molecular pathology will become more predominant in diagnosis, 

treatment selection and follow-up planning. The most informative molecular markers to 

date are genetic variants of TP53, ERCC1 and FGFR3 as markers of disease progression, 

chemotherapy sensitivity and small-molecule therapeutic selection, respectively11,12.

Of note, bladder cancer incidence and aggressiveness differ considerably between men and 

women13. For instance, bladder cancer is the sixth most common cancer in biological males 

but only the seventeenth most common cancer in biological females14. However, women 

present clinically with more advanced disease and have a poorer prognosis15,16 and, perhaps, 

a lower survival than men (possibly confined to the first 2 years after diagnosis)17. In the 

past few years, efforts have also been made to understand the role of race in bladder cancer 

biology18 and further advances in this field are expected in the future.

This Primer focuses on urothelial cancer, the most common form of bladder cancer. We 

summarize the epidemiology of the disease with a focus on risk factors, discuss mechanisms 

of pathogenesis, including genetic alterations, and provide an overview of current diagnostic 

methods. In addition, we review current treatment modalities employed at different disease 

stages, discuss the quality of life (QoL) of patients with the disease, and discuss outstanding 

issues and research questions.

Epidemiology

Incidence and mortality—Bladder cancer incidence is highest in higher-income regions 

of the world, including Europe, North America and western Asia, and is also increased in 

regions affected by Schistosoma parasites such as Northern Africa19. By contrast, South 

America, eastern Asia, the Caribbean, and middle and southern Africa have much lower 

rates of bladder cancer. The differences in bladder cancer incidence between these regions 

have been linked to the prevalence of tobacco use, occupational exposure to aromatic amines 

in industry, arsenic in drinking water and other causes2,20. In 2020, nearly 600,000 people 

were diagnosed with bladder cancer globally, predominantly affecting individuals >55 years 

of age and men1,2 (Figs. 2 and 3). Bladder cancer is the tenth most common cause of cancer 

globally and the thirteenth most common cause of mortality from cancer19. Ongoing efforts 

to mitigate risk factors, improve timely diagnosis, better understand sex differences and 

expand therapy seem to have resulted in decreasing global rates of bladder cancer diagnoses 

and deaths21.

Risk factors

Cigarette smoking.: Cigarette smoking is the most prominent contributor to bladder cancer 

development in most countries, with ~50% of all cases linked to this risk factor8,9. A global 

decline in smoking prevalence might have contributed to improving rates of bladder cancer 

diagnoses and deaths; however, trends vary considerably by country21. More than 1 billion 

people are estimated to smoke tobacco globally but smoking prevalence has decreased 

since 1990 by ~27% in men and 38% in women22,23. The highest reductions seem to have 

occurred in higher socioeconomic groups, which probably reflects higher health awareness 

and enhanced access to health care in this population22,23.
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Parasitic infection and chronic inflammation.: Infection with Schistosoma haematobium, 

a parasite in the blood fluke family, is a relatively unique risk factor for bladder cancer 

in northern Africa24. Parasites infect individuals via the skin when swimming in water 

containing schistosome cercariae and, following maturation in the liver, can deposit eggs 

within the bladder and mesenteric plexus. Calcification of the eggs and resultant chronic 

inflammation of the bladder lining leads primarily to the development of squamous cell 

carcinoma25. Efforts to eradicate this parasite have resulted in a decrease in bladder cancer 

incidence26. In addition to parasitic infection, other conditions that can increase chronic 

inflammation may contribute to the development of bladder cancer, including the presence 

of diverticula, alterations in the gut or urinary tract microbiome, and dysfunction of the 

immune system27.

Sex and age.: Sex and age are two key epidemiological features associated with the 

development of bladder cancer. Men are more commonly affected by the disease, with 

the male-to-female ratio remaining relatively steady at approximately 4:1 (ref. 21). This 

discrepancy is reflected in the finding that bladder cancer is the sixth most common cancer 

in men worldwide and the fourth most common cancer in men in the USA1,21. Several 

explanations have been proposed, including differences in smoking rates and exposure 

to specific compounds in work environments, hormonal factors, and the effects of sex 

chromosomes13. Bladder cancer more commonly affects older individuals, with an average 

age at diagnosis of 73 years and >90% of cases occurring in persons >55 years of age. The 

discrepancy between sexes exists irrespective of age at diagnosis1,21.

Occupational exposure.: Occupational exposure to certain chemicals is another risk factor 

for bladder cancer. Exposure to aromatic amines, such as benzidine and β-naphthylamine 

in the dye industry, hair dyes, paint products, and other occupational exposures to organic 

compounds may increase the risk of bladder cancer28. Processing of rubber and textiles as 

well as exposure to diesel fumes may also be associated with an increased risk of bladder 

cancer29.

Genetic factors.: Risk factors in the development of bladder cancer include hereditary 

(germline) DNA alterations. For example, hereditary non-polyposis colon cancer (Lynch 

syndrome) is indicated in the development of urothelial carcinoma, accounting for ~5% of 

upper tract urothelial carcinomas and probably also cases of bladder cancer, although studies 

are ongoing30,31. In this hereditary disease, mutations in mismatch repair genes MLH1, 

MSH2, MSH6 and PMS2 result in microsatellite instability, with mutations in MSH2 and 

associated microsatellite instability posing a high risk for the development of urothelial 

carcinoma30.

Mechanisms/pathophysiology

Overall, NMIBC (stages Tis, Ta and T1) and MIBC (stages T2–T4) have distinct 

molecular profiles with considerable molecular heterogeneity within each disease category. 

T1 tumours often share molecular characteristics with MIBC and these tumours usually 

differ substantially from low-grade Ta tumours32–34 (Fig. 4). There is no obligate pathway 

from NMIBC to MIBC and it seems that these tumour categories have largely non-
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overlapping pathogenesis pathways. Histopathological and molecular data indicate that the 

flat lesion carcinoma in situ (CIS) is the major precursor of MIBC, whereas most papillary 

NMIBC arise from normal-appearing urothelium. Nevertheless, progression from initially 

non-invasive to invasive disease occurs in some patients with NMIBC, particularly those 

with tumours invading the lamina propria.

The normal urothelium—The urothelium is composed of basal, intermediate and 

superficial cell layers, the latter specialized to form a tight barrier that prevents urine 

absorption. This barrier function relies on the expression of uroplakins35 and claudin family 

members in tight junctions36. Keratin 20 is restricted to the umbrella cells37. This normally 

quiescent epithelium can proliferate rapidly in response to damage. Whether a definitive 

stem cell exists is unclear but evidence suggests that human basal cells have regenerative 

capacity38. In mouse models, both basal and intermediate cells are implicated as tumour 

cells of origin39. PPARγ, a member of the nuclear receptor superfamily, is a regulator 

of urothelial differentiation whose activation leads to expression of uroplakins, relevant 

keratins and claudins via transcription factors FOXA1, GATA2 and ELF3. In the absence of 

PPARγ activation, p63 maintains the undifferentiated (basal) phenotype40.

Field cancerization—Field cancerization, the acquisition of pro-tumorigenic mutations 

and genomic alterations in normal cell lineages, has been associated with the development 

of bladder cancer41. The origin of transformed cells among normal-appearing urothelial 

cells is unclear, with original speculation that cancer cells from tumours migrate in the 

urothelium or are shed from tumours and implanted between normal cells42. This is referred 

to as the ‘tumour-first-field-later’ theory. In the past decade, it has been suggested that field 

cancerization evolves from transformed stem cells in the urothelium that expand and drive 

tumour formation (‘field-first-tumour-later’ theory)43,44. Both theories may explain frequent 

recurrences of clonally related bladder tumours that develop years apart45. Whole-organ 

mapping studies demonstrated that genetic alterations can be divided into two categories: 

low-frequency mutations and high-frequency mutations increasing with disease progression. 

Based on this, it was estimated that bladder carcinogenesis spans 10–15 years, with a 

progressive phase of 1–2 years involving high-frequency mutations46. In another study, 

patients with a high level of field cancerization had poor survival, and tumours from 

these patients harboured a high mutational burden, high neoantigen load and high tumour-

associated CD8+ T cell exhaustion47. Importantly, non-synonymous mutations in known 

bladder cancer driver genes, such as chromatin remodelling genes and TP53, STAG2 
and PIK3CA, have been identified in non-diseased bladders48 as well as in histologically 

tumour-free urothelium from patients with bladder cancer47.

Common genetic alterations—Mutational signatures are similar regardless of tumour 

grade and stage despite largely non-overlapping pathogenesis pathways34,49. There is a 

major contribution from the activity of the APOBEC family of cytidine deaminases, 

accounting for more than 60% of all single-nucleotide mutations34,50,51 but only few known 

tobacco use-related signatures despite the association of tobacco use with risk. Compared 

with NMIBC, the overall mutational burden is much higher in MIBC (>7 mutations per 
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Mb), surpassed only by lung cancer and melanoma52, and large structural alterations and 

aneuploidy are more common53.

Deletions of chromosome 9 are found in ~50% of both NMIBC and MIBC. These deletions 

include the CDKN2A locus (9p21), encoding p16 and p14ARF, which are regulators of the 

RB and p53 pathways, respectively. On 9q, loss of TSC1, which regulates mTOR signalling, 

has been found and 9q loss is associated with upregulated expression of mTOR targets54. 

Interestingly, mTOR has been implicated as a regulator of telomerase reverse transcriptase 

(TERT) gene transcription. In addition to the maintenance of telomere integrity, TERT 

has non-canonical functions, including upregulation of oncogenic signalling pathways55, 

is crucial in maintaining tumour immortality and contributes to tumour progression in 

bladder cancer56–59. Other copy number alterations in NMIBC (8–22%) include gains of 

1q, 5p, 18q, 20p, and 20q and losses of 8p, 11p, 17p, and 18q, particularly in stage T1 

tumours32. These regions are more commonly altered in MIBC, in which amplifications of 

3p25 (PPARG), 6p22 (E2F3), 7p11 (EGFR), 17q12 (ERBB2) and 19q12 (CCNE1) are also 

found51. High-level DNA amplification is uncommon in NMIBC60.

Commonly mutated genes are shown in Tables 1 and 2. Extremely common in all tumour 

grades and stages (70–80%) are mutations in the promoter of the telomerase reverse 

transcriptase TERT57,61,62, which are associated with upregulated expression. Apart from 

TERT, mutated genes and mutation frequencies differ considerably between NMIBC and 

MIBC. The mutational profile of lamina propria-invasive tumours (stage T1) is more closely 

related to that of MIBC compared with stage Ta NMIBC. However, the mutational profile of 

stage T1 tumours does not indicate the presence of some tumours with MIBC-like features 

and of some with Ta-like features but rather that individual T1 tumours often contain both 

Ta-like and MIBC-like features34.

Non-muscle-invasive bladder cancer—NMIBC is characterized by FGFR3 point 

mutations (in ~60% of patients), which are associated with low tumour grade and stage54. 

The most common of these mutations (S249C) is predicted to result from APOBEC 

activity63. In cultured normal human urothelial cells, mutant FGFR3 drives cell overgrowth 

at confluence, suggesting a potential contribution to urothelial hyperplasia in vivo64. 

Mutation of RAS genes and FGFR3 are mutually exclusive, with mutation of one or 

the other in 90% of stage Ta tumours54. APOBEC target mutations in PIK3CA hotspot 

codons are found in ~30% of patients with NMIBC, often with mutations in FGFR3 or 

RAS genes34, indicating that most NMIBC have activation of both RAS–MAPK and PI3K 

signalling. Loss of 9q, including TSC1 in 50% of patients, provides activation of the PI3K 

pathway downstream of mTOR. In stage T1, gain-of-function mutations in ERBB2 and 

ERBB3 that provide PI3K activation52 are present in ~15% of tumours and often co-occur34.

Mutations of STAG2 and other chromatin regulators (KDM6A, KMT2D, KMD2C, 

CREBBP, EP300 and ARID1A) are common. Inactivation of one or more of these regulators 

is found in >65% of patients with NMIBC, with KDM6A mutations more common in stage 

Ta than in stage T1 and ARID1A mutations more common in stage T1 tumours34. The exact 

roles of these genes in bladder cancer are not well understood and some mutations can be 

found in normal urothelium of cancer-bearing bladders. Compatible with this is the role of 
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KDM6A in the regulation of normal urothelial differentiation65,66 and its antagonistic effect 

on FGFR3 activation65. Mutation of STAG2, a subunit of the cohesin complex, is more 

common in bladder cancer than in other cancers and is implicated in negative regulation of 

basal cell identity67. Inactivating mutations and loss of expression are present in ~30% of 

low-grade Ta tumours, often with FGFR3, PIK3CA and/or KDM6A mutations, but in fewer 

T1 tumours34,68,69.

MIBC and metastatic disease—MIBC exhibits remarkable intratumour genetic 

heterogeneity70. Despite limited sampling, key players have been clearly identified51 (Tables 

1 and 2). Almost all MIBC have loss of cell cycle checkpoints via TP53, RB1, and/or 

ATM mutations and/or alterations affecting their regulators, for example, E2F3 and MDM2 
amplification, mutation of FBXW7 (8%), and deletion of CDKN2A. Response to DNA 

damage and DNA repair pathways (for example, through loss of function of ATM or ERCC2 
mutation71) are also affected; ERCC2 is also implicated in 24% of T1 tumours34.

Overall involvement of chromatin modifiers in MIBC is similar to that in NMIBC except 

that the distribution of mutations differs. Activating point mutations in FGFR3 and 

PIK3CA are less common than in NMIBC, although upregulated expression of FGFR3 is 

frequent. Activating translocations involving FGFR3 are found in some tumours (2–5%)72. 

Upregulated expression and/or isoform switching of FGFR1, with a potential effect on 

epithelial–mesenchymal transition73,74, are also found in some tumours. FGFR3, PIK3CA, 

KDM6A and STAG2 mutations often co-occur and, in the tumours with this mutation profile 

and luminal phenotype, loss of 9p (p16 and p14ARF) may contribute to progression75. 

Activation of the RAS–MAPK and PI3K pathways is estimated to occur in ~70% of 

MIBC51, commonly via mutation or upregulation of upstream regulators, including gain-of-

function mutations of ERBB2 and ERBB3, or amplification of ERBB2 and EGFR51. Loss of 

PTEN and TSC1 also contributes to AKT–mTOR activation76. Other pathways implicated in 

MIBC include upregulated MET signalling77 and the NOTCH pathway78.

Tumour microenvironment—The tumour microenvironment (TME) comprises both 

malignant and non-malignant cells. Cancer-associated fibroblasts (CAFs) are the 

most common non-malignant cells in bladder cancer, forming distinct regions within 

the tumour79, and these CAFs have been associated with tumour aggressiveness, 

chemoresistance and reduced response to immune-checkpoint inhibitor (ICI) therapy79–

81. Tumour-associated macrophages are another important non-malignant population in 

bladder cancer82. Tumour-associated macrophages are recruited to sites of inflammation 

and hypoxia within the TME but, like CAFs, they are co-opted by cancerous cells 

to promote an immune suppressive environment, drug resistance and metastasis83–89. 

Resistance to inhibition of PD1 or PDL1 in urothelial cancer has also been linked to 

a pro-inflammatory cellular state of myeloid phagocytic cells detectable in tumour and 

blood90. Tumour-infiltrating lymphocytes (TILs) are immune cells that clear cancerous cells. 

Mostly composed of CD8+ T cells, TILs develop and expand to recognize foreign antigens 

present on cancer cells or antigen-presenting cells. Of note, bladder cancer, and MIBC in 

particular, has a high level of mutational burden91,92, providing neoantigens for immune 

cells to recognize. However, the beneficial effect in bladder cancer is lower than expected 
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because of low numbers of TILs in the tumour and/or the inactivation of TILs that do 

reach malignant cells. In MIBC, the presence of TILs in or adjacent to the tumour is a 

predictor of patient response to ICIs and survival93. The degree of stromal cell infiltration, 

most notably CAFs, into tumours also determines patient response to immune therapies. 

Patients with high numbers of TILs and low stromal gene tumour signatures have improved 

survival and response to immune therapies94. The discoidin domain (DDR1 and DDR2) 

collagen receptors, which are commonly found on cancer cells and fibroblasts, have been 

implicated as biomarkers for ICI response in bladder cancer and other cancer types in 

both the experimental setting88 and in patients95. This important finding supports the link 

between collagen deposition, fibroblasts and resistance to ICIs. Future clinical trials of 

targeted therapies, such as DDR1 and/or DDR2 inhibition combined with ICIs, would be 

expected to enhance the effectiveness of ICIs.

Biological sex differences—Bladder cancer incidence and aggressiveness differ 

substantially between men and women13. Absence of X chromosome gene KDM6A leads 

to an increased incidence of bladder cancer in mouse models96 but, notably, only in female 

animals. KDM6A is mutated in 24% of patients with bladder cancer and its experimental 

depletion in human bladder cancer cells enhanced in vitro cell proliferation, migration and 

in vivo tumour growth; however, the limited number of cell lines investigated prevents a 

conclusion of whether this effect is dependent on sex59.

In addition to sex chromosome-mediated effects, androgen receptor (AR) signalling can lead 

to sexual dimorphism in bladder cancer incidence and therapeutic response. Two studies 

in 2022 demonstrated that T cell-intrinsic AR promotes CD8+ T cell exhaustion in the 

TME97,98. Furthermore, AR can suppress the expression of CD44 (ref. 99), a well-known 

driver of tumour progression and metastasis in bladder cancer100–102 and other cancer 

types103. In mouse studies, AR deletion reduces the incidence of bladder cancer induced by 

standard orally ingested chemical carcinogens that accumulate in urine and are analogues of 

those found in cigarette smoke104. However, the role of AR in humans is less clear105,106. 

Use of the 5α-reductase inhibitor finasteride was found to reduce bladder cancer incidence 

in white and Hispanic men but not in Black men107. Intriguingly, Black men have higher 

free testosterone levels than white men108, yet a lower incidence of bladder cancer109. 

By contrast, reduced AR expression in bladder cancer is associated with more advanced 

stage99,110 and aggressive tumour subtypes111. Inhibition of AR signalling has shown 

promise in men with reduced recurrence of NMIBC112–114.

In a systematic review of 18 studies, the incidence and clinical outcomes of bladder cancer 

were investigated in patients who received androgen suppression therapy108. 5α-Reductase 

inhibitors or androgen deprivation therapy were not significantly associated with a reduced 

risk of bladder cancer incidence or cancer-specific, overall or progression-free survival. 

In a subgroup analysis, only finasteride use was associated with reduced bladder cancer 

risk, and recurrence-free survival was improved in those receiving androgen suppression 

therapy compared with those who were not. Hence, finasteride use may represent a strategy 

for reducing bladder cancer incidence, and overall androgen suppression may reduce 

recurrence risk in patients with a history of bladder cancer. Only randomized trials with 

well-characterized study populations can definitively prove these observations.
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The Y chromosome is essential for male sex determination and spermatogenesis115. In 

ageing men, loss of the Y chromosome (LOY) in haematopoietic cells has been associated 

with increased risk of several diseases, including cardiac fibrosis116 and multiple cancer 

types116–119. In bladder cancer, LOY has been found in 10–40% of tumours120–126. This 

is unsurprising as bladder cancer is commonly caused by environmental exposures, such as 

tobacco and industrial chemicals, that are known to result in DNA damage and LOY127–129. 

Recent studies have shown that LOY and the corresponding loss of Y genes KDM5D and 

UTY, which are chromatin modifiers, confer an aggressive phenotype to bladder cancer 

through acquisition of the ability to evade the adaptive immune system18. Fortunately, this 

also makes LOY tumours more vulnerable to ICIs. This landmark study is the first to show 

that LOY drives cancer biology and the host immune response to cancer130.

Diagnosis and screening

Clinical presentation—Around 75% of patients with bladder cancer present with 

painless, visible (gross) haematuria, which warrants early medical attention131. In a 

prospective observational study, 22.4% of patients presenting with visible haematuria were 

found to have bladder cancer, with the incidence increasing with age: only 4.7% in those 

<35 years of age compared with 35% in those >75 years of age132. Rates of urological 

referral of patients with haematuria are generally low133 and, therefore, the reported rates 

of bladder cancer can differ in the literature. Patients may also present with microscopic 

or non-visible haematuria commonly detected upon health checkup, and bladder cancer 

was found in 3.3–5.2% of that population132,134. Presentation with microscopic haematuria 

seems to correspond to a low disease stage135. In a multi-centre cohort study in patients with 

microscopic haematuria, 68.8% had Ta or Tis disease, 19.6% had T1 disease, and 11.6% 

had T2 disease, whereas in patients presenting with gross haematuria, 55.9% had Ta or Tis 

disease, 19.6% had T1 disease, and 17.9% had T2 disease135.

Bladder cancer is rare in children, with an incidence of only 0.1–0.4%136,137. In a systematic 

review including 243 paediatric patients with bladder cancer138, gross haematuria was the 

most common presentation (75.6%), followed by lower urinary tract symptoms (8.6%) and 

abdominal and/or flank pain (3.4%). Most of the patients presented with Ta (86.4%) and 

low-grade (93.4%) disease; T2 or above disease was uncommon (4.1%).

Diagnosis—Diagnostic evaluation of patients with haematuria should involve a physical 

examination including rectal and vaginal bimanual palpation to assess for pelvic masses 

suggesting a locally advanced tumour139, although the risk of both clinical under-staging 

and over-staging is well known140,141. Cystoscopy is considered the gold standard for 

diagnosing bladder cancer. White-light imaging cystoscopy is the conventional method to 

detect bladder cancer but may miss some lesions such as CIS. CIS usually presents as a 

velvet-like, reddish area that is difficult to detect and differentiate from inflammation142, 

which has led to advanced cystoscopy technologies, such as narrow-band imaging, 

photodynamic diagnosis and Image 1S, to enhance bladder cancer detection (Supplementary 

Table 1).
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If a lesion is seen on cystoscopy, this is followed by examination under anaesthesia at 

the time of transurethral resection of bladder tumour (TURBT), although the risk of both 

clinical under-staging and over-staging with this assessment is well known141. Pathological 

work-up of patients includes the use of urine-based evaluation to detect malignant cells 

and/or analysis of biopsy or TURBT samples of visibly identifiable lesions.

Urine-based diagnosis of bladder cancer.: Urine cytology is the most cost-effective 

urine-based method to diagnose high-grade bladder cancer143. The sensitivity of this 

analysis is suboptimal but its specificity is high, especially for high-grade urothelial 

carcinoma; thus, urine cytology remains the gold standard in the diagnosis of bladder 

cancer compared with marker-based studies in urine144,145. Urine cytology specimens are 

classified according to the Paris System for Reporting Urinary Cytology published in 

2016, which subdivides specimens into non-diagnostic, negative for high-grade urothelial 

carcinoma, atypical urothelial cells, suspicious for high-grade urothelial carcinoma, high-

grade urothelial carcinoma, low-grade urothelial neoplasm, and other malignancies144. The 

risk of cancer with a diagnosis of high-grade urothelial carcinoma is >90% using this 

classification system144,145. Of note, any cytology classification approach to low-grade 

urothelial carcinomas yields lower sensitivity than those for high-grade carcinomas owing to 

the more cohesive nature of low-grade lesions and the much closer similarity of low-grade 

lesions to normal cellular morphology146.

Over the past few decades, extensive effort has gone into the development of protein-based 

and molecular-based urine tests to diagnose bladder cancer. These efforts have resulted 

in numerous FDA-approved tests, including cell-free DNA tests147–150. Methodologies 

of these tests include, for example, analysis of proteins elevated in dividing cells 

using antibody-based methods to detect chromosome aneuploidy by fluorescence in situ 

hybridization148,151. Although many of these tests show higher sensitivity in detection of 

bladder cancer than urine cytology, they are often limited by lower specificity, false positive 

results and better utility in high-grade lesions147–150. Efforts to identify new markers, 

including TERT and FGFR3 alterations, are ongoing, but hurdles remain to determine 

whether these will outperform existing approaches to urine-based diagnosis152.

ctDNA analysis.: In addition to tumour markers in urine, cell-free DNA with tumour-

specific alterations is released into the blood circulation (circulating tumour DNA; ctDNA) 

mainly by cell death153. ctDNA is cleared through nuclease digestion, renal clearance, 

and uptake by the liver and spleen154–157. The half-life of ctDNA is ~2 hours158, which 

makes ctDNA useful for real-time tracking of tumour burden following surgery and during 

oncological treatment. Analysis of ctDNA in plasma has shown promising results for the 

detection of minimal residual disease and metastatic relapse in multiple cancer types, 

including bladder cancer159. In one prospective study, ctDNA measurements detected 

clinical relapse on average 3 months earlier than CT scans and better predicted the 

outcome following neoadjuvant chemotherapy compared to pathological response159,160. 

Furthermore, ctDNA levels have been shown to correlate to pathological complete response 

and outcome following neoadjuvant immunotherapy161. Of note, another study used ctDNA 

measurements to document a survival benefit with adjuvant immunotherapy in patients 
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positive for ctDNA162,163. These results are promising overall, especially for the detection 

of minimal residual disease and for guiding adjuvant treatment, but further replication 

in large cohorts and development of optimal laboratory procedures for clinical use are 

needed. Furthermore, additional knowledge of ctDNA assay sensitivity and specificity is 

needed to address false positive and false negative rates in specific settings. ctDNA-guided 

clinical intervention trials are currently ongoing to determine the benefit of blood-based tests 

to guide adjuvant immunotherapy (for example, IMVIGOR011 and TOMBOLA)164,165. 

Importantly, ctDNA analysis can also identify genomic alterations associated with metastatic 

disease166,167, potentially serving as actionable therapeutic targets.

Tissue-based diagnosis of bladder cancer.: Analysis of samples from biopsy or TURBT 

at the time of cystoscopy is the most common method of initial diagnosis. Pathological 

analysis confirms the presence of cancer, histological type and stage. Bladder carcinoma is 

subdivided by grade into low-grade and high-grade categories, with low-grade carcinomas 

showing frequent recurrence but limited progression168. High-grade carcinomas can be 

either NMIBC or MIBC, of which NMIBC commonly shows recurrence and progression to 

MIBC, requiring more aggressive clinical management and follow-up.

More than 90% of all bladder carcinoma histological subtypes are of urothelial 

histology, with the remainder comprising squamous cell carcinoma, adenocarcinoma and 

neuroendocrine carcinoma168,169 (Fig. 5). These broad categories describe ‘pure’ or 

non-mixed carcinomas representing a single histological type of carcinoma. Urothelial 

carcinoma itself can occur as a broad array of variants or subtypes such as micropapillary, 

plasmacytoid, nested and lymphoepithelioma-like carcinomas. These categories are 

defined by the WHO Classification of Tumours of the Urinary System and Male 

Genital Organs168. Several subtypes have been associated with unique molecular and/or 

therapeutic considerations. Micropapillary urothelial carcinoma, which shows clusters 

of inversely polarized nests of tumour cells within prominent retraction spaces, has 

a disproportionately higher rate of ERBB2 amplification than conventional urothelial 

carcinoma170–172. This amplification has been identified in up to 40% of micropapillary 

urothelial carcinomas, resulting in efforts to selectively target this pathway170. Plasmacytoid 

urothelial carcinoma, which is defined by distinct CDH1 mutations and a morphology 

that shows single, plasma cell-like cells that are highly infiltrative, is another research 

focus173. Micropapillary and plasmacytoid urothelial carcinomas are biologically aggressive 

subtypes and optimizing the approach to these diagnostic categories has resulted in some 

institutions advocating early cystectomy regardless of stage168. Furthermore, micropapillary 

urothelial carcinoma is often variably mixed with conventional urothelial carcinoma, with 

higher proportions of micropapillary urothelial carcinoma portending a more aggressive 

pathological behaviour174,175. Despite their urothelial carcinoma origin, these two examples 

of urothelial carcinoma subtypes highlight the dramatic differences in urothelial carcinoma 

evolution and differentiation, which complicates a unified approach to understanding and 

treating bladder cancer.

In addition to histological subtyping, pathological analysis determines the depth of invasion 

of the carcinoma at biopsy or TURBT and also following cystectomy. Pathological (after 

cystectomy) staging is defined by the American Joint Committee on Cancer (AJCC), 

Dyrskjøt et al. Page 11

Nat Rev Dis Primers. Author manuscript; available in PMC 2024 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



currently in its eighth edition176. NMIBC occurs as either papillary (pTa) or flat urothelial 

CIS (pTis). Invasion of the lamina propria (pT1), invasion of the muscularis propria (pT2), 

perivesical fat (pT3) and involvement of adjacent organs (pT4) are associated with a 

progressive reduction in survival176. Determination of pathological stage on cystectomy 

specimens is straight-forward but diagnosis and staging on TURBT samples are challenging 

owing to the extent of sampling, interpretation artefact due to cautery or crush phenomenon, 

and lack of objective markers to conclusively determine if muscularis propria is present.

Use of tissue to predict progression from lamina propria-invasive (T1) disease to muscle-

invasive carcinoma has been a subject of interest for some time. A recommendation 

was made in the AJCC manual to attempt substaging T1 disease based on numerous 

studies that showed that a larger amount of tumour in the lamina propria correlated with 

a higher rate of progression176. However, various approaches were used in the studies, 

including different cut-off criteria for substaging, surface orientation in some approaches 

that was impossible to perform on a considerable subset of specimens and diverse outcome 

end points. An additional confounder was the challenge of not knowing with certainty 

whether the lesion was fully resected. Comparison of these various approaches showed 

that an aggregate tumour measurement of ≥2.3 mm outperformed other histology-based 

approaches in predicting progression to muscle-invasive disease177. Since the endorsement 

of attempted substaging of T1 disease by the AJCC, numerous studies have evaluated 

additional approaches to predicting progression to MIBC, including histological, molecular 

and/or protein biomarkers178,179. Ultimately, these are challenging endeavours given the 

uncertainty regarding the presence of residual tumour, effects of precedent therapies on 

disease progression, and cellular heterogeneity associated with bladder cancer.

Staging—Diagnostic imaging is critical for both local and distant staging. During a 

work-up of haematuria, abdominopelvic imaging including imaging of the upper urinary 

tract (renal pelvis and ureters) should be performed to assess for a bladder mass (ideally 

prior to TURBT)180–182. Imaging informs both location and extent of disease (including 

potential upper tract involvement, extravesical extension, hydronephrosis, nodal involvement 

or distant metastatic disease). CT urography with and without an intravenous contrast agent 

is preferred and has largely replaced intravenous pyelogram183,184. In patients with poor 

renal function or allergy to iodinated contrast agents, MR urogram with a gadolinium-based 

contrast agent may be considered185. Renal ultrasonography or CT without a contrast agent 

combined with a retrograde ureteropyelography is conducted in patients who cannot receive 

iodinated or gadolinium-based contrast agents183,184.

In addition to CT urography, MRI of the pelvis with and without an intravenous contrast 

agent may be considered for further local staging, especially regarding depth of bladder wall 

invasion186. The best evidence supporting the use of MRI is in MIBC in the pre-TURBT 

setting to improve staging187. Multiparametric MRI has improved soft tissue resolution 

compared with CT, and the Vesical Imaging Reporting and Data System (VI-RADS) score 

has been developed to predict the likelihood of muscle invasion188. MRI may also have the 

potential to assess response after treatment, including TURBT, neoadjuvant chemotherapy 

and/or chemoradiation189.
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For patients with NMIBC, chest and other metastatic imaging is not necessary, whereas for 

patients with MIBC, chest CT is recommended140. Bone scans and brain MRI have limited 

value and are typically reserved for symptomatic patients or those at very high risk (stage, 

tumour size, adverse pathology)190. 18F-fluorodeoxy glucose-PET (FDG PET)-CT is not 

as commonly used and does not have a clearly established role in patients with localized 

disease, although it may have more value in locally advanced disease and when metastatic 

disease is suspected191–194.

Prognostic and predictive biomarkers—In NMIBC, several prognostic biomarkers 

have been described; however, none have yet been implemented in clinical decision-making. 

For example, in one study, patients with NMIBC at high risk for progression were 

subdivided into groups with good, moderate and poor risk of progression based on 

mutations in FGFR3 and methylation of GATA2 (ref. 195). In addition, studies using 

measurements of genome-wide copy number alterations through array-based comparative 

genomic hybridization54 or SNP array analysis32 separated patients with Ta tumours or 

NMIBC, respectively, into different groups and found an association between a high 

level of copy number alterations and poor outcomes. Furthermore, tumour mutational 

burden (TMB) and APOBEC-associated mutations have been associated with increased 

NMIBC aggressiveness32. However, when analysing T1 tumours only, a high TMB was 

associated with better survival196. Earlier studies of gene expression subtypes in NMIBC 

identified two major molecular subtypes associated with disease aggressiveness197,198. Five 

subtypes of bladder cancer were identified when considering the whole spectrum of bladder 

cancer stages. The subtypes urothelial-like, genomically unstable, and a group of infiltrated 

cases were specifically associated with NMIBC199. Three expression-based subtypes were 

reported by the UROMOL consortium, which showed different clinical outcomes and 

molecular characteristics33. The work from the UROMOL consortium was later expanded 

and four subtypes were identified: the UROMOL2021 classification system showed overlap 

with previously reported subtypes but with increased granularity32. In another multi-omics 

approach, further molecular heterogeneity within disease stage categories was discovered, 

enabling further subclassification of Ta and T1 tumours34.

In MIBC, several classification systems based on gene expression subtypes have been 

reported, ranging from two major subtypes (luminal and basal)200 to six subtypes201. 

A consensus classification of six subtypes using previous classification systems has 

been reported202. The subtypes harbour different molecular alterations and immune cell 

characteristics and, overall, have been reported to be prognostic. In patients with MIBC, 

high TMB and neoantigen loads have been associated with particularly good survival and a 

high mutational contribution from APOBEC mutational processes was also associated with 

improved survival51, similar to observations in T1 tumours196.

Several studies sought to develop predictive biomarkers in both NMIBC and MIBC. In 

relation to Bacillus Calmette–Guérin (BCG) treatment in NMIBC, high PDL1 expression 

has been associated with BCG unresponsiveness, linking immune inhibitory pathways to 

BCG failure203. In another study, T cell exhaustion in the tumour was associated with 

outcome following BCG instillations204. In one study, molecular profiling of high-risk 

BCG-naive NMIBC and recurrent tumours after BCG treatment found three distinct BCG 
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response subtypes (BRS1–3)205. Patients with BRS3 tumours had reduced recurrence-free 

and progression-free survival than patients with BRS1 and BRS2. BRS3 tumours expressed 

high epithelial–mesenchymal transition and basal markers and had an immunosuppressive 

profile. Tumours that recurred after BCG were enriched for BRS3. In a second cohort 

of BCG-naive patients with high-risk NMIBC, BRS molecular subtypes outperformed 

guideline-recommended risk stratification based on clinicopathological variables.

In MIBC, expression of and mutations in genes involved in DNA damage response 

are associated with a particularly good outcome following chemotherapy and 

chemoradiation206–210. Some of these genomic alterations have been tested in a clinical 

trial evaluating bladder-sparing approaches; however, the study did not reach the primary 

end point and further study refinements are needed211. In addition, a CD8+ T effector cell 

phenotype, high TMB and high neoantigen load have been demonstrated to be predictors 

of immunotherapy response in MIBC, whereas lack of response was associated with 

a signature of transforming growth factor-β (TGFβ) signalling in fibroblasts212. Other 

studies demonstrated that MIBC tumours of the luminal subtypes show an improved 

response to chemotherapy213,214 but contradicting results have also been reported215. 

Further gene expression profiling studies have shown that increased immune cell infiltration 

in MIBC is associated with improved outcomes after chemoradiation, whereas increased 

stromal infiltration is associated with worse outcomes after neoadjuvant chemotherapy and 

cystectomy216. Several seminal studies have shown substantial intratumour heterogeneity 

using single-cell and spatial transcriptomic analysis, which is likely complicating the utility 

of current subtype classifications for clinical outcome prediction79,217.

Management

The management of bladder cancer requires careful consideration of disease stage and 

tumour characteristics as well as patient demographics, comorbidities and preferences. 

Optimal treatment involves a multidisciplinary approach that may include surgery, 

chemotherapy, radiation therapy, immunotherapy and targeted therapy.

TURBT and en bloc resection of bladder tumour—TURBT is a diagnostic, staging 

and, for NMIBC, therapeutic tool, making it a cornerstone in management. The procedure 

starts with a comprehensive inspection of the bladder, followed by resection of the exophytic 

part of the tumour, and separate resection of the underlying bladder wall and edges of the 

resection area142. TURBT has two main goals: complete (possibly curative) resection in 

the case of NMIBC, and proper local staging and expediting subsequent definite treatment 

in the case of MIBC. To ensure complete tumour eradication in NMIBC, the quality of 

resection is extremely important, but the procedure is highly dependent on operator skills 

and experience218. Although TURBT aims to completely resect NMIBC, this is not always 

possible due to its technical difficulty and fear of bladder perforation. A second TURBT, 

2–6 weeks later, is indicated if the tumour was not completely resected in the first TURBT, 

if the patient has T1 disease, or if detrusor muscle is absent in the first TURBT specimen 

with the exception of Ta low-grade tumours and primary CIS142. Second TURBT may be 

associated with improved progression-free survival in patients with T1 NMIBC219. A meta-

analysis of 81 studies found that the pooled rates of any residual tumours and upstaging 
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on second TURBT were 31.4% and 2.8%, respectively220, highlighting the limitations 

of the conventional TURBT procedure. In the case of MIBC, maximal TURBT is also 

important to optimize subsequent treatment such as radical cystectomy and trimodality 

therapy (TMT)221,222. Maximal resection of all visible bladder tumours down to the detrusor 

muscle layer should be pursued even when MIBC is suspected endoscopically221,222.

En bloc resection of bladder tumour (ERBT), that is, removal of the bladder tumour in 

one piece, has been proposed as a potentially more favourable surgical approach than 

conventional TURBT223,224. Results from three randomized trials comparing ERBT and 

TURBT have been reported225–227. In one trial225, the rate of detrusor muscle presence for 

ERBT was non-inferior to TURBT (94% versus 95%), and T1 substaging was more feasible 

in the ERBT group (100% versus 80%; P = 0.02). In a second trial226, the ERBT group had 

a higher rate of detrusor muscle presence (80.7% versus 71.1%; P = 0.01) and a lower rate of 

bladder perforation (5.6% versus 12%, difference –6.4%, 95% CI –12.2 to −0.6%) than the 

TURBT group. In a third trial227, ERBT resulted in a reduction in the 1-year recurrence rate 

from 38.1% to 28.5% (P = 0.007), and 30-day complications were similar between the two 

groups.

A single dose of intravesical chemotherapy (commonly mitomycin C or epirubicin) 

immediately after TURBT is associated with a decreased risk of recurrence228. A systematic 

review and individual patient data meta-analysis of a total of 2,278 patients found that 

a single dose of intravesical chemotherapy reduced the risk of recurrence by 35% (P < 

0.001)228. However, this benefit was not observed in patients with a prior recurrence rate 

of >1 per year, or in patients with a European Organization for Research and Treatment of 

Cancer (EORTC) recurrence score of ≥5 (ref. 228). Single-dose intravesical chemotherapy 

should not be given when there is a concern for bladder perforation as chemotherapy 

extravasation can result in severe consequences229.

Although TURBT with or without single-dose intravesical chemotherapy is the standard of 

care for the treatment of NMIBC, it is a major surgery requiring formal anaesthesia, which 

could be a burden for patients with recurring diseases. As the risk of disease progression 

for recurrent Ta low-grade bladder tumours is low, fulguration or laser vaporization of small 

papillary recurrences on an outpatient basis has been proposed to reduce the therapeutic 

burden142,230,231. In particular for patients at advanced age, watchful waiting with urine 

cytology and regular cystoscopy without resection can also be considered232.

Intravesical therapy for NMIBC—Intravesical therapy with BCG vaccine was first 

proposed in 1976 as an immunotherapy to treat bladder cancer233 and became a standard 

of care for NMIBC. A randomized study to investigate the optimal BCG schedule for 

intermediate-risk and high-risk NMIBC with a primary outcome of disease-free interval, 

concluded that 1 year and 3 years of full-dose BCG should be given to patients with 

intermediate-risk and high-risk NMIBC, respectively234. Adverse effects of BCG include 

inflammation and/or infection of the bladder, prostate, epididymis, and testis as well as 

general malaise, fever and BCG sepsis142. Since 2013, an intermittent BCG shortage 

has been a global problem and alternative treatment options are urgently needed235,236. 

Intravesical maintenance chemotherapy can be an alternative in intermediate-risk NMIBC, 
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but its efficacy in high-risk NMIBC is limited142. New intravesical therapies, such as 

intravesical gene therapy with nadofaragene firadenovec237 and systemic ICI therapy with 

pembrolizumab238 have been approved by the FDA for BCG-unresponsive NMIBC with 

CIS, with or without papillary tumours.

Intravesical maintenance chemotherapy, given repeatedly on a weekly or monthly 

basis239,240, has been investigated as an alternative to intravesical BCG therapy. A meta-

analysis compared TURBT plus intravesical maintenance chemotherapy with TURBT only 

and found that the use of intravesical maintenance chemotherapy was associated with a 

44% reduction in 1-year recurrence (P < 0.001)241. In an individual patient data meta-

analysis comparing intravesical maintenance chemotherapy and intravesical BCG, the use 

of BCG was associated with a 32% reduction in the risk of recurrence (P < 0.001)240. In 

patients with intermediate-risk NMIBC who cannot tolerate intravesical BCG, intravesical 

maintenance chemotherapy can be considered noting its inferiority in oncological efficacy.

Radical cystectomy—Radical cystectomy is a standard of care in localized MIBC182 

and in patients with BCG-unresponsive NMIBC182. The surgery itself includes three major 

components: cystectomy, pelvic lymph node dissection (LND) and urinary diversion. In 

men, standard radical cystectomy includes removal of the bladder, prostate, seminal vesicles 

and distal ureters182. In women, standard radical cystectomy includes removal of the 

bladder, the entire urethra, anterior vaginal wall, uterus and distal ureters182. Standard 

LND includes removal of bilateral obturator, internal and external iliac lymph nodes. 

Two randomized trials investigated the role of extended LND (including the common 

iliac, presacral and up to, at least, the aortic bifurcation) and found that extended LND 

was associated with more grade ≥3 complications242,243 but no benefit in recurrence-free 

survival242, cancer-specific survival242, disease-free survival243 and overall survival242,243. 

For urinary diversion, ileal conduit and orthotopic neobladder are commonly performed. The 

choice of urinary diversion depends on patient factors (for example, age, renal function, 

ability to perform self-catheterization and patient preference) and disease factors (for 

example, urethral involvement, locally advanced disease and need for adjuvant therapy)244. 

Patients should be carefully counselled about the advantages and disadvantages of each 

option so that a shared decision can be made in the best interest of the patient. Radical 

cystectomy can be performed in an open, laparoscopic or robot-assisted approach. In a meta-

analysis comparing robot-assisted radical cystectomy (RARC) with open radical cystectomy 

(ORC), no difference in terms of recurrence-free survival (HR 0.99, 95% CI 0.75–1.31) and 

overall survival (HR 0.98, 95% CI 0.73–1.30) was found245. RARC had a lower transfusion 

rate (OR 0.42, 95% CI 0.30–0.59) but a longer operative time (mean difference 78.54 

min, 95% CI 45.87–111.21 min) than ORC245. Overall complications, major complications, 

positive margin rates and length of hospital stay did not differ245. High-quality data 

comparing RARC with intracorporeal versus extracorporeal urinary diversion are lacking, 

although non-randomized studies favoured the intracorporeal approach showing benefits in 

blood loss and hospital stay246,247. High-quality data on laparoscopic radical cystectomy is 

limited245.

Some patients with pT3/T4 pN0–2 bladder cancer (N0, no regional lymph node metastasis; 

N1, metastasis in a single regional lymph node; N2, metastasis in multiple regional lymph 
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nodes) may be candidates for postoperative adjuvant pelvic radiotherapy to the pelvic lymph 

nodes with or without the cystectomy bed following radical cystectomy248,249. Addition 

of adjuvant radiotherapy to chemotherapy alone was associated with improved local relapse-

free survival250.

Partial cystectomy may be considered in highly selected patients, including those with 

solitary tumours at favourable locations, such as the bladder dome, without concomitant 

CIS251. Special caution must be taken to avoid urine and tumour spillage during the 

procedure. To date, there are no randomized trials comparing partial with radical cystectomy, 

but previous retrospective studies showed comparable results251. Patient selection is key 

should partial cystectomy be contemplated.

Trimodality therapy—TMT is a bladder-preserving treatment of MIBC that includes 

a maximal, ideally visibly complete, TURBT followed by concurrent radiosensitizing 

chemotherapy and radiotherapy (chemoradiotherapy). TMT is an accepted alternative to 

radical cystectomy for selected patients with MIBC who have a desire to retain their 

native bladder or who are medically unfit for radical cystectomy181,182,252 and may be 

most effective in patients with specific characteristics (Box 1). Randomized controlled 

trials comparing TMT to radical cystectomy closed due to lack of accrual253, but best 

available data from prospective TMT trials (including from NRG/RTOG in the USA 

and from UK-based trials), meta-analyses and multi-institutional cohorts demonstrate 

comparable survival254–258. Chemoradiotherapy is considered standard in patients who can 

tolerate combined therapy, following a phase III randomized BC2001 trial that showed 

that concurrent chemoradiotherapy with 5-fluorouracil and mitomycin leads to improved 

locoregional disease control compared with external beam radiotherapy alone257. Other 

options for concurrent chemotherapy include cisplatin-based regimens or single-agent 

gemcitabine259. Ongoing randomized trials are investigating the addition of immunotherapy 

(for example, atezolizumab or pembrolizumab) to TMT260,261.

Lifelong post-treatment bladder surveillance is essential for the detection of in-bladder 

recurrences (10-year rates: NMIBC 20–26%, MIBC 13–18%) or second primary tumours, 

and 10–15% of patients may require a salvage cystectomy, which is associated with a 

higher risk of overall and major late complications than primary cystectomy and most 

often requires an incontinent urinary diversion262. Patients with MIBC and who are 

appropriate candidates should be offered the choice between radical cystectomy and TMT 

approaches. MIBC treatment, and in particular TMT, requires close multidisciplinary 

collaboration and environments that enable shared and informed decision-making263. A 

multi-institutional study in 722 patients (440 radical cystectomy, 282 TMT) used propensity 

score matching and logistic regression to show similar oncological outcomes between these 

two treatment modalities258. Although there are no conclusive randomized trials supporting 

the equivalence of TMT to radical cystectomy for selected patients in bladder cancer, the 

current evidence from other studies as summarized above supports that TMT, in the setting 

of multidisciplinary shared decision-making, should be offered to all suitable candidates 

with MIBC and not only to patients with considerable comorbidities for whom surgery is not 

an option258.
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Bladder-preserving TMT has also been evaluated in a small phase II single-arm study in 

patients with recurrent high-grade NMIBC following intravesical therapy for whom the next 

step would be cystectomy, with chemoradiotherapy leading to favourable (88%) cystectomy-

free survival results at 3 years264.

Radiotherapy of the primary tumour and possible sites of metastases may also have a role 

in oligometastatic bladder cancer. Studies suggest a possible survival benefit when adding 

local therapy to the bladder (including radiotherapy over chemotherapy alone) in metastatic 

disease265,266 and when using metastasis-directed therapy267,268. However, data are limited 

in the adjuvant, recurrent NMIBC and oligometastatic settings, and further prospective 

research is needed.

Perioperative systemic therapy—For patients with MIBC, the risk of metastatic 

recurrence despite curative-intent local therapy (that is, radical cystectomy or TMT) is high 

and systemic therapy has been explored to further improve outcomes. The BA06 30894 trial 

compared neoadjuvant cisplatin, methotrexate plus vinblastine followed by definitive local 

therapy versus definitive local therapy alone in patients with clinical stage T2–T4aN0M0 

and is the largest neoadjuvant study reported to date269. This trial revealed that neoadjuvant 

cisplatin, methotrexate plus vinblastine improved survival (HR 0.84, 95% CI 0.72–0.99). 

The Southwest Oncology Group 8710 trial randomized patients with clinical stage T2–

T4aN0M0 to neoadjuvant methotrexate, vinblastine, doxorubicin plus cisplatin (MVAC) 

followed by cystectomy versus cystectomy alone270. This trial reported an improvement in 

overall survival with neoadjuvant MVAC (HR 0.75, 95% CI 0.57–1.00). Importantly, these 

trials of neoadjuvant cisplatin-based chemotherapy have revealed an increased likelihood of 

achieving a pathological complete response at cystectomy with neoadjuvant chemotherapy 

followed by cystectomy versus cystectomy alone270. Meta-analyses of the neoadjuvant 

chemotherapy trials in MIBC have confirmed the survival benefit leading to this approach 

becoming standard care271. The optimal form of neoadjuvant chemo therapy, gemcitabine 

plus cisplatin or dose-dense MVAC remains controversial272–274.

Deferring decisions regarding the use of systemic therapy for MIBC to the postoperative 

setting is attractive given the ability to base treatment decisions on more precise pathological 

staging rather than clinical staging. Notwithstanding, clinical trials exploring adjuvant 

chemotherapy in patients with pT3–4 and/or pN+ urothelial cancer of the bladder 

have provided less robust evidence275 despite observational analyses and meta-analyses 

suggesting a benefit275,276.

There has historically been no standard perioperative systemic therapy to decrease the 

risk of recurrence after curative-intent surgery in cisplatin-ineligible patients with high-

risk pathological features at cystectomy (pT3 and/or pN+) or patients who received prior 

neoadjuvant therapy with high-risk pathological features at cystectomy (pT3 and/or pN+). 

Two phase III trials with a similar design sought to define the role of adjuvant PD1 or PDL1 

blockade in this population by randomly allocating patients to 1 year of adjuvant PD1 or 

PDL1 blockade versus observation or placebo. Checkmate 274 demonstrated a significant 

improvement in disease-free survival in the overall population (HR 0.70, 95% CI 0.55–0.90) 

and in the subset of patients with tumours with increased PDL1 expression (HR 0.55, 95% 
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CI 0.35–0.85)277, leading to regulatory approval of adjuvant nivolumab for bladder cancer 

in several parts of the world. IMvigor 010 did not demonstrate an improvement in the 

primary end point of disease-free survival278. However, an exploratory analysis suggested 

a disease-free and overall survival benefit with adjuvant atezolizumab versus placebo in 

patients with detectable baseline ctDNA162, paving the way for ctDNA-based studies of 

adjuvant therapy in bladder cancer.

Systemic therapy for metastatic bladder cancer—Cisplatin-based combination 

chemotherapy became a standard treatment for metastatic bladder cancer in the early 

1990s after a randomized clinical trial demonstrated a survival benefit with MVAC versus 

cisplatin alone279. A series of subsequent randomized trials found that administration of 

MVAC in a dose-dense fashion and/or with granulocyte colony-stimulating factor support 

was associated with less toxicity and possibly enhanced efficacy280,281 and that the 

combination of gemcitabine plus cisplatin yielded similar efficacy but less toxicity than 

MVAC282. Although cisplatin-based chemotherapy became a standard of care for patients 

with metastatic urothelial cancer, many patients with bladder cancer are of advanced age 

and many are ineligible for cisplatin283. For these patients, gemcitabine plus carboplatin is 

generally substituted284.

By 2015, PD1 and PDL1 ICIs had demonstrated durable responses in 20–25% of patients 

with metastatic urothelial cancer and received regulatory approval initially in patients 

progressing despite first-line platinum-based chemotherapy and, subsequently, as first-line 

treatment for cisplatin-ineligible patients285–289. Only the approval of pembrolizumab in 

patients with platinum-resistant metastatic urothelial cancer was based on a randomized 

phase III trial287 with the remainder based on single-arm phase II studies. Potential adverse 

events with PD1 and PDL1 ICIs include but are not limited to immune-related adverse 

events such as colitis, pneumonitis, dermatitis, hepatitis and endocrinopathies. Although 

requiring thorough validation in larger series, if the early data showing that LOY tumours 

are more vulnerable to ICIs holds, this would be a potentially valuable marker to stratify 

patients to this approach130.

Several phase III trials were launched to optimize the use of these therapies. IMvigor 

130 (ref. 290) and Keynote 361 (ref. 291) compared platinum-based chemotherapy 

versus PD1 or PDL1 blockade versus platinum-based chemotherapy plus PD1 or PDL1 

blockade as first-line treatment for metastatic urothelial cancer. These trials failed to 

demonstrate a benefit of concurrent platinum-based chemotherapy plus PD1 or PDL1 

blockade versus platinum-based chemotherapy alone. A randomized phase II and III trial 

compared switch maintenance PD1 or PDL1 blockade (pembrolizumab and atezolizumab, 

respectively) versus placebo or observation in patients with at least stable disease after 

initial platinum-based chemotherapy292,293. These trials met their primary endpoints, with 

the phase III JAVELIN-Bladder 100 study demonstrating an overall survival benefit, 

resulting in switch maintenance ICI being adopted into standard treatment paradigms. After 

decades of investigation, platinum-based chemotherapy remains the standard-of-care first-

line treatment for most patients with metastatic urothelial cancer with switch maintenance 

ICI employed for patients, with stable disease after ~4–6 cycles of chemotherapy. 

However, in some regions, the combination of an antibody–drug conjugate (enfortumab 
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vedotin) plus pembrolizumab has received regulatory approval as first-line treatment for 

cisplatin-ineligible patients based on relatively high response rates and promising response 

durations294. Several new therapies with distinct mechanisms of action have subsequently 

been integrated into standard therapeutic strategies for metastatic bladder cancer (Table 3).

Quality of life

A cross-sectional survey investigated the health-related QoL (HRQoL) of 1,796 patients 

with bladder cancer, of whom 868 (48%) had NMIBC, 893 (50%) received radical 

cystectomy or radiotherapy, and 35 (1.9%) had unknown treatment295. Most patients (69%) 

reported at least one problem in any EQ-5D dimension295. HRQoL outcomes adjusted for 

age and sex were similar across all stages and treatment groups. Sexual problems were 

common in male patients and increased with younger age and radical treatment295. A 

prospective study of 133 patients using the Short-Form 36-item survey (SF-36) found that 

physical functioning, social functioning and role-emotional of patients worsened with first, 

second and third TURBT, and finally improved when TURBT was performed ≥4 times296. 

Patient mental health was also impaired at first TURBT but gradually returned to normal 

with repeated TURBT.

A study investigated the QoL of 103 patients with NMIBC who received intravesical 

BCG or mitomycin C using the EORTC QLQ-C30 and QLQ-BLS24 questionnaires297. 

QoL seemed to drop after the induction course and returned to baseline at 3 months. 

QoL was more affected in patients aged >70 years, especially in those who received 

intravesical BCG therapy. In another study, QoL of 106 patients with NMIBC who 

underwent intravesical chemotherapy was evaluated using the EORTC QLQ-C30 and the 

Core Lower Urinary Tract Symptom Score questionnaire, finding that global health status 

and social functioning decreased and that Core Lower Urinary Tract Symptom Score also 

worsened significantly298.

A meta-analysis investigated the HRQoL following radical cystectomy and urinary 

diversion299. All included studies reported an initial deterioration in overall HRQoL but 

general health, functional and emotional domains at 12 months after surgery were similar 

to or better than baseline. Overall, there was no significant difference in HRQoL between 

continent and incontinent urinary diversion. Subgroup analysis showed greater improvement 

in physical health for patients undergoing incontinent urinary diversion but mental health 

and social health did not differ between diversion types299. Qualitative analysis showed that 

patients with neobladder had better emotional function and body image than those with 

cutaneous diversion299.

A meta-analysis comparing RARC and ORC showed no significant difference in QoL 

(standard mean difference –0.02, 95% CI –0.17 to 0.13; P = 0.78)300. In the RAZOR study 

comparing RARC plus extracorporeal urinary diversion and ORC, no significant difference 

in the Functional Assessment of Cancer (FACT)-Vanderbilt Cystectomy Index was found 

between the two groups at any time point. In the iROC study comparing RARC plus 

intracorporeal urinary diversion and ORC, patients undergoing ORC had worse QoL at 5 

weeks and greater disability at 5 weeks and 12 weeks, but their QoL improved with time and 

QoL did not differ between RARC and ORC after 12 weeks301.
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TMT experiences have shown favourable toxicity profiles and good long-term QoL. Late 

pelvic (genitourinary or gastrointestinal) grade ≥3 toxicity rates from the NRG/RTOG 

and BC2001 trials are acceptable and low (1–6%)257,302. Analysis of long-term survivors 

from four NRG/RTOG trials showed that TMT was associated with 5.7% genitourinary 

and 1.9% gastrointestinal late grade 3 toxic effects (that rarely persist) and no late grade 

4 toxic effects or treatment-related deaths302. In TMT series, <1% of patients required 

cystectomy due to treatment-related toxicity222,258. Other studies from prospective trials 

and retrospective cohorts and using validated instruments as well as urodynamic studies 

in long-term survivors of TMT for MIBC made three QoL-related findings. First, the 

BC2001 trial showed short-term declines in HRQoL during treatment and immediately 

following chemoradiation, as would be expected, but these improved to baseline levels 

after 6 months with no impairment from the addition of chemotherapy303. Second, most 

patients have normally functioning bladders following therapy304. Third, TMT resulted in 

QoL gains compared with radical cystectomy, including modestly better general HRQoL, 

markedly better sexual function and QoL, better-informed decision-making, less concerns 

about appearance, and less life interference from cancer or cancer treatment305.

A Swedish bladder cancer data base investigated the natural history of patients unable or 

unwilling to receive therapy with curative intent306. Among patients with T2–3 M0 disease, 

a median of 2.4 hospitalizations per patient occurred during the first 12 months of diagnosis 

and half of these hospitalizations were due to cancer or genitourinary symptoms306. These 

patients experienced substantial disease-specific morbidity, which might have been avoided 

if they underwent treatment with curative intent306.

Several large phase III trials have evaluated QoL of patients with bladder cancer receiving 

systemic therapy. There are limited available instruments that have been designed and 

validated to assess both general and bladder cancer-specific QoL domains in these patients. 

The FACT-Bladder (FACT-BI) is a 39-item questionnaire that integrates questions regarding 

general QoL domains (FACT-General) as well as a cancer site-specific bladder subscale 

and has been assessed for validity in a cohort of patients with metastatic bladder cancer 

receiving ICIs307. This tool and the National Comprehensive Cancer Network/Functional 

Assessment of Cancer Therapy Bladder Symptom Index-18 (FBlSI-18), EORTC QLQ-C30 

and EuroQol-4D (EQ-5D) have been most commonly employed in bladder cancer trials.

The effects of neoadjuvant cisplatin-based chemotherapy on QoL are not well studied. In 

a randomized trial comparing two cycles of neoadjuvant MVAC followed by cystectomy 

versus cystectomy alone in 99 patients, QoL was assessed using the FACT-Bl instrument308. 

QoL after completion of chemotherapy was lower than baseline scores in domains including 

physical and functional well-being as well as for total FACT-Bl scores; however, there was 

no difference in these domains between study arms on follow-up after radical cystectomy. In 

the Checkmate 274 trial comparing adjuvant nivolumab versus placebo in 709 patients, QoL 

was assessed using the EORTC QLQ-C30 and the EQ-5D-3L309: adjuvant nivolumab was 

non-inferior to placebo on changes from baseline across all major domains. In the JAVELIN-

Bladder 100 trial of switch maintenance avelumab versus observation in 700 patients 

with at least stable disease after first-line platinum-based chemotherapy, the FBlSI-18 and 

EQ-5D-5L instruments were explored310. Switch maintenance avelumab was demonstrated 
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to have minimal effects on QoL. QoL with ICIs was also assessed in the Keynote-045 

trial comparing pembrolizumab versus chemotherapy in 519 patients with platinum-resistant 

metastatic bladder cancer311. Pembrolizumab prolonged the time to deterioration in global 

QoL compared with chemotherapy (median 3.5 months versus 2.3 months, hazard ratio 

0.72; nominal one-sided P = .004). QoL with systemic therapy in patients with bladder 

cancer is complex to measure and interpret given the variability of instruments, time points 

and heterogeneity in clinical disease states with differential effects of disease-related and 

treatment-related burden.

Because of its unique biology, such as high recurrence rates, procedural requirements 

related to surveillance and expensive treatments, bladder cancer management contributes 

considerably to medical costs. In the USA, the overall annual costs of cancer were 

US$183 billion in 2015 and are projected to increase to US$246 billion by 2030 (ref. 

312). Bladder cancer contributed US$7.93 billion in 2015, with an anticipated increase of 

US$11.6 billion by 2030. Similarly, among European Union members, cancer costs totalled 

€ 152.8 billion in 2012, of which bladder cancer contributed € 5.24 billion (adjusted to 

2019 values)313. Multiple cost-effectiveness analyses and reviews have been published and 

provide perspectives on the cost, efficacy and effects on QoL of interventions in patients 

with bladder cancer314–316.

Outlook

Bladder cancer is a considerable and growing global health issue and its prevalence is 

expected to increase by 2040. However, with advances in molecular biology and therapy 

culminating progress over the past 100 years (Fig. 6), there is hope for the development of 

more effective diagnostic and treatment options that can improve patient outcomes.

One promising area of research is the development of minimally invasive diagnostic tools, 

such as urine-based or blood-based tests, that can detect disease recurrences and minimal 

residual disease. These tests could provide a less invasive and more convenient alternative 

to current diagnostic methods. Furthermore, the tests could ultimately lead to new ways 

of guiding oncological decisions and follow-up programmes. Further research in this 

area should focus on validation of clinical applicability of the tests in clinical trials to 

demonstrate clinical utility. Furthermore, development of robust multi-cancer early detection 

tests may ultimately lead to better screening for bladder cancer and in this way detect the 

disease at earlier stages.

The development of precision medicine approaches is also critical for improving bladder 

cancer management. The distinct molecular profiles of NMIBC and MIBC suggest 

that personalized treatment approaches based on the specific genetic mutations of a 

tumour could lead to more effective outcomes. Similarly, understanding the sex and race 

differences in bladder cancer incidence and prognosis can help tailor treatment approaches 

to individual patients and improve outcomes. In addition, there is an urgent need to 

delineate tumour heterogeneity using single-cell and spatial transcriptomic analysis, which 

is likely compromising the utility of current subtype classifications for clinical outcome 

prediction79,217. These approaches will likely provide much-needed clues to clinically 

tractable approaches that can be used to determine the primary driver populations in each 
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specific tumour and use that driver as a prognosticator, predictor or therapeutic target. 

Finally, it is essential to continue to prioritize research into the causes and risk factors for 

bladder cancer. With a better understanding of the underlying biology of the disease, more 

effective prevention strategies can be developed to identify patients who are at increased risk 

for developing bladder cancer. This could include lifestyle interventions, such as smoking 

cessation and dietary changes as well as targeted screening for populations at high risk.

Machine learning, a subdiscipline of artificial intelligence that focuses on data analytics, 

has played a prominent role in cancer research and care because of the complexity of the 

disease and the availability of big data from technologies such as genomics and imaging. 

Applications include predicting regulatory elements in DNA sequences, predicting disease 

risk in populations, and diagnosing cancer from pathology and radiology images as well as 

modelling and predicting physiological and biological behaviours or systems biology317,318.

In conclusion, the outlook for bladder cancer is promising, with multiple advances in 

the understanding of the biological context of bladder cancer, development of novel non-

invasive test methods to potentially guide treatment and, finally, the development of multiple 

novel oncological treatments. A multidisciplinary approach that considers sex and race 

differences as well as the genetic and molecular characteristics of the disease, will be critical 

for improving patient outcomes and reducing the global burden of bladder cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Optimal patient characteristics for trimodality bladder-sparing treatment for 
muscle-invasive bladder cancer

• Predominant urothelial cancer histology

• Unifocal tumour <7 cm in size

• Visibly complete transurethral resection of bladder tumour

• Clinical stage T2–T3a

• Lack of extensive carcinoma in situ

• Absence of hydronephrosis

• Good bladder function
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Fig. 1 |. Bladder cancer categories.
Bladder cancer can be categorized into grades, which is the cytological appearance of the 

urothelium, and stages, which are determined by the spread and depth of bladder wall 

invasion of the tumour. Non-invasive papillary carcinomas are classified as Ta disease, 

whereas urothelial carcinoma in situ is classified as Tis disease. All invasive urothelial 

cancers arise from either high-grade papillary carcinoma or urothelial carcinoma situ. 

Adapted from ref. 319, Springer Nature Limited.
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Fig. 2 |. Global incidence of bladder cancer.
Global estimated incidence of bladder cancer in 2020 in men and women of all ages. Data 

are expressed as age-standardized rates (ASRs; adjusted to World Standard Population) to 

account for differing age profiles among regions. Data were obtained from GLOBOCAN 

2020. Map was produced by the World Health Organization/International Agency for 

Research on Cancer (https://gco.iarc.fr/today).
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Fig. 3 |. Global mortality of bladder cancer.
Global estimated mortality due to bladder cancer in 2020 in men and women of all ages. 

Data are expressed as age-standardized rates (ASRs; adjusted to World Standard Population) 

to account for differing age profiles among regions. Data were obtained from GLOBOCAN 

2020. Map was produced by the World Health Organization/International Agency for 

Research on Cancer (https://gco.iarc.fr/today).
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Fig. 4 |. Pathogenesis pathways.
Potential pathogenesis pathways to papillary non-muscle-invasive bladder cancer (NMIBC) 

and solid muscle-invasive bladder cancer (MIBC), including key genomic events, are shown 

(Tables 1 and 2). Solid arrows indicate pathways for which there is histopathological 

and/or molecular evidence. Dashed arrows indicate pathways for which there is uncertainty. 

Estimated time for tumour development is shown on the left. CIS, carcinoma in situ.
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Fig. 5 |. Histopathology of bladder cancer.
Normal urothelium (part a) is defined by cellular polarization towards the luminal surface 

with individual cells relatively monotonous in appearance and containing open chromatin. 

Low-grade papillary urothelial carcinoma (part b) shows papillary cores, in this image cut 

in cross-section, lined by urothelium that remains relatively monotonous and polarized but 

with hyperchromasia of some nuclei. Non-invasive high-grade neoplasia in the bladder may 

be papillary (part c) or flat (part d) and demonstrates disorganization, nuclear enlargement, 

nuclear pleomorphism, and hyperchromasia. High-grade lesions have the potential to invade 

beyond the basement membrane and into the underlying bladder wall.
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Fig. 6 |. Landmarks in understanding, diagnosis and treatment of bladder cancer.
This timeline shows seminal developments in bladder cancer, highlighting clinical, 

scientific and technical advances that have changed or will change clinical practice 

or scientific thinking in the field51,130,233,271,277,285,287,289,293,324–332. BCG, Bacillus 

Calmette–Guérin; MVAC, methotrexate, vinblastine, doxorubicin plus cisplatin; NAC, 

neoadjuvant chemotherapy; TCGA, The Cancer Genome Atlas; UC, urothelial carcinoma.
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