
Host-Microbial Interactions | Full-Length Text

The mitochondrial carboxylase PCCA interacts with 
Listeria monocytogenes phospholipase PlcB to modulate 
bacterial survival

Jing Wang,1 Mingzhu Cui,1 Yucong Liu,1 Mianmian Chen,1 Jiali Xu,1 Jing Xia,1 Jing Sun,1 Lingli Jiang,2 Weihuan Fang,1 Houhui Song,1 

Changyong Cheng1

AUTHOR AFFILIATIONS See affiliation list on p. 13.

ABSTRACT Listeria monocytogenes, a prominent foodborne pathogen responsible for 
zoonotic infections, owes a significant portion of its virulence to the presence of the 
phospholipase PlcB. In this study, we performed an in-depth examination of the intricate 
relationship between L. monocytogenes PlcB and host cell mitochondria, unveiling a 
novel participant in bacterial survival: the mitochondrial carboxylase propionyl-coen­
zyme A carboxylase (PCCA). Our investigation uncovered previously unexplored levels of 
interaction and colocalization between PCCA and PlcB within host cells, with particu­
lar emphasis on the amino acids 504–508 of PCCA, which play a pivotal role in this 
partnership. To assess the effect of PCCA expression on L. monocytogenes prolifera­
tion, PCCA expression levels were manipulated by siRNA-si-PCCA or pCMV-N-HA-PCCA 
plasmid transfection. Our findings demonstrated a clear inverse correlation between 
PCCA expression levels and the proliferation of L. monocytogenes. Furthermore, the effect 
of L. monocytogenes infection on PCCA expression was investigated by assessing PCCA 
mRNA and protein expression in HeLa cells infected with L. monocytogenes. These results 
indicate that L. monocytogenes infection did not significantly alter PCCA expression. 
These findings led us to propose that PCCA represents a novel participant in L. monocy­
togenes survival, and its abundance has a detrimental impact on bacterial proliferation. 
This suggests that L. monocytogenes may employ PlcB-PCCA interactions to maintain 
stable PCCA expression, representing a unique pro-survival strategy distinct from that of 
other intracellular bacterial pathogens.

IMPORTANCE Mitochondria represent attractive targets for pathogenic bacteria 
seeking to modulate host cellular processes to promote their survival and replication. 
Our current study has uncovered mitochondrial carboxylase propionyl-coenzyme A 
carboxylase (PCCA) as a novel host cell protein that interacts with L. monocytogenes 
PlcB. The results demonstrate that PCCA plays a negative regulatory role in L. monocyto­
genes infection, as heightened PCCA levels are associated with reduced bacterial survival 
and persistence. However, L. monocytogenes may exploit the PlcB-PCCA interaction 
to maintain stable PCCA expression and establish a favorable intracellular milieu for 
bacterial infection. Our findings shed new light on the intricate interplay between 
bacterial pathogens and host cell mitochondria, while also highlighting the potential 
of mitochondrial metabolic enzymes as antimicrobial agents.

KEYWORDS Listeria monocytogenes, phospholipase PlcB, mitochondria propionyl-CoA 
carboxylase (PCCA), bacterial proliferation, host-pathogen interaction

L isteria monocytogenes is an opportunistic intracellular zoonotic bacterium that poses 
a significant threat to human health. This bacterial pathogen is able to cross 
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the intestinal barrier, the blood-brain barrier, and the fetoplacental barrier and cause 
gastroenteritis in healthy individuals, meningitis and meningoencephalitis in immuno­
compromised individuals, as well as abortions in pregnant women (1–3). L. monocyto­
genes is widespread in nature and can grow at low and high temperatures, dryness, 
extreme pH, and high salinity environment, which allow it to persist in food-manufac­
turing sites for several years (4, 5). After ingestion of highly contaminated food, L. 
monocytogenes is able to cross the intestine invading phagocytic and non-phagocytic 
cells (6). After internalization, the secreted pore-forming toxin listeriolysin O (LLO) and 
two phospholipases (PlcA and PlcB) rapidly mediate L. monocytogenes to escape from 
the phagosome into the cytosol, which facilitates the bacteria survival, intracellular 
replication, and eventual spread from primarily infected cells to neighboring cells of host 
(7, 8). In the recipient adjacent cells, L. monocytogenes is entrapped in a double-mem­
brane vacuole where PlcB causes the dissolution of the inner membrane and plays a key 
role in vacuolar escape and cell-to-cell spread. Phospholipases play an important role 
in the absence of LLO. In LLO-deficient strains of L. monocytogenes, PlcB is required for 
rupture of primary vacuoles in human epithelial cell lines (9, 10).

Intracellular bacterial pathogens have evolved multiple strategies to manipulate host 
cellular processes and subvert the immune response. One such strategy is to target 
host cell mitochondria, which are involved in critical cellular functions such as energy 
production, apoptosis, calcium signaling, and innate immunity (11). Pathogenic bacteria, 
like L. monocytogenes, Legionella pneumophila, Shigella flexneri, and Mycobacterium 
tuberculosis, can manipulate mitochondrial dynamics to promote intracellular replica­
tion, evade host immune responses, and establish chronic infections. For instance, L. 
monocytogenes secretes listeriolysin O, a pore-forming toxin that disrupts mitochondrial 
membrane potential and promotes bacterial survival by inhibiting host cell apoptosis 
(12, 13). Similarly, L. pneumophila secretes effector proteins that target mitochondrial 
fission and fusion machinery, resulting in fragmentation of the mitochondrial network 
and inhibition of autophagy (14). S. flexneri and M. tuberculosis also target mitochondrial 
function and dynamics to promote their survival and replication within host cells (15, 16). 
These findings highlight the importance of mitochondria in host-pathogen interactions 
and the potential to target mitochondrial pathways as a novel therapeutic approach for 
intracellular bacterial infections.

Propionyl-coenzyme A carboxylase (PCCA) is an enzyme that catalyzes the carboxyla­
tion of propionyl-coenzyme A (CoA) to methylmalonyl-CoA, which contributes to the 
replenishment of tricarboxylic acid (TCA) cycle intermediates. PCCA is encoded by pcca 
and pccb. The Both1 N and C terminals of PCCA are necessary for holocarboxylase 
synthase interaction, and variants in these domains can perturb this interaction and 
cause disease (17). Of note, deficiency of pcca can significantly reduce mitochondrial 
content and mitochondrial membrane potential and significantly increase mitochondrial 
matrix superoxide burden, culminating in reduced animal lifespan (18). Recent studies 
have indicated the existence of active interactions between pathogen infection and 
host mitochondria. For instance, later in Enteropathogenic Escherichia coli infection, 
secreted protein EspH-dependent increase in FIS1 can result in significant mitochondrial 
fragmentation and host cell death, facilitating pathogen dispersal (19). The mitochon­
drial motrix protein ERAL1 can be released to the cytosol to facilitate antiviral immunity 
during RNA virus infection (20). PCCA is a mitochondrial carboxylase and loosely bound 
to the mitochondrial inner membrane-matrix subcellular fraction (21). Despite PCCA 
involvement of PCCA in energy metabolism, whether PCCA is a target protein involved in 
pathogen infection is not well understood.

In summary, our study investigated the impact of L. monocytogenes infection on host 
cell mitochondria and identified a novel factor, PCCA, which is involved in bacterial 
survival. We found that upregulation of PCCA levels significantly inhibited L. monocy­
togenes survival, indicating a potential new target for controlling Listeria infections. 
However, our results also suggest that L. monocytogenes may exploit the interaction 
between PlcB and PCCA to maintain stable PCCA expression and create a favorable 
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intracellular environment for bacterial infection. These findings deepen our understand­
ing of the intricate interplay between host cells and bacterial pathogens and provide 
new insights into the mechanisms underlying Listeria pathogenesis. Future studies should 
explore the potential of targeting PCCA as a therapeutic strategy for controlling Listeria 
infections.

RESULTS

L. monocytogenes PlcB interacts with the host PCCA

In the yeast two-hybrid assay, the pGADT7-PCCA plasmid was used to verify the 
interaction between PlcB and PCCA. The results showed that only the colonies carry­
ing the pGADT7-PCCA and pGBKT7-BD-PlcB plasmids, as well as the positive control 
group, were able to grow normally in the quadruple dropout medium (QDO) plates 
and blue in the QDO/X/A plates, while all the plasmids were able to grow normally 
in the double dropout medium (DDO) plates (Fig. 1A). In addition, the results of the 
co-immunoprecipitation (Co-IP) assay showed that the PCCA protein carrying the HA 
tag could be successfully detected using Myc-Tag (Fig. 1B). Immunofluorescence analysis 
also indicated that the PCCA protein labeled with green fluorescence colocalized with 
the PlcB protein labeled with red fluorescence, as the green fluorescence completely 
overlapped with the red fluorescence (Fig. 1C). These findings strongly suggest that 
PCCA and PlcB interact and colocalize within cells.

Identification of key interaction region between PCCA and PlcB proteins

To identify the key structural domains in which PlcB specifically binds to PCCA, eukary­
otic expression plasmids of truncated PCCA proteins were constructed. Serial numbers of 
the PCCA eukaryotic expression plasmids are provided in Table S1. The truncation 
strategies for PCCA eukaryotic expression plasmids are shown in Fig. 2A. The results of 
the Co-IP assay demonstrated that the 389–508 amino acids of PCCA contained a key 
interaction region with the PlcB protein (Fig. 2B). To further narrow down the specific 
amino acid residues involved in this interaction, truncated plasmids were constructed 
using an amino acid truncation strategy. The results revealed that amino acids 504–508 
of PCCA were responsible for interacting with the PlcB protein (Fig. 2C and D).

Overexpression of PCCA inhibits bacterial intracellular proliferation

To evaluate the effect of PCCA expression on the proliferation of L. monocytogenes, HeLa 
cells were transfected with the HA-PCCA plasmid, and mRNA transcription and protein 
expression levels were analyzed. Total RNA and secretory proteins were collected from 
HeLa cells transfected with the HA-PCCA plasmid and subsequently used for mRNA 
transcription and protein expression analysis. The results showed that the mRNA 
transcription and protein expression levels of PCCA were significantly upregulated in 
cells transfected with the HA-PCCA plasmid compared with cells transfected with the 
empty parental plasmid (P < 0.05; Fig. 3A through C). Infection with the EGD-e strain 
showed that L. monocytogenes proliferation in PCCA overexpressed cells decreased 
significantly 6 h post infection (P < 0.05; Fig. 3D). These findings suggest that PCCA 
overexpression effectively inhibits L. monocytogenes proliferation.

Knockdown of PCCA promotes bacterial intracellular proliferation

The knockdown efficiency of siRNA-si-PCCA was assessed by measuring the mRNA 
transcription and protein expression levels of PCCA in the transfected cells using real-
time quantitative PCR (RT-qPCR) and western blotting. The results showed that the 
mRNA transcription and protein expression levels of PCCA were significantly downregu­
lated in cells transfected with siRNA-si-PCCA compared to those transfected with siCtrl (P 
< 0.05; Fig. 4A through C). Additionally, the proliferative ability of L. monocytogenes 
increased significantly in cells with inhibited PCCA at 6 h post infection (P < 0.05; Fig. 4D). 
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These results suggested that PCCA may play a negative regulatory role in the prolifera­
tion of L. monocytogenes in host cells.

L. monocytogenes infection did not affect PCCA expression

To further investigate the effect of L. monocytogenes infection on PCCA expression levels, 
the mRNA transcription and protein expression levels of PCCA in HeLa cells infected with 
either EGD-e or ∆plcB strains were measured. RT-qPCR and western blotting results 
showed no significant differences in the mRNA and protein expression levels of PCCA 
between cells treated with phosphate buffered saline (PBS) and cells infected with either 
L. monocytogenes strain (P ˃ 0.05; Fig. 5A through C). Given that PCCA is mainly located in 

FIG 1 Interaction between L. monocytogenes PlcB and host PCCA. (A) Yeast two-hybrid revealed PCCA interaction with PlcB; DDO = double dropout medium; 

DDO/X = DDO with additional addition X-α-Gal (1:500); QDO = quadruple dropout medium; QDO/X = QDO with additional addition X-α-Gal (1:500) and 

Aureobasidin A (AbA; 1:2,500). (B) Co-IP assay identified the interaction between PCCA and PlcB. The abbreviations are IB for immunoblotted and IP for 

immunoprecipitated. (C) Immunofluorescence analysis showed colocalization of PCCA protein labeled with green fluorescence and PlcB protein labeled with red 

fluorescence. The scale bars mean 10 µm.
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the mitochondrial matrix, mitochondrial proteins from cells were collected to compare 
the changes in PCCA levels in mitochondria after infection with different strains. Similarly, 
the results showed that PCCA expression in mitochondria was not significantly affected 
by L. monocytogenes infection (P ˃ 0.05; Fig. 5D and E). These findings suggest that the 
interaction between PlcB and PCCA may be skillfully exploited by L. monocytogenes 
during infection to maintain stable PCCA expression in the host. This, in turn, creates a 
favorable intracellular environment for L. monocytogenes infection.

DISCUSSION

Intracellular bacterial survival and multiplication depend on their ability to escape from 
the phagosome into the cytosol, which is a critical step in the complex and coordinated 
intracellular life cycle of L. monocytogenes. The escape of L. monocytogenes from double-
membrane secondary vacuoles depends on the synergistic action of LLO, PlcA, and PlcB 
(22, 23). Previous studies have demonstrated that the phospholipases PlcA and PlcB play 
critical roles in the intracellular survival and replication of L. monocytogenes. Bacterial 
mutants lacking both phospholipases were mostly unable to dissolve the inner mem­
brane of the secondary vacuole despite the presence of LLO (9). PlcB, in particular, was 
found to be essential for disintegrating the lipid membrane of the vacuole and the inner 

FIG 2 Identification of key interaction region between PCCA and PlcB proteins. (A) Illustration of the truncation strategies used for the eukaryotic expression 

plasmids of PCCA. (B) The segment comprising amino acids 389–508 of PCCA is identified as a crucial interaction domain with the PlcB protein. (C) A distinct 

key interaction region with the PlcB protein is located within amino acids 479–508 of PCCA. (D) The amino acids 504–508 of PCCA are specifically responsible for 

interaction with the PlcB protein.
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membrane of secondary vacuoles with a double membrane (9, 22). In this study, we used 
a Co-IP assay to identify host cell proteins that interact with PlcB and to investigate their 
potential role in L. monocytogenes survival and persistence. Our results identified 
mitochondrial carboxylase PCCA as a novel host cell protein that interacts with PlcB. 

FIG 3 Overexpression of PCCA inhibits bacterial intracellular proliferation. (A) Western blot analysis of PCCA expression levels in HeLa cells transfected with 

HA-PCCA or HA-pCMV plasmids. (B) Gray value analysis of PCCA expression levels. (C) Real-time quantitative PCR (RT-qPCR) analysis of pcca transcript levels. 

(D) Percentage of intracellular bacteria at 6 h post-EGD-e infection. Data are expressed as the mean ± SD (n = 3). *P < 0.05; ** P < 0.01; ***P < 0.001.
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Furthermore, our findings suggest that PCCA negatively regulates L. monocytogenes 
infection, as an increased abundance of PCCA was found to be associated with reduced 
bacterial survival and persistence. This study sheds new light on the complex interac­
tions between L. monocytogenes and its host cells, highlighting the importance of 
phospholipases and the novel role of PCCA in L. monocytogenes infections.

FIG 4 PCCA knockdown promotes bacterial intracellular proliferation. (A) Western blotting analysis of PCCA expression levels in HeLa cells transfected with 

si-PCCA or si-Ctrl. (B) Gray value analysis of PCCA expression levels. (C) RT-qPCR analysis of pcca transcript levels. (D) Percentage of intracellular bacteria at 6 h 

post-EGD-e infection. Data are expressed as the mean ± SD (n = 3). *P < 0.05; ** P < 0.01; ***P < 0.001.
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Mitochondria are essential organelles in eukaryotic cells because of their critical roles 
in energy production, metabolic regulation, calcium signaling, apoptosis, and redox and 
innate immune signaling (24–26). Several mitochondrial metabolic enzymes, including 
succinate dehydrogenase and mitochondrial intermediate metabolites, have been 
reported to participate in bacterial killing (27, 28). PCCA is a mitochondrial carboxylase, 
whose primary function is to catalyze the carboxylation of propionyl-CoA to produce 
methylmalonyl-CoA. Since intracellular accumulation of propionyl-CoA can inhibit 
mitochondrial metabolism and reduce the synthesis of citrate, GTP, and ATP, PCCA is 
essential to supply TCA substrates and support TCA function (29). When PCCA is 
dysfunctional, it usually leads to a severe metabolic disorder demonstrating significant 
morbidity and mortality (30). Therefore, the availability of PCCA in mitochondria is a 
critical determinant of which cellular functions are modified. In the present study, the 
results revealed that the knockdown of PCCA facilitated bacterial survival, which might 
be related to the impaired LC3-associated phagocytosis (LAP)-mediated defense 
mechanism when PCCA was deficient, because phagosomes containing the bacterial 
pathogen L. monocytogenes can be targeted by LAP (31).

LAP is a host defense mechanism against invading pathogens that involves the 
formation of autophagosomes around the bacteria, leading to their degradation (18, 
32–34). Previous study has suggested that macrophages target Salmonella typhimurium 
by LAP, where LC3 is directly recruited to phagocytosed bacteria in a manner dependent 
on the activation of reactive oxygen species (ROS) production in the Salmonella-con­
taining compartment (35). LAP has also been evidenced to protect against Aspergillus 
fumigatus infection by activity of a Class III PI (3) K complex (36). Indeed, L. monocy­
togenes–derived LLO causes plasma membrane damage to induce an influx of extrac­
ellular Ca2+/endoplasmic reticulum Ca2+ release and subsequent mitochondrial Ca2+ 

FIG 5 L. monocytogenes infection does not affect PCCA expression. (A) Western blotting analysis of PCCA expression in HeLa cells infected with EGD-e or ∆plcB 

strain. (B) Gray value analysis of PCCA expression levels in HeLa cells. (C) RT-qPCR analysis of pcca transcript levels in HeLa cells after infection with the different 

strains. (D) Western blotting analysis of mitochondrial PCCA expression after infection with the different strains. (E) Gray value analysis of mitochondrial PCCA 

expression levels. Data are expressed as the mean ± SD (n = 3). ns means no significant differences.
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(mtCa2+) uniporter-dependent mitochondrial uptake. Elevated mtCa2+ levels augment 
pyruvate dehydrogenase (PDH) activity, leading to increased acetyl-CoA production 
in mitochondria. Accumulated acetyl-CoA in the mitochondria-phagosome connection 
area preferentially modifies the LAP-associated molecule Rubicon in a compartmental­
ized manner (37). The LAP-mediated defense mechanism is activated by Rubicon, an 
effector protein that acetylates acetyl-CoA. In the setting of PCCA deficiency, propionyl-
CoA and propionate can inhibit pyruvate dehydrogenase, leading to decreased acetyl-
CoA generation (38). As a result, acetyl-CoA-mediated acetylation of Rubicon is reduced, 
leading to decreased LAP formation (36, 37). This study revealed that PCCA abundance 
was negatively correlated with host cell infection by L. monocytogenes. These results 
suggested that L. monocytogenes might escape LAP-mediated bacterial killing due to 
reduced LAP when PCCA expression levels were decreased in host cells (Fig. 6). This 
finding provides new insights into the mechanisms by which L. monocytogenes evades 
host immune responses and highlights the importance of mitochondrial metabolism in 
the host defense against bacterial infections. Therefore, we suggest that PCCA plays an 
important role in the host defense against L. monocytogenes infection. This highlights the 
importance of mitochondrial metabolism in the immune response to bacterial infections 
and provides a new perspective for the development of novel therapeutic strategies to 
combat bacterial infections.

Due to their involvement in essential cellular processes, mitochondria represent 
attractive targets for viral and bacterial pathogens seeking to modulate host cellular 
processes to promote their survival and replication (11, 39–41). Several pathogenic 
bacteria have been shown to target mitochondrial dynamics and function to create 
favorable intracellular environments that promote their survival and persistence. For 
example, Vibrio cholera, which uses the type 3 secretion system effector VopE to activate 
mitochondrial GTPase activity and modulate mitochondrial trafficking, effectively blocks 
innate immune responses that presumably require mitochondria as signaling platforms 
(42). Mitochondria are highly dynamic organelles that constantly undergo fusion and 
fission. Mitochondrial dynamics during L. monocytogenes infection have been analyzed, 
and it has been shown that this infection profoundly alters mitochondrial dynamics by 
causing transient mitochondrial network fragmentation. The secreted pore-forming 
toxin LLO as a bacterial factor is mainly responsible for mitochondrial network disruption 
and mitochondrial function modulation (12). LLO can enhance Listeria entry into cells by 
inducing Ca2+ influx because Ca2+ influx probably represents the first bioenergetics insult 
to the cell, inducing mitochondrial fragmentation and depolarization as well as blocking 
mitochondrial movement (43–47). L. monocytogenes infection not only elicits transient 
mitochondrial fission and a drop in mitochondrion-dependent energy production 
through a mechanism requiring LLO, but also Mic10, a critical component of the 
mitochondrial contact site and cristae organizing system complex, for L. monocytogenes-
induced mitochondrial network fragmentation (13, 48). In the present study, we found 
that L. monocytogenes PlcB protein interacts with the mitochondrial carboxylase PCCA, 
and the key structural domains and amino acid sites involved in the interactions between 
PlcB and mitochondrial PCCA were clearly identified. We also found that the knockdown 
of PCCA facilitated bacterial survival, possibly by impairing the LAP-mediated defense 
mechanism. However, the results revealed that PCCA expression in the mitochondria was 
not significantly affected by L. monocytogenes infection, highlighting the relevance of 
mitochondrial dynamics in Listeria infection. Pathogenic bacteria can target host cell 
organelles to control key cellular processes and promote their intracellular survival, 
growth, and persistence (11, 12, 14–16). Mitochondrial dynamics and function are closely 
linked, and bacterial manipulation of mitochondrial processes can create favorable 
intracellular environments for bacterial replication and survival. Therefore, it is possible 
that L. monocytogenes exploits the interaction between PlcB and PCCA to maintain stable 
PCCA expression and supply TCA substrates to create a favorable intracellular environ­
ment for its survival and growth. Further studies are needed to elucidate the precise 
mechanisms underlying this interaction and its role in L. monocytogenes.
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In summary, this study sheds light on the previously unknown interaction between L. 
monocytogenes and host cell mitochondria, particularly the role of the mitochondrial 
carboxylase PCCA in bacterial survival. These findings suggest that upregulated PCCA 
levels can inhibit L. monocytogenes survival, highlighting the potential of PCCA as a 
target for the development of new antibacterial strategies. However, the interaction 
between PlcB and PCCA may allow L. monocytogenes to maintain stable PCCA expression 
during infection, which could be a key pro-survival strategy. Overall, this study provides 
new insights into the complex interplay between bacterial pathogens and host cell 
mitochondria, which could pave the way for new approaches for combating bacterial 
infections.

FIG 6 A proposed model describes the modulation of L. monocytogenes survival via the interaction between mitochondrial carboxylase PCCA and phospholi­

pase PlcB. Under PCCA deficiency, the accumulation of propionyl-CoA and propionate can inhibit PDH activity, leading to a reduction in acetyl-CoA (Ac-CoA) 

generation. This subsequently results in the downregulation of Ac-CoA-mediated acetylation of Rubicon (RUBCN) and reduced LAP formation. Decreased 

LAP formation may reduce bacterial killing, allowing L. monocytogenes to evade this host defense mechanism. However, L. monocytogenes may leverage the 

interaction between PlcB and PCCA to maintain stable PCCA expression and provide TCA substrates to create a favorable intracellular environment for its survival 

and growth. The abbreviations used in the legend are LM for L. monocytogenes, and LLO for listeriolysin O.
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MATERIALS AND METHODS

Bacterial strains, plasmids, primers, and culture conditions

L. monocytogenes strains, including wild-type EGD-e and its isogenic PlcB mutant ∆plcB, 
were used in this study. All L. monocytogenes strains were grown at 37°C in Brain 
Heart Infusion (Thermo Fisher Scientific, USA) supplemented with ampicillin (50 µg/mL), 
chloramphenicol (10 µg/mL), or kanamycin (50 µg/mL). E. coli DH5α cells were grown at 
37°C in Luria-Bertani (LB) medium (Oxoid Ltd., United Kingdom) for transformation. HEK 
293T and HeLa cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM), 
supplemented with 10% fetal bovine serum (FBS, GE Healthcare Hyclone), and grown 
at 37°C in a humidified 5% CO2 atmosphere for protein expression. Primers used in this 
study are listed in Table S2.

Protein interaction assay using yeast two-hybrid test

In a previous study, we identified mitochondrial PCCA protein as a PlcB-interacting 
protein by screening a human cDNA library. To validate plasmid specificity in the yeast 
two-hybrid system and reduce false positives, we performed a back-up verification test. 
In the yeast two-hybrid assay, pGADT7-PCCA and pGBKT7-BD-PlcB were co-transfected 
into Y2HGold cells. The positive control group consisted of pGADT7-T and pGBKT7-53, 
whereas the negative control group consisted of pGADT7-T and pGBKT7-Lam. Y2HGold 
carrying the above plasmids was grown at 30°C in DDO, DDO/X, QDO, or QDO/X/A solid 
medium for 4 days, and colony growth was observed. If the colonies transfected with 
pGADT7-PCCA and pGBKT7-BD-PlcB plasmid can grow normally on QDO medium and 
turn blue in DDO/X and QDO/X/A medium, it indicates that the PCCA positive clonal 
back-up test is successful and interaction between PlcB and PCCA. DDO means Double 
dropout medium; DDO/X means DDO with additional addition X-α-Gal (1:500); QDO 
means Quadruple dropout medium; and QDO/X/A means QDO with additional addition 
X-α-Gal (1:500) and Aureobasidin A (AbA; 1:2,500).

Protein interaction assay using Co-IP

Primers with specific restriction sites (EcoR I and Kpn I) were designed from the known 
nucleotide sequences of plcB and pcca. The resulting PCR products were digested with 
EcoRI and KpnI and cloned into pCMV-N-Myc and pCMV-N-HA vectors digested with 
the same enzymes to generate the plasmids pCMV-N-Myc-PlcB26-289 and pCMV-N-HA-
PCCA389-729. The expression plasmids were co-transfected into HEK293T cells to conduct 
an interaction assay using the collected cell-secreted proteins. To identify the key regions 
where PlcB specifically binds to PCCA, the PCCA protein sequence was truncated, and 
p-CMV plasmids carrying HA tags were constructed. The key structural domains and 
amino acid sites involved in the interactions between PlcB and mitochondrial PCCA were 
elucidated using Co-IP.

Protein colocalization assay using immunofluorescence

HEK293T cells were seeded in sixwell plates at a density of 2 × 105 cells/mL 24 h 
before the assay. Plasmid DNA encoding pCMV-N-Myc-PlcB or pCMV-N-HA-PCCA was 
mixed with JerPRIME (Polyplus, France) transfection reagent (1:2) and added to each 
well. After 48 h of transfection, cells were fixed with 4% paraformaldehyde for 20 min 
at room temperature, permeabilized with 0.5% Triton X-100 for 5 min, and blocked 
with 1% bovine serum albumin (BSA) for 30 min. Primary antibodies were added, and 
the cells were incubated at 37°C in a blocking buffer for 1 h. After washing the cells 
three times with PBS, fluorophore-conjugated secondary antibodies or 4',6-diamidino-2-
phenylindole (DAPI) dye was added for 1 h at 37°C. The coverslips were mounted onto 
microscope slides with mounting medium and imaged using a confocal microscope 
(Olympus, Japan). The primary antibodies used were Alexa Fluor 555 donkey anti-mouse 
IgG (H + L) (A-31570), Alexa Fluor 488 donkey anti-rabbit IgG (H + L; A-21206), β-tubulin 
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(D3U1W) mouse mAb, COX IV (4D11-B3-EB) mouse mAb, HA-Tag (C29F4) rabbit mAb, and 
Myc-Tag (9B11) mouse mAb.

Transient overexpression and gene knockdown of PCCA in HeLa cells

For transient overexpression experiments, HeLa cells were seeded in sixwell plates and 
transfected with 0.5 µg of pCMV-N-HA-PCCA plasmid DNA using jetPRIME (Polyplus, 
France) according to the manufacturer’s instructions. Cells were transfected with an 
empty parental plasmid as a negative control (Ctrl). For transient gene knockdown 
experiments, HeLa cells were reverse transfected with small interfering RNA (siRNA) 
against PCCA (siRNA-si-PCCA) in 12-well plates using INTERFERin (Polyplus) transfection 
reagent. The cells were transfected with si-Ctrl as a negative control. siRNAs were 
produced by GenePharma Co., Ltd. (Shanghai, China).

Real-time quantitative PCR

The expression level of pcca was analyzed by extracting total RNA from HeLa cells 
using the Bacteria Total RNA Isolation Kit (TOYOBO, Japan) following the manufacturer’s 
instructions. Specifically, cDNA was synthesized from 1 µg of total RNA using a Prime­
Script RT reagent Kit with gDNA Eraser (Takara, Japan), followed by RT-qPCR using a 
LightCycler 480 Real Time System (Roche, Switzerland) with SYBR Green Real-time PCR 
Master Mix (Takara). Data were analyzed using the 2–∆∆Ct method after normalizing target 
gene values to those of the housekeeping gene GAPDH.

Analysis of PCCA expression using western blotting

To assess the knockdown or overexpression of PCCA during L. monocytogenes infection, 
PCCA protein levels were analyzed by western blotting. Briefly, the bacterial pellet was 
resuspended in 1 mL extraction solution (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM 
Tris-HCl, 1 mM EDTA, and pH 8.0), lysed using a homogenizer at 6,000 rpm for 30 s 
with intermittent cooling for 30 s, and then centrifuged at 12,000 × g for 15 min. The 
pellet was discarded, and the supernatant was retained as the whole-cell extract. HeLa 
cell mitochondria were extracted using a Mitochondrial Extraction Kit following the 
manufacturer’s instructions (Solarbio, China). Protein samples were separated by 12% 
SDS-PAGE and transferred to a nitrocellulose membrane. The membrane was incuba­
ted overnight with primary antibodies, including Myc-tag (9B11) mouse mAb, COX IV 
(4D11-B3-EB) mouse mAb, HA-Tag (C29F4) rabbit mAb, and goat anti-mouse or rabbit 
IgG (H + L) antibodies. Tubulin was used as an internal standard to normalize protein 
levels.

Intracellular growth of L. monocytogenes in HeLa cells

To investigate the role of PCCA in L. monocytogenes infection, intracellular growth 
assays were performed using HeLa cells with altered PCCA expression (overexpression 
or knockdown). Briefly, overnight-grown L. monocytogenes was washed and resuspended 
in PBS (pH 7.4). Monolayers of HeLa cells cultured in DMEM containing 10% FBS were 
infected with L. monocytogenes for 30 min at a multiplicity of infection (MOI) of 0.05 
and incubated in DMEM containing gentamicin (50 µg/mL) for an additional 30 min to 
kill extracellular bacteria. Cells were treated with PBS as the control group. The infected 
cells were lysed with trypsin and distilled water 6 h post infection. The lysates were 
diluted and plated on brain heart infusion (BHI) agar plates to determine viable bacterial 
counts. The experiment was performed in triplicate, and a control group treated with PBS 
was included. Intracellular bacteria (% relative control) = (numbers of CFU counted in 
treatment group)/(numbers of CFU counted in control group) × 100%.

Statistical analysis

All data are presented as mean ± SD. Statistical analysis was performed using a one-way 
analysis of variance (ANOVA) followed by Duncan’s test. Relative gene expression was 
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compared between the two groups using t tests. Differences were considered statistically 
significant at P < 0.05.
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