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ABSTRACT In the next decades, the increasing material and energetic demand to 
support population growth and higher standards of living will amplify the current 
pressures on ecosystems and will call for greater investments in infrastructures and 
modern technologies. A valid approach to overcome such future challenges is the 
employment of sustainable bio-based technologies that explore the metabolic richness 
of microorganisms. Collectively, the metabolic capabilities of Chloroflexota, spanning 
aerobic and anaerobic conditions, thermophilic adaptability, anoxygenic photosynthe
sis, and utilization of toxic compounds as electron acceptors, underscore the phy
lum’s resilience and ecological significance. These diverse metabolic strategies, driven 
by the interplay between temperature, oxygen availability, and energy metabolism, 
exemplify the complex adaptations that enabled Chloroflexota to colonize a wide 
range of ecological niches. In demonstrating the metabolic richness of the Chloroflex
ota phylum, specific members exemplify the diverse capabilities of these microorgan
isms: Chloroflexus aurantiacus showcases adaptability through its thermophilic and 
phototrophic growth, whereas members of the Anaerolineae class are known for their 
role in the degradation of complex organic compounds, contributing significantly to 
the carbon cycle in anaerobic environments, highlighting the phylum’s potential for 
biotechnological exploitation in varying environmental conditions. In this context, the 
metabolic diversity of Chloroflexota must be considered a promising asset for a large 
range of applications. Currently, this bacterial phylum is organized into eight classes 
possessing different metabolic strategies to survive and thrive in a wide variety of 
extreme environments. This review correlates the ecological role of Chloroflexota in such 
environments with the potential application of their metabolisms in biotechnological 
approaches.

KEYWORDS filamentous anoxygenic phototroph, photoautotrophic bacteria, 
extremophiles, biotechnological applications, decontamination technologies, value-
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T he utilization of microorganisms in biotechnological processes has been widely 
reported, and the search for new metabolisms can lead to the development of 

several innovative technologies focused on environmental decontamination, wastewater 
treatment, and production of energy and value-added substances (1–4). In all these 
applications, the adaptability and versatility of microorganisms make them valuable 
tools for addressing environmental and industrial challenges. In every microbial phylum, 
we can find interesting metabolisms, and in the specific case of the Chloroflexota phylum, 
it encompasses a wide spectrum of metabolic diversity, with some organisms exhibiting 
remarkable traits such as a bicycle-like mechanism for inorganic carbon fixation, others 
harnessing the power of halogens, and others performing denitrification, although often 
being involved in the cycling of several elements (5). This diversity, which arises from 
the natural adaptation of Chloroflexota to harsh environmental conditions, contains a 
unique array of metabolic processes and distinctive features that can be explored for 
biotechnological purposes.
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The Chloroflexota bacteria phylum, formerly known as green non-sulfur bacteria 
(GNSB), comprises extensively diverse microorganisms that can be found in several 
environments, both terrestrial and aquatic. This phylum nomenclature derives from the 
species Chloroflexus aurantiacus, first isolated and described by Pierson and Castenholtz 
(6) as a filamentous anoxygenic phototroph (FAP), a term currently used specifically for 
phototrophic members of the Chloroflexota. The constant discoveries of new microbial 
organisms and advances in phylogenetic analysis are leading to a continual redefini
tion and reorganization of this phylum. Currently, the Chloroflexota phylum is divided 
into eight classes: Anaerolineae, Ardenticatenia, Caldilineae, Chloroflexia, Dehalococcoidia, 
Ktedonobacteria, Tepidiformia, and Thermoflexia (Fig. 1). Interestingly, the entire phylum 
only has 18 families, with many of the classes owing their name to one single genus 
characteristic of the class.

FIG 1 The Chloroflexota phylum is divided into eight classes of bacteria, each with its specific orders and families (https://lpsn.dsmz.de/phylum/chloroflexota, 

accessed 10 February 2024).
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The uniqueness of Chloroflexota members is reviewed in this manuscript, analyzing 
its metabolic features and placing a great focus on the much-needed overview of the 
biotechnological potential of this bacterial phylum.

CHLOROFLEXOTA CLASSES AND CHARACTERISTICS

The Chloroflexota phylum is characterized according to the metabolism, phylogeny, cell 
shape, motility, ability to form multicellular aggregates, and spore formation capacity. 
There are several similar traits (morphology, environment, and growth conditions) 
between the constituents of this bacterial phylum, as shown in Fig. 2.

The class Anaerolineae is divided into two orders, Aggregatilineales and Anaerolineales, 
each containing a single family. Its representatives are strictly anaerobic chemoorga
notrophic organisms with a filamentous morphology. Organisms from this class have 
been isolated from diverse environments including anaerobic digesters, hot springs, and 
subseafloor sediments (7, 8).

The class Ardenticatenia was proposed based on a single species, Ardenticatena 
maritima, which was isolated from a costal hydrothermal field, and is a facultative aerobe 
that can reduce ferric ion and nitrate under anaerobic conditions. This chemoorganotro
phic species forms thin multicellular filaments and can grow at temperatures of up to 
75°C (9).

The class Caldilineae contains a single described order, Caldilineales, and family, 
Caldilineaceae, which consists of two genera, Caldilinea and Litorilinea. Species belong
ing to these genera are aerobic, facultative aerobic, or anaerobic chemoorganotrophic 
filamentous organisms found in hot springs and hot aquifers (7, 10, 11).

The class Chloroflexia contains the first known members of this phylum that possess 
phototrophic and/or chemoheterotrophic growth under mesophilic or moderately 
thermophilic conditions, presenting a filamentous growth morphology. Moreover, the 
phototrophic members of this class, usually referred to as FAP bacteria, belong to 
the Chloroflexales order, which can be divided into three families: Chloroflexaceae 

FIG 2 The Chloroflexota phylum organized in terms of predominant morphology, oxygen requirements, and temperature range for growth (mesophiles: 

20°C–45°C; thermophiles: 45°C–80°C).
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(photoheterotrophic but also with photoautotrophic abilities), Roseiflexaceae, and 
Oscillochloridaceae (both predominantly photoheterotrophic). The first two families are 
composed of thermophilic FAP bacteria isolated from terrestrial hot springs, whereas 
the latter contains photoheterotrophic mesophilic freshwater species (12, 13). Although 
phototrophy in Chloroflexota isolates is limited to Chloroflexia class, metagenomic studies 
indicate the existence of potentially phototrophic members also in other classes, which 
could be attributed to horizontal gene transfer of sequences for reaction center and 
bacteriochlorophyll synthesis proteins (14). The Chloroflexia class has two additional 
orders, Herpetosiphonales and Kallotenuales, containing non-photosynthetic species that 
rely on heterotrophic metabolism for growth (12, 15).

The class Dehalococcoidia is characterized by the disc-shaped coccoid form of its 
members, instead of the filamentous morphology attributed to other classes within 
the Chloroflexota phylum. All isolates from this class can grow in chemoorganotrophic 
conditions and perform dehalogenation of chlorinated and brominated alkanes under 
strict anaerobic conditions, which grants them great importance in the bioremediation 
field (16).

The class Ktedonobacteria contains heterotrophic bacteria capable of growing 
under microaerophilic conditions. They have been isolated from soil samples with the 
peculiarity of forming aerial mycelia and spores. This class is divided into two orders, 
Ktedonobacterales and Thermogemmatisporales. The order Ktedonobacterales contains 
all the mesophilic and some thermophilic representatives of this class, whereas the 
Thermogemmatisporales order encompasses only thermophilic species (17–22).

The class Tepidiformia is composed of one order, Tepidiformales, and one family, 
Tepidiformaceae, containing moderately thermophilic bacteria with a regular short rod 
morphology, being able to grow hetero- or auto-trophically in aerobic conditions (23).

The class Thermoflexia, proposed based on its type species Thermoflexus hugenholt
zii, englobes filamentous thermophilic chemoheterotrophic microaerobes (optimally 
growing at 1% (vol/vol) O2 with an upper limit of 8% O2) being also facultatively 
anaerobic (24).

CHLOROFLEXOTA METABOLISMS AND ENVIRONMENTS

There are several metabolisms present within the Chloroflexota phylum, such as 
anoxygenic phototrophy, obligate anaerobic heterotrophy, organohalide respiration, and 
facultative or aerobic heterotrophy. For this reason, bacteria from the Chloroflexota 
phylum can be found in several environments (natural or industrial) with different 
properties and singularities (25–29). Their metabolic versatility allowed the adaptation 
of Chloroflexota to microbial mats, soils, aquatic environments, and other extreme 
environments as shown in Fig. 3.

Anoxygenic phototrophy

The first metabolism to be described in this phylum was anoxygenic phototrophic 
growth (6), in which the filamentous phototrophs use light energy to generate chemical 
energy in the form of ATP. The isolated members from the Chloroflexota phylum exhibit
ing photoautotrophy are exclusively contained in the Chloroflexia class; however, most 
organisms belonging to this class demonstrated the ability to grow photoheterotrophi
cally assimilating organic carbon compounds (30–33), or chemotrophically under aerobic 
dark conditions. Chloroflexia is commonly found in phototrophic microbial mat commun
ities, specifically in neutral and alkaline spring waters with temperatures between 40°C 
and 70°C (6, 34–36).

To perform their main metabolism, the phototrophic bacteria rely on light-harvesting 
organelles known as chlorosomes, oval structures attached to the inner surface of the 
cytoplasmic membrane, consisting of paracrystalline aggregates of bacteriochlorophylls 
that are surrounded by a galactolipid non-unit membrane (37). Regarding the antenna 
pigments, there are some slight differences within the order Chloroflexales: for example, 
members of the Chloroflexus and Oscillochloris genera possess bacteriochlorophyll c, 
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whereas Chloronema is rich in bacteriochlorophylls c and d (31, 32). The presence of 
bacteriochlorophylls c or d gives cells their green color, and carotenoids (β- and γ-
carotene, and derivatives) are also present as part of the light-harvesting cellular 
apparatus. Roseiflexus castenholzii and Heliothrix oregonensis (from the family Roseiflexa
ceae) contain solely bacteriochlorophyll a, which makes them chlorosome-free. These 
cells usually present a red/orange color because of their oxo-γ-carotene and glucoside-
rich nature. Moreover, the carotenoid β-carotene (which is present in Chloroflexus, 
Oscillochloris, and Chloronema) is missing in the red-colored genera Roseiflexus and 
Heliothrix (38–40).

In terms of inorganic carbon fixation, C. aurantiacus can use the 3-hydropropionate 
bi-cycle, in which bicarbonate fixation is proceeded by the carboxylation of acetyl-CoA 
and propionyl-CoA yielding pyruvate as the net product; glyoxylate, an intermediate of 
the bi-cycle, can also be assimilated into cell material (41–44). Energy-wise, inorganic 
carbon fixation via the 3-hydroxypropionate bi-cycle requires 7 ATP, 5 NAD(P)H, and 3 
HCO3

− to produce one pyruvate. Comparatively, alternative carbon fixation pathways 
found in other phototrophs can produce pyruvate through the reverse tricarboxylic 
cycle, which requires, equivalently, 3 CO2, 2 ATP, and 5 NAD(P)H, whereas the Calvin-
Benson-Bassham cycle inputs 3 CO2, 7 ATP, and 5 NAD(P)H to produce one pyruvate 

FIG 3 Natural and industrialized environments where Chloroflexota can be found. The pictures were designed with templates available at https://www.bioren

der.com/.
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molecule (45, 46). However, the 3-hydroxypropionate bi-cycle allows the consumption 
of bicarbonate, which can provide a competitive advantage to Chloroflexus in alkaline 
environments or under low carbon dioxide availability (47). To support inorganic carbon 
fixation, different compounds can be used as electron sources, such as sulfide, thiosul
fate, small organic molecules, or molecular hydrogen (45, 48–50).

Given the ability to use a wide range of electron donors, members of the Chloroflexia 
class (specifically members of the Chloroflexales order) have also been observed in 
marine and hypersaline microbial mats (51, 52), which points to the adaptability of such 
organisms to different environments. Indeed, the presence of Chloroflexales members 
has also been reported in extreme soil environments such as sediments from the Arctic 
(53). Furthermore, Chloroflexia has been isolated from volcanic vents (54), and Chlor
oflexus islandicus has been isolated from a geyser in Iceland (30). Ecologically, Chloro
flexia serves as both primary and secondary producers (55–57), performing mixotrophic 
growth using CO2 and simple organic molecules as carbon sources.

Anaerobic heterotrophy

Strict anaerobic chemoheterotrophic growth has been reported in the classes Anae
rolineae and Dehalococcoidia. The strict anaerobic metabolisms of Anaerolineae are 
characterized by a fermentative metabolism, with some isolates performing sugar 
fermentation to produce acetate, lactate, succinate, propionate, and hydrogen and 
this class has shown to be present in methanogenic sludge systems (58), wastewaters 
with recalcitrant compounds (59), and sugar-fed microbial fuel cells systems (60, 61). 
Additionally, members of the Anaerolineae class have been reported to contribute to 
the transformation of cellulose and hemi-cellulose to smaller carbon molecules such as 
lactate, formate, and acetate, even in adverse conditions, such as uranium-rich sedi
ments, which was possible, given the presence of genes related to uranium tolerance 
(62). Members of the Anaerolineae classes can also be found in marine environments 
contributing to the re-cycling of dissolved organic matter and degrading carbohydrates 
(8, 63, 64).

Bacteria from the Dehalococcoidia class can perform anaerobic organohalide 
respiration, being repeatedly found in marine sediments at different worldwide 
locations, often with high relative abundances (65, 66). In fact, Krzmarzick et al. (29) 
investigated the role of Dehalococcoidia on chlorine cycle by establishing a correlation 
between their concentration and the concentration of organochlorine compounds, 
stating the pivotal role of these bacteria in the biogeochemical chlorine cycle (29). 
Additionally, a sulfur-oxidizing/reducing ability was reported by different authors, which 
could imply a role of Dehalococcoidia in the sulfur cycle of marine shallow surfaces (67).

Overall, members of the Anaerolineae and Dehalococcoidia contribute to the 
fermentation of sugars and fixation of carbon dioxide, participating in carbon cycling 
and constituting around 5%–25% of the bacterial communities detected in freshwater 
sediments from lakes and rivers (68, 69).

Facultative or aerobic heterotrophy

Aerobic chemoheterotrophic metabolism can be found in the Ardenticatenia, Ktedo
nobacteria, Tepidiformia, and Thermoflexia classes. A. maritima (sole species of the 
Ardenticatenia class) is an aerobe that can also use ferric iron as an electron acceptor and 
tolerates high NaCl concentrations and temperatures, which can explain its abundance 
in iron-rich coastal hydrothermal fields (9). Members of Ktedonobacteria can grow in 
mesophilic or thermophilic conditions and have been reported to be dominant in 
coalfire gas vents at 58°C, able to oxidize hydrogen and carbon monoxide for its 
metabolism (70). Additionally, Ktedonobacteria members have been found in steam vents 
from volcanoes (54). Thermoflexia members have been reported to have optimal growth 
at 72.5°C–75°C in microaerophilic conditions (1% vol/vol of O2), conditions usually found 
in hot springs sediments, where these bacteria may be found (24).
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Within the aerobic organisms of the Chloroflexota, Tepidiformia class members, here 
represented by its single species Tepidiforma bonchosmolovskayae, are aerobic bacteria 
that can grow chemoorganoheterotrophically using different carbohydrates or volatile 
fatty acids and chemolithoautotrophically using FeCO3 as the electron donor, being 
usually found in hot springs (23).

Chloroflexota members exhibit several metabolisms, and despite being taxonomi
cally divided into only eight classes, these bacteria can be found in extremely diverse 
environments adapted to different conditions, playing a role in the cycle of several 
elements such as carbon, sulfur, and halogens (71). The adaptability of Chloroflexota to 
different organic matter inputs allows their survival in adverse environments, a feature 
undoubtedly important for their application in the biotechnological industry.

BIOTECHNOLOGICAL RELEVANCE

The metabolic versatility of Chloroflexota and its natural occurrence in different habitats 
make this a very interesting group of bacteria to be used in several biotechnological 
applications, which can range from the production of chemical compounds to the 
degradation of contaminants, among many others (Fig. 4).

In fact, Chloroflexota bacteria can be found as sole contributors to certain applications 
or as an integrative of mixed microbial culture-based solutions. Regardless, this review 
aims to discuss Chloroflexota role in each technology, providing insights about the 
advantages of the utilization of these bacteria and prospecting the unexplored metabo
lisms that can be applied to the development of new biotechnological approaches.

Production of enzymes and energy

Energy production is fundamental for human activities, powering essentially every 
aspect of daily life. Transportation, communications, and industrial production are 
paramount examples of the current energy demands. Complementarily, enzymes are 
widely applied in various industries (food and beverages, nutrition, textiles, cleaning 
products, and health and drugs sector) (72–74), ensuring product quality and stability 
while increasing production efficiency. The development of new approaches to produce 
enzymes and energy is imperative to decrease the environmental footprint of these 
activities, namely through the reduction of waste generation as well as water, energy, 
and raw materials demand.

Within Chloroflexota, the genus Chloroflexus has been a great source of enzymes. Shin 
et al. cloned and expressed in Escherichia coli the homodimer enzyme α-L-rhamnosidase 
(200 kDa MW) from C. aurantiacus and purified it as a soluble enzyme to use in the 
transformation of rutin (the bioflavonoid vitamin P) into isoquercitrin (flavonoid) (75). 
The obtained product has several important properties acting as an antioxidant, anti
inflammatory, anti-carcinogenic, antidiabetic, and anti-allergic agent (76), with the 
results displaying a natural ability from C. aurantiacus to effectively produce isoquercitrin. 
In fact, the purified α-L-rhamnosidase displayed the highest substratespecific activity 
when compared with other isoquercitrin-producing enzymes. Moreover, isoquercitrin 
productivity from C. aurantiacus-derived α-L-rhamnosidase was almost two times higher 
than commercial α-L-rhamnosidase. Interestingly, this enzyme is also widely used in the 
industrial field for debittering citrus fruit juices, enhancement of wine aromas, and drug 
precursor production (77).

C. aurantiacus metabolic versatility was also investigated in the search for thermo
philic alcohol dehydrogenases (78). These enzymes catalyze the regio- and stereo-
selective reduction in aldehydes or ketones to primary or secondary alcohols, a process 
applied in several industrial-scale processes (79). Loderer et al. expressed this enzyme 
gene from C. aurantiacus in E.coli and reported its optimal temperature activity (70°C) 
and possible substrates, a relevant result given the industries’ demand for a larger 
diversity of well-characterized enzymes (78). The expressed enzyme showed high 
tolerance to ethylenediamine tetraacetic acid (EDTA), compared with other alcohol 
dehydrogenases, reflecting a stronger binding of the catalytic zinc ion, attributed to a 
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more robust enzyme fold derived from a thermophilic host. Overall, the unique proper
ties of the Chloroflexota enzyme (high-temperature activity, substrate versatility, and 
high tolerance to EDTA) broaden the enzyme’s applicability in various industrial pro
cesses, such as in the synthesis of fine chemicals, pharmaceuticals, or biofuels, benefiting 
from high-temperature stability, substrate flexibility, and robustness in the presence of 
chelating agents.

Chloroflexia bacteria are indeed a unique reservoir of new biocatalytic activities 
and the production of ene-reductase enzymes by Chloroflexus aggregans was investi
gated (80). These enzymes catalyze the asymmetric hydrogenation of alkenes and 
have collected great interest from academia and industries. Robescu et al. reported 
that the ene-reductases produced by C. aggregans were robust biocatalysts with high 

FIG 4 Applications of Chloroflexota members in different biotechnological areas.
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thermostability, presenting acceptable solvent tolerance and a wide range of optimal pH, 
which can be important for bigger-scale applications of this enzyme.

Chloroflexi bacterium, unclassified Chloroflexota, has been used to obtain ω-transami
nases (ω-TA) highly reactive to aromatic amino donors/receptors at pH 8.5, 40°C, and 
showing affinity to cyclic substrates such as 1-Boc-3-piperidone (81). The enzymatic 
properties of this Chloroflexota-derived enzyme displayed good thermal stability, organic 
solvent tolerance, and broad substrate specificity. The ω-TA enzymes produce chiral 
amines with applications in the medical and fine chemical industries, such as the oral 
antihyperglycemic drug, sitagliptin. Therefore, the results of this study showed that 
Chloroflexota is a valuable source of catalysts for the asymmetric synthesis of these chiral 
amines from the corresponding aldehydes or ketones.

There are several examples of enzyme production with Chloroflexota bacteria, 
such as α-L-rhamnosidase, alcohol dehydrogenase, ene-reductase, and ω-transaminases. 
However, the reported studies have been using strains from the Chloroflexia class, which 
means that given the metabolic diversity presented by Chloroflexota members, there 
is still a tremendous amount of unexplored potential for enzyme production within 
this bacterial phylum, and further understanding of metabolic pathways and enzyme 
functions could help overcome this bottleneck.

Another relevant application is the utilization of Chloroflexota metabolic pathways to 
produce energy precursors, namely hydrogen or biogas. Both can be used as renewa
ble sources of energy (82), and the development of new production approaches can 
contribute to the implementation of completely circular and bio-based solutions.

Production of hydrogen by Chloroflexota has been studied through the utilization 
of catalytic systems based on whole cells or organelles of photosynthetic bacteria 
specialized in the conversion of light energy into H2 (83). For this reason, Gogotov et al. 
studied the hydrogenases of several photosynthetic bacteria (including C. aurantiacus), 
proving the involvement of Ni (from the enzyme Ni-Fe active center) on the activation 
of molecular hydrogen and reporting a high denaturing factor resistance from these 
enzymes, which can be attributed to their thermophilic origin. Moreover, hydrogenase 
from C. aurantiacus was able to reversibly activate H2 at a high rate at more anaerobic 
conditions, in contrast with other studied hydrogenases that exhibited low activity under 
similar conditions. The ability to activate hydrogen efficiently at low redox potentials 
could be an evolutionary adaptation of C. aurantiacus to its natural habitat. In fact, hot 
springs often present anaerobic and reduced environments, and the microbial life in 
these locations has evolved mechanisms to optimally harness available resources, like 
hydrogen, for survival and growth. This feature can also be linked to potential biotechno
logical applications. For instance, enzymes that are active at low redox potentials and 
high temperatures could be advantageous in industrial processes involving hydrogen 
gas, such as in biohydrogen production or in enzymatic fuel cells.

Hydrogen production in photosynthetic microbial mats has been further expan
ded by biogeochemical and molecular studies reporting H2 production mainly under 
dark and anoxic conditions (84). The authors stated the importance of incorporating 
carbon during sunlight availability for dark production of H2 and concluded about the 
inexistence of competition between nitrogen fixation and H2 production. Chloroflexales 
participated in this process by being involved in the carbon capture and producing 
reduction equivalents for the dark production of H2, which states the importance of 
Chloroflexota bacteria in a mixed microbial culture approach specialized in coupling 
carbon capture with energy production (84).

Recent research reported the presence of Anaerolineae in the upgrading of antibiotic 
fermentation residue (AFR) to biogas (85). The study showed that the addition of Fe3O4 
acted as a biostimulator for Anaerolineae activity, which enhanced methane production 
by as high as 48%. The contribution of Anaerolineae for the valorization of this protein-
rich biosolid is another proof of the potential role of Chloroflexota bacteria in residue 
management strategies and energy production.
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Biodegradation technologies

Environmentally, microorganisms are the most important agents for the breakdown 
of organic pollutants or biodegradation, given their ability to use different harmful 
substances as carbon and energy sources (86). There are several examples of Chlor
oflexota microbial organisms’ contribution to biodegradation and decontamination 
technologies.

In the case of phenol-polluted environments, Chloroflexota can be used for their 
bioremediation. Phenolic compound pollution can be associated with wastewater 
discharges from several industries (87), with its removal being considered a priority by 
several countries and entities. Huang et al. assessed and stated the optimal conditions 
for phenol degradation (1.5 M of NaCl and 350 mg/L of phenol) using a mixed bacterial 
culture containing Chloroflexus sp. from a saline environment (88). Moreover, the authors 
studied the metabolic pathways related to phenol biodegradation and reported the 
importance of phenol hydroxylase, catechol 1,2-dioxygenase, and catechol 2,3-dioxyge
nase for this process. Furthermore, the dependence of this bacteria on ectoine and 
hydroxyectoine presence was established, contributing to improving bioremediation 
strategies in phenol-contaminated saline environments. Sanchéz-González et al. also 
stated the involvement of Chloroflexales in the degradation of phenol, highlighting the 
extremophile’s participation on the degradation process and the microbial community 
strategies to survive under severe environmental conditions (89). Overall, Chloroflexales 
bacteria can be considered effective phenolic degraders, and given their ability to 
thrive in anaerobic conditions, their utilization might be advantageous when treat
ing certain types of industrial effluents. Moreover, their ability to establish synergies 
with other species can lead to more efficient degradation processes compared with 
microbes working in isolation. In comparison, genera like Pseudomonas, Acinetobacter, 
and Sphingomonas are more versatile and efficient in aerobic conditions and are widely 
used in industrial bioremediation processes (90, 91). Fungi offer a different mechanism 
through extracellular enzymatic degradation and are particularly effective against more 
complex pollutants (92). However, Chloroflexales might have a unique niche in phenol 
degradation, especially in anaerobic and extreme environments.

Zhang et al. studied the interactions of bacterial populations along sediment 
pollution gradients in shallow eutrophic lakes (93). The authors reported that Chloro
flexales were among the dominant taxa at severe pollution concentrations, possibly 
contributing to photosynthesis and pollutant degradation, which further demonstrates 
the adaptability of Chloroflexota bacteria to adverse conditions and their importance in 
bioremediation technologies.

The organohalide respiration of Dehalococcoides presents great biotechnological 
interest in bioremediation applications, and Zanaroli et al. described the dechlorination 
capacity of members of this class, which was able to dechlorinate more than 75% 
of polychlorinated biphenyls (PCBs) in just 30 weeks (94). This extensive removal of 
pollutants is remarkable, given that PCBs are persistent organic pollutants and, due to 
bioaccumulation, are responsible for negative health effects on humans (95). In addition 
to being the first dechlorinator identified in marine sediments, the displayed dechlorina
tion activity and specificity were more comprehensive than other bacteria described in 
the literature. Moreover, the activities of dechlorination took place under biogeochem
ical circumstances that closely mirror those found naturally in marine environments. 
This aspect is particularly important when considering the development of customized 
approaches for encouraging the in situ dechlorination of aged PCBs.

Padilla-Crespo et al. studied the environmental distribution of the genetic sequence 
encoding for the reductive dehalogenase, which catalyzes the dichloro elimination of 
1,2-dichloropropane (a carcinogenic compound formerly used as industrial solvent) to 
propene (96). The authors reported gene sequences from different continents sharing 
high sequence identities (>98%), indicating that this enzyme is highly conserved or 
was recently disseminated. Moreover, Dehalococcoides mccarty, from the Dehalococcoidia 
class, appeared to be the major microbial contributor for this bioremediation process.
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Organohalide-respiring Dehalococcoidia has been described, and its importance in 
bioremediation technologies has been stated before (16, 97). In fact, Dehalococcoidia 
presence has also been observed in industrialized estuaries sediments after extreme 
weather conditions (98). In this study, after Hurricane Harvey in 2017, the presence 
of several xenobiotic and polychlorinated compounds degrading microorganisms was 
correlated with sediment properties and contaminant concentrations of the estuary 
water.

Chloroflexota can also contribute to the biodegradation of polycyclic aromatic 
hydrocarbons (PAHs) and mutagenic/carcinogenic toxic compounds produced by 
incomplete combustion of fossil fuels. Specifically, in constructed wetlands, the low 
dissolved oxygen concentrations decrease the activity of PAHs-degrading microorgan
isms, such as Pseudomonas aeruginosa and Pseudomonas putida, which require aerobic 
conditions to perform aromatic hydrocarbon degradation (99). Therefore, the develop
ment of anaerobic approaches is important to enhance PAH removal for polluted sites 
with low available oxygen. Hence, Lu et al. reported the important role of Anaerolineae 
bacterium in the degradation of PAHs in an iron-enhanced anaerobic process, in which 
the metal presence functioned as an electron conduit to promote interspecies electron 
transfer between iron-reducing bacteria and Anaerolineae (100).

Wastewater treatment technologies

The consistently high abundance of Chloroflexota bacteria in wastewater treatment 
systems illustrates their ecological role in nutrient transformation processes. These 
bacteria are often identified in nutrient (phosphorous and nitrogen) removal systems 
acting as anaerobic chemoorganotrophs with sugar fermentation abilities, being present 
in floccular biomass and/or in bulking-related representatives (101, 102). The under
standing of Chloroflexota distribution and physiology is determinant to establish 
correlations between their ecology and operational issues in full-scale plants. Table 
1 summarizes processes for wastewater treatment processes involving Chloroflexota 
bacteria.

As can be observed, these bacteria are present in several treatment processes, 
contributing to pollutant removal in a wide range of wastewater types, often as dissolved 
organic matter decomposers.

Specifically, Chloroflexota members have been detected in membrane bioreactors 
acting as soluble microbial product decomposers (103), this feature being previously 
demonstrated by the work of Miura et al., who correlated the carbohydrates degradation 

TABLE 1 Wastewater treatment processes where the involvement of Chloroflexota bacteria was reported

Water type Pollutant removal Process type Bacteria Reference

Synthetic wastewater 97% of COD

97% of nitrogen

Submerged membrane bioreactors Chloroflexia, Anaerolineae (103)

Municipal wastewater 90% of DOC

92% of phosphorus

38% of nitrogen

Submerged membrane bioreactors Unspecified Chloroflexota (104)

Mainstream wastewater 90% of nitrogen Anammox at low temperature Chloroflexales (105)

Aniline wastewater 80% of aniline

100% of nitrogen

Electro-enhanced sequencing batch reactor Anaerolineae (106)

Domestic saline wastewater 93% of COD Membrane-aerated biofilm reactor Anaerolineae (107)

Saline wastewater 51.8% of COD Constructed wetlands Anaerolineae, Dehalococcoides (108)

Thermal hydrolysis and anaerobic digestion 

wastewater

12% of COD

0.58 ± 0.06 g N/(L⋅d)

Partial nitritation-anammox Anaerolineae (109)

p-Fluoronitrobenzene

(p-FNB) wastewater

100% of p-FNB Bioelectrochemical degradation Anaerolineae (110)

Quinoline wastewater 83.5% of quinoline Anaerobic degradation Anaerolineae (111)

Effluents of wastewater treatment plants 83% of nitrogen

43% of COD

Constructed wetlands Anaerolineae

Other Chloroflexota

(112)
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ability of the system with the concentration of Chloroflexota and stated an imperative 
Chloroflexota cell concentration above 10% to avoid membrane fouling (104), suggesting 
the ecological significance of Chloroflexota members in the reduction of membrane 
fouling in membrane bioreactors.

Chloroflexota bacteria were also found to be important in specific treatments of 
mainstream wastewaters. Lv et al. reported an abundance of Chloroflexales genera in 
flocculent sludge establishing symbiotic microbial interactions with anaerobic ammonia-
oxidizing bacteria, which favored the annamox process in mainstream wastewaters at 
low temperatures, maintaining a nitrogen removal efficiency above 90% (105). Therefore, 
the coexistence of anaerobic ammonia-oxidizing bacteria and Chloroflexales appears 
to be an effective solution to overcome the challenges of anammox processes at low 
temperatures.

Other reports displayed the importance of Anaerolineae in the effectiveness of aniline 
and nitrogen removal (106), treatment of saline wastewater (107, 108), treatment of 
waste streams rich in ammonium and low on organic compounds (109), biodegradation 
of pfluoronitrobenzene (110), complete anaerobic mineralization of quinoline (111), and 
denitrification processes (112).

Soil treatment technologies

Chloroflexota bacteria have been reported in numerous approaches for soil treatment, 
contributing as producers of biodegradable organic matter and nutrients, and degrading 
recalcitrant molecules. They have been found in metal-contaminated soils of abandoned 
mines, and their concentration varied with the application of different phytostabilization 
techniques (113). In this study, among other reported bacteria, Chloroflexota organisms 
belonged to the Chloroflexales order and could perform anaerobic photoheterotrophy 
and, in dark aerobic conditions, chemoheterotrophy. Moreover, Chloroflexota members 
can present heavy metal resistance (114), which could imply their involvement in the 
decontamination of soils, especially in the reduction of heavy metal bioavailability and in 
the production of biodegradable organic matter.

Studies on the improvement of soil fertility also reported the relevance of Chloroflex
ota. Huang et al. successfully applied biochar to alleviate salt stress in a rice plantation 
field, to prevent crop production inhibition (115). The study reported the abundance of 
Chloroflexota (Anaerolineaceae family members) in the untreated soil, which decreased 
after the treatment with biochar mainly due to changes in the soil pH, suggesting that 
the regulation of the bacterial community is a key factor in achieving a satisfactory soil 
decontamination. Despite decreasing in concentration, Chloroflexota bacteria were still 
important in the transformation of inorganic carbon into organic matter and production 
of nutrients such as phosphorous and nitrogen, implying a central role in the symbiotic 
relationships established between soil bacteria, fungi, and plants. Indeed, in a study by 
Chen et al., Chloroflexota was demonstrated to be beneficial for soil treatment, acting 
as organic matter and nutrient producers and contributing to the decrease in N-loss 
bacterial activities. The authors studied a maize rhizosphere for 3 years and concluded 
that the presence of bacteria from the unclassified group Chloroflexia KD4-96 in soils 
contributed not only to plant growth but also to grain production (116).

Chloroflexota has also been demonstrated to participate in composting processes, 
specifically in the treatment of textile wastes (117). In this study, the authors mixed 
several textile waste concentrations with paper waste for composting and reported the 
presence of Chloroflexota bacteria participating in recalcitrant molecular degradation for 
mixtures containing 40%–60% of textile wastes.

Anaerolineae carbon fixation metabolism, via Arnon-Buchanan cycle (118), was also 
demonstrated to be important during the reduction of contaminants bioavailability 
by natural processes in anthropized freshwater sediments with high phosphorous 
concentrations and alkaline pH (119). The carbon fixation activity of Anaerolineae in 
surface sediments creates a flux of carbon that aids in the degradation of xenobiotic 
compounds by bacteria residing in the deeper, non-surface sediments. This dynamic 
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illustrates a noteworthy symbiotic relationship, where the metabolic processes of 
surface-dwelling Anaerolineae enhance the capacity of deeper sediment bacteria to 
recover contaminated sites.

Hereabove, a variety of Chloroflexota metabolisms (carbon fixation, nutrient 
production, switch between anaerobic photoheterotrophy, and, in dark aerobic 
conditions, chemoheterotrophy) were highlighted, being mostly found in microbial 
communities for the treatment of soils and sediments. Their wide presence can be 
attributed to their resistance to adverse environmental conditions, and their role as 
primary producers may potentiate the activity of other microorganisms, establishing 
symbiotic relationships in these applications. However, it can be observed that most of 
the described applications that make use of Chloroflexota mainly report bacteria from the 
Chloroflexia, Anaerolineae, and Dehalococcoides classes (Table 2). Therefore, the discovery 
of new metabolic pathways and functions can act as a driving force for the development 
of biobased technologies containing Chloroflexota bacteria as the main players or as 
important contributors in mixed microbial systems.

PROSPECTIVE BIOTECHNOLOGICAL APPLICATIONS

Chloroflexota metabolic diversity continues to expand as scientific studies report 
previously unknown microbial processes. For instance, (120) described a new candidate 
of the Chloroflexota phylum (Candidatus Chlorolinea photoalkanotrophicum) with the 
ability to both perform phototrophy and oxidize methane and/or other small alkanes 
(120), which not only extends the known metabolic diversity of Chloroflexota but also 
offers exciting possibilities for biotechnological applications, especially in the areas of 
environmental remediation (biodegradation of alkanes), renewable energy (conversion 
of methane into biofuels), and carbon cycle management (carbon sequestration or 
transformation). In fact, the metagenomic-assembled genome of this species showed 
the ability of this species to perform several metabolisms, namely phototrophy, aerobic 
respiration, reduction of nitrites, carbon monoxide oxidation, and oxidation of car
bon from methane and/or propane, and potentially fixate carbon using the pathway 
composed of hybridized components of the serine cycle and the 3-hydroxypropionate 
bi-cycle. These findings contribute to demonstrating the evolution and incorporation of 
new pathways into Chloroflexota promoted by horizontal gene transfer occurrences in 
natural habitats (120, 121).

The work of Kawaichi et al. described, for the first time, another interesting metabo
lism for a representative of the Chloroflexota phylum that could be biotechnologically 
viable (9). In this study, an isolate (belonging to the Ardenticatenia class) from a 
hydrothermal field with high iron concentrations was shown to perform dissimilatory 

TABLE 2 Reported applications for bacteria belonging to the Chloroflexota phyluma

Bacterial class Application Metabolism Reference

Chloroflexia H2 production Anaerobic photoheterotrophic growth (84)

Anaerolineae Biogas production Carbohydrate hydrolysis and proteolysis (85)

Chloroflexia Phenolic compound removal Meta-cleavage pathway (88, 89)

Dehalococcoides PCB treatment Dehalogenation (94, 96)

Anaerolineae Biodegradation of PAHs Anaerobic heterotrophic growth (100)

Anaerolineae

Chloroflexia

Avoidance of membrane fouling in SMBR Anaerobic heterotrophic growth (103, 104)

Anaerolineae

Chloroflexia

N-removal, biodegradation of pollutants Anaerobic (photo)-heterotrophic growth (105, 106, 110)

Chloroflexia Reduction of heavy metal availability and production of 

biodegradable organic matter

Anaerobic photoheterotrophic and chemoheterotrophic 

growth

(114)

Anaerolineae

Chloroflexia

Soil treatment Anaerobic photoautotrophic and heterotrophic growth (115, 116)

Anaerolineae Reduction of contaminant bioavailability Carbon fixation (Arnon-Buchanan cycle) (119)
aPCBs, polychlorinated byiphenyls; PAHs, polycyclic aromatic hydrocarbons; SMBR, submerged membrane bioreactor.
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iron reduction. Presenting a versatile metabolism with the ability to grow using oxygen, 
ferric iron, and nitrate as electron acceptors, this isolate also grows at different tempera
tures (30°C–75°C) and salt concentrations (0%–6% NaCl). This metabolic trait can play 
an important role in the bioremediation of subsurface environments contaminated with 
organic or metal contaminants.

Regarding the discovery of interesting metabolic pathways for Chloroflexota bacteria, 
there are also studies reporting the existence of newly found aerobic respiration and 
partial denitrification for Anaerolineae (122). In fact, despite most described Anaerolineae 
being classified as strict anaerobes, Levilinea saccharolytica displayed a branched aerobic 
respiration pathway, containing a NADH dehydrogenase, a succinate dehydrogenase, 
a heme-copper oxygen reductase, and a bd oxidase. Moreover, two nitrite reduction 
pathways were reported containing different nitrite reductases, able to reduce nitrite 
into nitric oxide or into ammonia. The presence of previously unknown pathways in 
Anaerolineae species suggests a wider physiological diversity than previously recognized 
for this Chloroflexota class, offering new opportunities for biotechnological applications: 
the aerobic and denitrification capabilities of these bacteria could play a role in 
converting nitrite into less toxic forms, contributing to the health of the soil microbiome, 
improving soil quality, and potentially enhancing crop growth. Moreover, the presence 
of enzymes like NADH dehydrogenase, succinate dehydrogenase, and oxygen reductases 
indicates their potential role in more efficient breakdown of organic matter in wastewa
ter, leading to more effective and possibly faster treatment methods.

A. maritima, from the Ardenticatenia class, also presents a wide range of physiologies, 
which include aerobic respiration (containing enzymes from complex I, II, III, and three 
oxygen reductases), iron reduction, and a complete denitrification pathway composed 
of nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reduc
tase (123). These findings could enhance the role of Chloroflexota bacteria in nitrogen 
removal technologies in wastewater treatment plants and, to a broader extent, the 
coupling of nitrogen, sulfur, and carbon cycles to be used in multipurpose bioreactors, 
which is of utmost technological relevance (124).

Hydrothermal systems, including terrestrial hot springs, contain diverse geochemi
cal conditions that promote the discovery of novel metabolisms. Among the isolated 
bacteria from the different redox environments existing in an intertidal, anoxic, iron-, 
and hydrogen-rich hot spring that mixes with the oxygenated atmosphere and sulfate-
rich seawater, there was a Chloroflexota member that not only presented the ability 
to fixate carbon, via Calvin cycle, but also had genes encoding for a hydrogenase, 
suggesting a lithoautotrophic capacity to oxidize hydrogen (125). This ability could be 
important in the utilization of these bacteria in waste-free biotechnological processes 
to directly convert electrical energy and inorganic substances into amino acids and 
other biologically active substances, contributing to sustainable bioproduction, where 
the goal is to minimize waste and maximize efficiency. Overall, the thermophilic nature 
of these Chloroflexota bacteria, thriving in hydrothermal systems, suggests that they 
possess enzymes and proteins that are stable and active at high temperatures. This 
thermophilic property can be particularly advantageous in industrial processes that 
operate at elevated temperatures, providing more robust and efficient systems, as in the 
production of bioenergy or in biocatalysis processes.

Chloroflexota from the Ktenodobacteria class (Thermogemmatispora sp. T81) has 
been demonstrated to persist using sub-atmospheric levels of H2 and CO (126). The 
authors reported that group 1 h [NiFe]-hydrogenases and type I carbon monoxide 
dehydrogenases were encoded in most of the studied reference genomes within the 
Ktedonobacteriales. Additionally, a meta-transcriptome study revealed that homologs 
of the group 1 f[NiFe]-hydrogenase of Roseiflexus species are highly expressed in 
geothermal microbial mats at night (55), possibly indicating atmospheric H2 oxidation 
within the photosynthetic Chloroflexota strains. These findings could also indicate a 
possible application of Chloroflexota bacteria in the treatment of syngas and industrial 
offgas streams, often rich in hydrogen and carbon monoxide. In fact, the ability of 
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C. aurantiacus to use hydrogen or sulfide for photoautotrophic growth (127, 128), 
combined with its capacity for polyhydroxyalkanoates (PHA) accumulation (129) and 
pigment production (130), could be explored as a circular process focused on carbon 
dioxide mitigation coupled with the production of value-added substances. PHA are 
natural polyesters with thermoplastic properties that are internally accumulated by 
bacteria as carbon and energy reserves, being considered interesting candidates for 
substituting traditional plastics (131). Recently, purple phototrophic bacteria have been 
described as suitable PHA-accumulating organisms (132), and its upscale challenges 
have been reviewed (133). There are several examples of phototrophic production 
of PHA using purple bacteria or cyanobacteria (134–138), and these bacteria have 
been reviewed as suitable phototrophic factories to couple resource recovery with the 
production of value-added substances (139). However, the PHA production capacity of 
phototrophic organisms of the Chloroflexota phylum remains mostly unexplored. In fact, 
phototrophy has been demonstrated to be present in seven bacterial phyla, and the 
development of omics methodologies can contribute to valuable metabolic, ecological, 
and physiological insights regarding photosynthesis and carbon fixation (5). A potential 
Chloroflexota member to develop such studies is C. aurantiacus, a phototrophic species 
that can use the 3-hydroxypropionate bi-cycle pathway for autotrophic carbon fixation, 
in which some intermediates of the pathway (such as acetyl-coA and propionyl-coA) 
are precursors for PHA accumulation (140). Studying PHA production in Chloroflexota, 
specifically C. aurantiacus, is crucial due to its unique metabolic pathways which may 
offer more efficient or varied PHA synthesis compared with well-studied purple bacteria. 
The photoautotrophic growth capabilities of C. aurantiacus, using hydrogen or sulfide, 
presents opportunities for sustainable, energyefficient bioplastic production. In fact, 
exploring Chloroflexota’s PHA production can broaden the understanding of bioplas
tic synthesis and applications, complementing and extending the current knowledge 
derived from studies on purple bacteria. Furthermore, Cloroflexus potential to use CO2 
fixation toward PHA production could contribute to new carbon capture technologies 
focused on bioplastic production, hence advancing new Chloroflexota-based biopro
cesses for photoautotrophic biodegradable polymers production.

CONCLUSION

The Chloroflexota phylum encompasses several biotechnologically interesting bacteria 
that can be frequently found in extreme environments and naturally adapted to 
unfavorable conditions due to the unique characteristics of its members. The resil
ience of these organisms can be attributed to their metabolic diversity, responding to 
sitespecific requirements. In fact, Chloroflexota is present in several biotechnological 
approaches, including water treatment, pollutant biodegradation, and energy produc
tion. Due to the metabolic diversity and adaptability of the members belonging to 
this bacterial phylum, several interesting Chloroflexota enzymes have been isolated and 
studied, often reported as thermostable and highly efficient. However, the available 
literature reveals that several Chloroflexota microorganisms remain unexplored, which 
means that several bacterial functions and possibly interesting metabolisms are being 
overlooked. Therefore, further research is required to unlock the full potential of 
these microorganisms, especially within their photoautotrophic members, which could 
be useful for the development of CO2-negative technologies. The understanding of 
Chloroflexota role in natural cycles, under specific conditions, is fundamental for the 
development of new technologies based on these microorganisms.
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