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Abstract

This work aims to improve limited-angle (LA) cone beam computed tomography (CBCT) by 

developing deep learning (DL) methods for real clinical CBCT projection data, which is the 

first feasibility study of clinical-projection-data-based LA-CBCT, to the best of our knowledge. 

In radiation therapy (RT), CBCT is routinely used as the on-board imaging modality for patient 

setup. Compared to diagnostic CT, CBCT has a long acquisition time, e.g., 60 seconds for a full 

360° rotation, which is subject to the motion artifact. Therefore, the LA-CBCT, if achievable, 

is of the great interest for the purpose of RT, for its proportionally reduced scanning time in 

addition to the radiation dose. However, LA-CBCT suffers from severe wedge artifacts and image 

distortions. Targeting at real clinical projection data, we have explored various DL methods 

such as image/data/hybrid-domain methods and finally developed a so-called Structure-Enhanced 

Attention Network (SEA-Net) method that has the best image quality from clinical projection 

data among the DL methods we have implemented. Specifically, the proposed SEA-Net employs 

a specialized structure enhancement sub-network to promote texture preservation. Based on the 

observation that the distribution of wedge artifacts in reconstruction images is non-uniform, the 

spatial attention module is utilized to emphasize the relevant regions while ignores the irrelevant 

ones, which leads to more accurate texture restoration.
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I. INTRODUCTION

Cone-beam computed tomography (CBCT) is routinely used in radiation therapy (RT) to 

provide three-dimensional anatomical structures of patients, for patient setup before the 

RT delivery [1]. However, due to the long acquisition time (usually 1 min for a full 360° 

rotation), the CBCT image quality may be degraded with motion artifacts caused by patient 

or organ movements, which can lead to inaccurate dose delivery and replanning. Therefore, 

the reduction of CBCT scanning time is clinically significant.

Limited-angle CBCT (LA-CBCT) can accelerate the acquisition process proportionally by 

reducing the scanning angle range. However, LA-CBCT suffers from severe wedge artifacts 

and image distortions. This work aims to develop an LA-CBCT reconstruction method that 

will be practically feasible for real clinical projection data from the RT application. To 

reconstruct high-quality images from incomplete projection data, numerous algorithms have 

been developed for LA-CBCT reconstruction. Generally, these methods can be grouped into 

two categories: iterative (IR) algorithms, and deep learning (DL)-based methods.

Compared with analytical algorithms, iterative methods provide improved reconstruction 

images for LA-CBCT. Noticing the sparse property of image gradient, total variation (TV)-

based methods have been investigated extensively. Specifically, Zeng et al. applied TV 
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constraint for LA-CBCT to remove artifacts and against the noise [2]. Xie et al. additionally 

induced an L1-norm penalty on the projection data [3], which was able to restore the 

sharper edges. In addition, L0-norm [4] and non-local means [5] were applied to LA-CBCT. 

Although IR methods showed a superior performance in edge preservation and artifact 

reduction compared to analytical algorithms, they were limited by the following drawbacks. 

(1) careful selection of the hyperparameter values is necessary to guarantee the performance. 

(2) higher computational cost. (3) hand-crafted priors cannot describe the properties of 

wedge artifacts which leading to failure in reconstruction of high-quality images.

Recently, DL-based methods have been widely applied in the field of imaging restoration 

[6–8]. Due to the powerful representation capacity, deep neural networks can implicitly 

learn the intrinsical feature representation and outperform traditional reconstruction methods 

for medical imaging [9]. For CT reconstruction, DL-based methods can be classified into 

four categories: pre-processing methods, post-processing methods, dual-domain methods, 

and deep iterative methods. (a) Pre-processing methods employed convolutional neural 

networks (CNNs) to get the noiseless full-view projection data then it was then reconstructed 

with traditional methods. For example, Li et al. proposed a generative adversarial network 

(GAN) model to predict the missing projection data [10]. However, directly processing the 

projection data might cause secondary artifacts in reconstructed images. (b) Post-processing 

methods were concentrated on the image domain, which directly mapped the degraded 

images to high-quality versions via CNN models [11]. Particularly, post-processing can 

flexibly incorporate traditional techniques, such as wavelet, into CNN models to deliver 

improved results [12]. Due to the lack of data fidelity constraints, image-domain methods 

cannot guarantee the reliance on reconstructions in the worst cases [13] (c) Based on 

the previous two schemes, dual-domain methods aimed to promote image quality by 

jointly performing CNNs in sinogram space and image space. In general, due to more 

neural networks, dual-domain methods had superior performance than single-domain-based 

methods [14]. These methods can be easily applied to LA-CBCT [15] by decoupling the 

deep models and reconstruction procedures. But in LA-CBCT imaging, it is hard for the 

CNN model to inpaint the invisible projection within the three-dimensional space, which 

subsequently affects the performance of the image domain network. (d) Unlike the other 

three categories, deep iterative methods not only utilized neural networks but also employed 

the physical models [16]. Therefore, they can benefit from both advantages of deep networks 

and iterative methods which consequently led to outstanding results. For instance, Chen et 
al. proposed a new end-to-end unrolling framework named AirNet with the combination 

of proximal operator and CNN models for CT reconstruction and achieved remarkable 

performance than both IR methods and classical DL methods [17]. Hu et al. presented 

a framework that promotes the convergence property of the deep iterative method for LA-

CBCT [18]. However, due to the complex iterative procedure, these methods need consume 

huge resources, which may limit the further applications.

Despite the widely used eep learning methods in CBCT reconstruction, most of which 

used simulated data or preclinical data, which may not work for real clinical data. In 

this paper, targeting at real clinical projection data, we explored various DL methods for 

LA-CBCT, including image/data/hybrid-domain methods, and finally arrived at an image-
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domain-based method termed Structure-Enhanced Attention Network (SEA-Net) for LA-

CBCT reconstruction. This is the first comprehensive feasibility study of clinical-projection-

data-based LA-CBCT to the best of our knowledge.

In summary, the main contributions of SEA-Net are as follows:

• CNN models have shown great potential for image restoration, but they 

usually tend to blur the reconstruction results and miss some subtle structures 

[19]. Meanwhile, most of these methods only concentrate on promoting 

the reconstructed image itself, yet neglect some supplementary information 

contained in the images. Thus, they still have improvement room. To improve the 

utilization efficiency of image features, inspired by [20], we adopt a structure-

enhanced network, which can additionally extract high-frequency components in 

CT images and feed them into the final reconstruction results, to boost the edge 

or texture preservation.

• The distribution of wedge artifacts in limited-angle CT is significantly non-

uniform yet classical CNNs treat every pixel equally in the global image space. 

Therefore, to discriminatively remove artifacts at different regions, a spatial 

attention module is employed [21] and generates more accurate tissue recovery.

• All the experiments in this work are performed on the 3D real clinical projection 

data, and the corresponding results are comprehensively exhibited to reveal the 

performance of various methods in real LA-CBCT. We also evaluate the practical 

feasibility of LA-CBCT in radiation therapy, including patient setup accuracy 

and dose calculation accuracy.

In the rest of this paper, Section II will introduce the related works of limited-angle 

CT imaging. Section III gives a detailed description of the proposed SEA-Net. The 

reconstruction results and analysis are in Section IV. Section V will present the results 

of radiation therapy based on the reconstructed images. Discussions and conclusions are in 

Section VI.

II. RELATED WORKS

Among the currently used DL-based methods, post-processing and deep iterative are the 

most widely used strategies for limited-angle CT imaging.

The network architectures and loss functions are the key of pose-processing methods. 

Bigger network provides more powerful feature extraction ability while the specialized 

cost function can guide the direction of image generation. For example, to emphasize the 

image features, Zhou et al. merged multi-scale, dense connection, and dilated convolution 

to construct a complex CNN model (MSDD-CNN) [22]. Experiments showed that MSDD-

CNN performed better in artifact correction and structure recovery. At the same time, 

to tackle the witness of the general CNN model in restoring tissue details, Hu et al. 
introduced GAN to boost minor structure preservation [23]. In general, these methods are 

simple and resource-saving and can be flexibly applied to different geometries without any 

modification. Nevertheless, most of these methods focus on image recovery itself [11, 24], 
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ignoring some particular auxiliary information that benefits improving the reconstruction 

results [20, 25].

For the deep iterative methods, the core idea is to employ CNN models in replacing the 

hand-designed regularization terms. With the assistance of neural networks, deep iterative 

methods outperform traditional IR algorithms in various tasks [17, 26]. For instance, Cheng 

et al. jointly deployed learned regularizations in both the image domain and projection 

domain to comprehensively strengthen the interrelation between these two spaces [27]. 

Moreover, Wang et al. conducted multi-CNN models during the iterative processing to 

accelerate the convergence [28]. By considering the physical model, deep iterative methods 

could provide more reliable results. Generally, deep iterative methods could be divided 

into two categories: end-to-end optimization and multi-phase optimization. Due to memory 

limitations, it is hard for end-to-end optimization to be used in LA-CBCT (more details 

can be found in IV.H). Meanwhile, because of high computational costs [18], multi-phase 

optimization may be restricted in some time-sensitive applications.

III. METHODOLOGY

In this section, the overall framework of the proposed SEA-Net is introduced and then the 

details of each module and the loss function will be defined.

A. Structure-Enhanced Attention Network (SEA-Net)

As mentioned above, post-processing methods are flexible and can be easily extended to 

various imaging tasks [15]. Therefore, after attempting various methods, we adopt the 

image-domain-based strategy for real clinical LA-CBCT reconstruction, whose overall 

framework is illustrated in Fig. 1. The proposed SEA-Net consists of two sub-networks: 

image restoration network (IR-Net) and the structure enhancement network (SE-Net), each 

of which utilizes the U-shape architecture to extract features, and the final generated result is 

obtained after fusing the features stored in IR-Net and SE-Net, respectively.

B. IR-Net

Similar to typical image restoration CNNs [29], the IR-Net (as shown in Fig.1 (a)) adopts 

the encoder-decoder architecture and aims to map the degraded images into high-quality 

results directly. Specifically, the encoder stage has four downsample operations, which 

extract the low-level image features at the different scale levels. Correspondingly, the 

same number of upsampling operators are then applied to excavate high-level features and 

gradually restore the high-resolution results. To compensate for the missing information 

caused by downsampling, the skip connection that feeds the shallow features into subsequent 

layers is employed, which is a standard component of the U-shape network [24]. In addition, 

global residual learning is also induced to accelerate training convergence and improve 

performance [29]. Moreover, for better feature extraction, IR-Net designs a specialized 

residual dense attention (RDA) block, whose architecture could boost the accuracy of 

reconstruction results [26].
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C. SE-Net

Although IR-Net is able to remove artifacts and restore most tissues, it still tends to generate 

over-smoothing results. Therefore, several works have been proposed to overcome the 

defects of CNNs in blurring images by adopting two-branch networks [20, 25]. Inspired 

by these methods, the structure enhancement sub-network is developed for better detail 

preservation (as demonstrated in Fig. 1(b)). Unlike IR-Net, the purpose of SE-Net is 

to recover high-quality texture information, which represents the details or edges of CT 

images. As reported in some methods [18, 25], the structural details of images can be 

obtained by Gaussian filter. Following these works, our structure extraction H is formulated 

as follows.

H(I) = I − C(I, g)

(1)

where I is the reconstructed image, C stands for the convolution operator. 

g ∈ RM × M ∼ N μ, σ2  represents the Gaussian filter kernel. To get the filter kernel 

g, we first define g1(x, y) = 1
2πσ1σ2

e − 1
2

x − μ1
2

σ1
2 + y − μ2

2

σ2
2 , − M − 1

2 ≤ x, y ≤ M − 1
2 . Then, 

g(x, y) = g1(x, y)
∑x, yg1(x, y) . In this work, μ1 = μ2 = μ = 0, σ1 = σ2 = σ = 9, M = 9. As a result, H(I)

can extract the tissue edges or small details as demonstrated in Fig. 1. It is worth noting that 

the operation H is conducted on the ground truth image and guides the SE-Net to generate 

the high-quality structural features. More detailed information can be found in Eq. (3).

With the training process, the high-frequency structures of images can be stored in SE-Net. 

Next, the feature maps obtained from the last RDA block in SE-Net are concatenated 

with the IR-Net to increase the diversity of feature representation. The final improved 

reconstruction result can be produced based on these fused features.

D. Residual Dense Attention (RDA) Block

To further improve the representation capacity of the proposed SEA-Net, we design the 

residual dense attention (RDA) block (as depicted in Fig. 1 (c)). First, a convolutional 

layer with filter kernel size of 1×1 is used to change the input feature maps to a fixed 

channel number K. Next, the dense connection is conducted to promote the information 

flow by linking every layer with each other [24]. Each layer consists of convolution, batch 

normalization, and ReLU operations. Particularly, the convolution kernel is set to 3×3 and 

the feature number is also K. Besides, a spatial attention block is embedded before the last 

activation function to discriminate where regions are more important for artifact removal 

and tissue restoration [26]. Last, RDA employs local residual learning to avoid gradient 

vanishing or exploding [30]. The convolution numbers of RDA blocks at different scale 

levels are K, 2K, 4K, 8K, and 16K, respectively. In our work, the K is 16 and 8 in IR-Net and 

SE-Net.
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E. Spatial Attention (SA) Block

As shown in Fig. 1, the wedge artifacts of degraded images in limited-angle CT are 

distributed non-uniformly, which implies that some regions should receive more attention. 

However, the standard convolutional layer treats the spatial features equally. To overcome 

this issue, spatial attention (SA) is developed to evaluate the importance of different 

image locations and lead to remarkable performance in various tasks [21, 26]. In our 

work, the proposed SA block is modified from [21]. For the input feature maps, we first 

perform max pooling, average pooling, and F ∈ RW × H × C convolutional layer along the 

channel dimension to obtain the compressed feature maps FM ∈ RW × H, FA ∈ RW × H and 

FC ∈ RW × H, which stand for three types of responses to the spatial areas. Then, the 

sigmoid function is applied to transform the linear combination of FM, FA, and FC to a 

probability volume FI ∈ RW × H, which indicates the relevance of different areas to the 

imaging task. Finally, the calibration features are achieved by SA(F) = F ⊗ FI. With the 

embedding of SA blocks, the SEA-Net can emphasize the important spatial regions and 

ignore irrelevant ones.

F. Perceptual Loss

In image restoration, L2 and L1 losses are the most commonly used cost functions that 

directly measure the difference between two images pixel-by-pixel. They perform well in 

smooth regions but often miss details in textured areas. Instead of pixel-wise evaluation, 

perceptual loss assesses the similarity of two objects in the feature space and leads to 

visually improved results than L2 or L1 loss [18, 31]. The perceptual loss can be written as:

LPL IFV , IGen = ∑
i = 1

N
Γi IFV − Γi IGen F

2

(2)

where IFV  is the reference image, IGen is the generated image, Γi denotes the feature extractor. 

In our work, the pre-trained VGG-16 [32] is utilized as the feature extractor. Specifically, the 

output of 2nd, 4th, 6th, 9th and 12th convolutional layers are selected as feature extractor Γi.

G. Loss Function

The cost function of the proposed SEA-Net is formulated as follows.

L = IFV − IGen F
2 + λLPL IFV , IGen + IFV −S − IGen−S F

2

(3)

As shown in Fig.1, IFV  is the reference image reconstructed by the FDK (Feldkamp-Davis-

Kress) method from full-view projection data, λ is the hyperparameter to balance different 

terms, IFV −S = H IFV , IGen and IGen_S are the outputs of IR-Net and SE-Net, respectively.
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IV. EXPERIMENTS

In this section, the performance of different reconstruction methods applied to LA-CBCT 

will be evaluated. All the experiments were performed on real clinical projection data.

A. Comparison Methods & Evaluation Metrics

All the DL-based methods were implemented using the TensorFlow framework on an 

NVIDIA GeForce RTX 3090 with 24G memory. The hyperparameter λ in Eq. (3) was 

set to 0.001. The proposed SEA-Net was optimized by the Adam algorithm. The learning 

rate was initially set to 10−3 and decreased to 10−5. And the training epoch was 50. The 

mini-batch size was 4. The size of the input image in the training and testing phases is both 

512×512. Specifically, the codes of SEA-Net are available at https://github.com/lonelyatu/

SEA-Net. To validate the performance of SEA-Net, the FDK algorithm, TV, DDNet [24], 

DCAR [33], FED-INet [18], and modified Sam’Net [16] were treated as comparisons. 

Specifically, DDNet and FED-INet were image-domain-based methods and both of them 

adopted DenseNet as their backbones. The difference was that FED-INet utilized a more 

complex loss function which led to better performance. DCAR first employed the CNN 

model to obtain the missing projection data and then applied the IR method to improve 

image quality. To compare with advanced reconstruction algorithms (i.e. dual-domain-based 

methods and deep iterative methods), Sam’Ne was modified to apply LA-CBCT, which was 

an unrolling method proposed for fan-beam CT and represented the state-of-the-art. Besides, 

the root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), and structural 

similarity index (SSIM) were adopted to evaluate different reconstruction methods.

B. Clinical Data Acquisition

In this work, all the CBCT projection data was acquired during radiation therapy cancer 

treatments on the Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, California, 

USA) at the Department of Radiation Oncology of the University of Kansas Medical Center, 

as part of standard image-guided radiation therapy workflow for patient setup.

Then, the anonymized raw CBCT projection data were retrospectively analyzed under the 

approved IRB protocol. The imaging geometry is as follows. The source-to-axis distance 

was 100 cm and the source-to-detector was 150 cm. The detector had 512×384 elements and 

each of them represented an area of 0.766 mm2. To increase the field-of-view (FOV), the 

half-fan mode was applied with the detector offset 160 mm. For each scan, 720 views were 

collected from 360° as the full-view projection data with the tube voltage of 125 kVp and 

tube current-time product of 1072–1074 mAs.

The reference images were reconstructed by the FDK algorithm from the full-sampled 

projection data. Fast parallel algorithms were used for on-the-fly calculation of the X-

ray projections and backprojections [34, 35]. The reconstructed volume had the size of 

512×512×250, and every voxel was 1×1×0.65 mm3. Finally, 112500 images were used (90 

patients) in this study, i.e., 102500 images for training, 5000 images for validation, and 5000 

images for testing.
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C. Experimental Results

Table I lists the quantitative evaluations of different reconstruction methods with three 

scanning ranges: [0°, 180°], [0°, 135°], and [0°, 90°]. Compared to the FDK algorithm, 

all the DL-based methods make significant improvements. Particularly, learning from a 

large number of paired training samples, DDNet can directly map degraded images to 

high-quality results. DCAR is an iterative method that first takes the DDNet to predict 

the missing projection data and then integrates it with the available measurement data to 

get the full-view projections. The final reconstruction images can be obtained by the TV 

method from the complete projection data. As reported in early works [18, 33], DCAR 

outperforms DDNet in all evaluation indicators when the scanning ranges are 150° and 110°. 

However, as shown in Table I, the DCAR is always worse than DDNet in our experiment. 

The reason may be that the data consistency in DCAR is corrupted by the detector shift of 

half-fan mode. Benefiting from the enhanced perceptual loss, FED-INet achieves superior 

scores than other comparison methods in terms of RMSE and PSNR. However, it leads to 

decreased SSIMs in some cases. It is worth noting that the proposed method produces the 

best evaluations, which means the generated results provided by SEA-Net are closest to the 

reference image both in pixel values and structural features.

Fig. 2 demonstrates the reconstructed results with the scanning range [0°, 180°] to explore 

the visual performance of different methods on clinical data. Due to the projection missing, 

most anatomical structures reconstructed from the FDK algorithm are lost. Although it 

costs more time and hardware resources, TV only brings little improvement compared 

to FDK. This is because heuristic methods cannot provide an effective constraint on the 

reconstruction images when dealing with the LA-CBCT problem. In contrast to the poor 

results of FDK and TV, DL-based methods significantly promote the reconstruction images. 

From Fig. 2(d1)–(e4), it can be seen that DDNet and DCAR methods can restore most of 

the structural information, including bones and body contours. Unfortunately, as mentioned 

above, DDNet and DCAR produce too blurred regions. With the minimization of the 

distance between the reference image and generated ones in feature space, FED-INet can 

provide more visually improved results by preserving more details and recovering accurate 

tissues (as pointed by yellow arrows in Fig. 2(f1)–(f4)). Last, the proposed SEA-Net leads to 

the most impressive reconstructions in that it can restore subtle structures and fine edges (as 

noticed by red arrows in Fig. 2(g1)–(g4)).

Fig. 3 shows the reconstructed images of different methods with a smaller scanning range 

[0°, 135°]. In this condition, DDNet and DCAR can only produce blurred organ margins and 

most diagnostic information is missed. From the yellow arrows in Fig. 3(d1)–(d4), it can 

be seen that FED-INet generates clear tissue contours and shape edges and most anatomic 

structures are restored. Compared to FED-INet, the proposed method further promote the 

results in minor details preservation (as illustrated by red arrows in Fig. 3(e1)–(e4)).

To comprehensively probe the visual performance of different methods, the selected coronal 

and sagittal views reconstructed from the scanning range [0°, 90°] are given in Fig. 4. 

Similar to the observations in Figs. (2)-(3), FED-INet and SEA-Net perform better in bone 

restoration and detail preservation. However, the obvious checkerboard artifacts are induced 
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in FED-INet and SEA-Net results because of the usage of perceptual loss [18], which might 

bring negative effects on the subsequent tasks.

D. Ablation Study

In this part, an ablation study was conducted to validate the different modules used in 

SEA-Net. All the results were conducted on 1000 images reconstructed with the scanning 

range [0°, 180°]. The IR-Net with MSE loss was taken as the baseline model, then the 

SE-Net was incorporated into the IR-Net to make the first comparison method. Meanwhile, 

the perceptual loss (PL) was added to the baseline model to construct the second comparison 

method. Next, the SE-Net was incorporated into the second comparison model to establish 

the third comparison method. Last, the spatial attention module was introduced based on the 

third comparison model to build the fourth model, i.e., SEA-Net.

Table II presents the quantitative evaluations for the progressive ablation study. It can be 

seen that the PL and SE-Net only bring a little improvement over the baseline model in 

RMSE, PSNR and SSIM. With the assistance of the spatial attention module, SEA-Net gains 

the best performance in all evaluations, which means that spatial attention can indeed boost 

the accuracy of reconstruction images.

Fig. 5 demonstrates the reconstruction images of different modules. The baseline model 

adopts a similar architecture to the DDNet, therefore, it generates the same over-smoothing 

results as observed in Figs. 2–4. Due to the additional structure image extraction, the first 

comparison model brings sharper tissues boundary (as illustrated by yellow arrows in Fig. 

5(c1)(c2)) After employing PL, the second comparison method improves the baseline model 

by reconstructing clear tissue edges (as pointed with yellow arrows in Fig. 5(d1)(d2)), 

which states the effectiveness of PL [18]. Further, from areas indicated by red arrows in 

Fig. 5(e1)(e2), the third comparison model is able to restore more subtle details than the 

previous two comparisons. This indicates that SE-Net and PL are complementary and can 

collaboratively promote edge recovery. Although the PL and SE-Net have little effect on the 

quantitative evaluation, they can improve the reconstruction results in structure preservation. 

Last, by applying spatial attention, SEA-Net can distinguish which region is more relevant 

to getting high-quality results. Thus, SEA-Net has a superior performance in preserving 

spatial textures than previous models. Specifically, it can restore more accurate femoral head 

structures (as shown by the green ellipse and blue arrow in Fig. 5(e1)(f1)) and body contours 

(as marked by the green ellipse and red ellipse in Fig. 5(e2)(f2)).

E. Hyperparameter Analysis

This section aims to explore how the hyperparameter λ in Eq. (3) affects the performance 

of SEA-Net. Fig. 6 illustrates the quantitative results with different values of λ from the 

scanning range [0°, 180°]. It can be noticed that bigger or smaller λ will lead to decreased 

evaluations, suggesting the importance of λ in balancing different loss functions. According 

to Fig. 6, the λ was finally set to 0.001 in all experiments.
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F. Computational Cost

Table III lists the computational cost of different methods with 250 images reconstructed 

by the scanning angular range [0°, 180°]. Due to the complex iterative process, DCAR 

consumes much longer time than other methods. DDNet, FED-INet, and SEA-Net are 

post-processing algorithms and all of them can be executed within an appropriate time. 

Specifically, FED-INet and SEA-Net spend more time than DDNet because they have bigger 

network architectures.

G. Convergence Analysis

To explore the convergence of the proposed SEA-Net, Fig. 7 illustrates the cost function 

values (as defined in Eq. (3)) during the training process. It can be seen that the loss values 

of training and validation datasets decrease fast and stabilize after 20 epochs, which states 

the good convergence property of SEA-Net.

H. Comparison of Advanced Methods

Currently, dual-domain-based methods and deep iterative methods are considered the most 

competitive algorithms for CT reconstruction [16, 18, 26, 30, 36, 37]. According to training 

fashions, these methods can be split into two groups: end-to-end training and multi-phase 

training.

Table IV shows the GPU memory requirements of several representative end-to-end training 

methods. It can be seen that all of these methods need high computational resources so they 

are usually performed on the fan-beam geometry. In this work, the reconstructed volume has 

a size of 512×512×250, and it is scarcely possible to implement end-to-end training methods 

with appropriate GPU memory.

The multi-phase training strategy decouples the deep network and image reconstruction, 

which means it is only required to store the related variables at the current step. Therefore, 

this scheme greatly lowers the GPU memory demands and can be applied to CBCT [30].

Comprehensively, to compare with advanced algorithms, we modify Sam’s Net [16] 

from end-to-end optimization to multi-phase processing for the application of LA-CBCT. 

Specifically, all the network architectures and training settings of modified Sam’s Net in this 

section are referred to [16]. Because Sam’s Net combines dual-domain processing and the 

deep iterative scheme, it can be regarded as a state-of-the-art technique.

Fig. 8 exhibits the reconstruction results of different methods with the scanning range [0°, 

180°]. From Fig. 8(c1)–(c3), it can be found that the first stage of Sam’s Net is able to 

suppress wedge artifacts and restore most tissues. However, as opposed to the observation in 

[16], the second stage in Sam’s Net fails to bring improvements in quantitative assessments 

based on the first stage. Meanwhile, the second stage leads to more clear edges, but most 

of them are fake structures (as pointed by blue arrows in Fig. 8(d1)–(d3)). Overall, the 

proposed SEA-Net performs better both in edge preservation and quantitative evaluations. 

So, although the dual-domain or deep iterative methods have been validated in various tasks 

[18, 30, 36], they may be unfit for our clinical projection data.
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In conclusion, the image-domain-based method is completely rational and effective in this 

work.

V. APPLICATION TO RADIATION THERAPY

CBCT is the most widely used image guidance technique in image-guided radiation therapy 

(IGRT) [39]. By providing the volumetric image of patients’ anatomic structures, CBCT 

plays an important role in treatment setup. Meanwhile, the limited-angle imaging manner 

can reduce the scanning time and radiation dose, which is valuable in clinical applications. 

Thus, our target is to investigate the practical feasibility of LA-CBCT in RT.

A. Patient Setup Accuracy

During the treatment period, the CBCT images are usually used to estimate the patient setup 

uncertainties by registering CBCT to the planning CT (pCT), and then the treatment couch 

is adjusted to correct the tumor position for accurate treatment [40]. In this section, the 

patient setup error was obtained by registering CBCT images reconstructed from full-view 

projection data to the pCT as the reference. Then, the same procedure was employed on 

the images provided by different deep models from limited-angle projection data to get the 

corresponding patient setup error. Lastly, the comparison between these two setup errors was 

performed in three directions, LR (left to right), PA (posterior to anterior), and IS (inferior to 

superior). It is worth noting that this section aims to probe the performance of LA-CBCT in 

patient setup accuracy rather than improve registration itself.

Two representative cases of the prostate were utilized to compute the absolute differences 

between the two patient setup errors obtained from full-view projection data and limited-

angle projection data. In Table V, it can be noticed that registration errors of different 

methods will increase when reducing the scanning range. Meanwhile, at a fixed scanning 

range, all the DL-based methods share similar evaluation results. Specifically, the proposed 

SEA-Net performs better with the scanning ranges [0°, 180°] and [0°, 135°], but will cause 

an outlier with the scanning range [0°, 90°]. Generally, within a reasonable error range, it 

can be concluded that the LA-CBCT can provide reliable accuracy for patient setup.

B. Dose Calculation Accuracy

Due to anatomical variations such as tumor shift or shrinkage, the planned dose and the 

delivered dose may be different, which could result in incomplete irradiation to the targeted 

region or increase negative effects on the organs at risk (OARs) [41, 42]. Acquisitions of 

CBCT images can be used to compute the dose distribution to verify the planning treatment. 

Again, in this section, we took the parameters calculated from full-view projection data 

as the reference. And the parameters provided by the limited-angle projection data were 

evaluated.

All the experiments were performed on 5 representative cases from the prostate (1.8 Gy×25 

fractions). For planning target volume (PTV), it was extended on the clinical target volume 

(CTV) by 5 mm, and all the plans were normalized to D98=100% to PTV. The dose 

influence matrices were generated via MatRad [43] with 5 mm spot width and 3 mm lateral 

spacing on 3 mm3 dose grid using the default proton beam model provided in MatRad. The 
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beam angles were 90° and 270°. The plan was first optimized on the pCT. Then the contours 

of the target and OARs in pCT were deformed to fit CBCT images. Last, the pre-optimized 

plan was applied to get the dose distribution.

In the following experiments, the conformity index (CI) is defined as V 100
2 / V × V 100

′  (V 100: 

PTV receiving at least 100% of the prescription dose; V 100
′ : total volume receiving at least 

100% of prescription dose; ideally CI=1).

Table VI shows the planning parameters of various methods with different scanning ranges 

selected from one case. It can be noticed that (1) different methods have similar dose 

parameters; (2) different scanning ranges present similar dose parameters and (3) LA-CBCT 

images generate matched dose parameters with full-view projection data.

Further, Figs. 9–10 illustrate the dose and DVH plots of different methods with different 

scanning ranges. Similar to the conclusions in Table IV, LA-CBCT results processed by 

DL-based methods present a promising potential in the evaluation of dose distribution.

According to experimental results, the limited-angle scanning mode is feasibly applied to 

radiation therapy.

VI. CONCLUSION AND DISCUSSION

Due to the superiority in providing patients’ three-dimensional anatomic structures, there has 

been a rapid growth of CBCT in RT, which was beneficial to make IGRT a routine technique 

employed worldwide [44]. However, in real scenarios, CBCT usually takes a longer time 

to collect projection data, which may lead to motion artifacts and decrease the treatment 

accuracy. LA-CBCT is an effective tool in lowering scanning time and consequently 

reducing the motion artifacts. However, the reconstruction images of LA-CBCT will suffer 

from severe degradation. This work successfully developed an LA-CBCT reconstruction 

method that can be practically used for real clinical projection data and finally be applied to 

RT applications.

It is challenging to reconstruct high-quality images from limited-angle projection data. Many 

advanced methods have been developed, including pre-processing [10], post-processing 

[12], dual-domain [37], and deep iterative methods [26]. These algorithms improve the 

image quality in wedge artifact removal and tissue restoration compared to traditional 

methods. However, most of them are validated on simulated or preclinical data. In this work, 

we explored various DL methods and developed an image-domain-based method termed 

SEA-Net for clinical projection data. To the best of our knowledge, this is the first feasibility 

study of the real clinical-projection-data-based LA-CBCT.

Classical image-domain-based models usually employ deeper neural networks to enhance 

the image feature extraction [45] or apply GAN and PL to boost the detail restoration 

[31]. Based on the observation that wedge artifacts in limited-angle CT are directionally 

distributed, MSWDNet attempted to compensate for the artifacts in the wavelet domain 

[12]. Further, Zhang et al. proposed DDNet with the combination of dense connections 

to enlarge the feature representation capacity [24]. Meanwhile, with the specialized loss 

Hu et al. Page 13

IEEE Trans Instrum Meas. Author manuscript; available in PMC 2024 October 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



functions, EGAN [23] and FED-INet [18] were developed to encourage edge recovery. 

Unlike above typical single-branch network architectures, some works have reported that 

multi-branch models could significantly improve the utilization rates of image features [20, 

25]. Inspired by them, our SEA-Net adopts two-branch architectures that additionally design 

a structure-enhanced network. By explicitly extracting the texture images, the proposed 

SEA-Net gains great promotion in detail preservation. Besides, noticing the non-uniform 

property of artifact distribution in limited-angle problems, spatial attention is utilized to 

emphasize the relevant regions and ignore the irrelevant ones. All the experiments are 

performed on clinical projection data and results show that the proposed SEA-Net has 

superior performance than other competitive algorithms in subtle structure restoration. 

Particularly, DCAR has demonstrated competitive performance in some cases [23, 33], but 

it only shows similar results with image-domain methods in this work. Meanwhile, Sam’s 

Net, which is considered a representative of dual-domain and deep iterative methods [16], 

is modified to apply to 3D imaging. However, the results indicate that SEA-Net still works 

better than the modified Sam’s Net. Therefore, deep iterative methods might be unfit for our 

clinical data. So, it is reasonable for this work to take the image-domain-based model.

Meanwhile, we also conduct experiments to probe the feasibility of the LA-CBCT in 

clinical RT. Specifically, two applications were investigated, including patient setup and 

dose calculation. Experiments showed that all the DL methods share similar performances, 

which indicated that the patient setup and dose calculation were less dependent on images 

when the LA-CBCT image quality reached a fixed threshold. To sum up, the limited-angle 

scanning manner can provide promising results within allowable error ranges.

Although the proposed SEA-Net exhibits impressive results in LA-CBCT, there are still 

some limitations needed to be noticed. First, as observed in Fig. 4, the perceptual loss brings 

obvious chessboard artifacts that may cause unexpected consequences. Therefore, how to 

eliminate these artifacts without compromising the edge projection of the proposed method 

is the next key point. Second, it still has room to improve the patient setup accuracy when 

the scanning range is small, e.g., [0°, 90°]. Further investigation of LA-CBCT should be 

performed. Additionally, in this work, each scanning range needs to train a new SEA-Net 

model, which inevitably increases the training costs. Fortunately, recent works [46, 47] 

state that diffusion-model-based methods can deal with arbitrary scanning ranges with a 

pre-trained model. In the future, we will introduce the diffusion model to our clinical data. 

With more effective techniques, we believe that the LA-CBCT is potential for RT and other 

real scenes.
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Fig. 1. 
Overall framework of the proposed SEA-Net. (a) Image restoration sub-network. (b) 

Structure enhancement sub-network. (c)-(d) Residual dense attention blocks. (e) Spatial 

attention block. (f) Basic operation symbols.
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Fig. 2. 
Reconstructed images and the zoomed region-of-interests (ROIs) of different methods with 

the scanning range [0°,180°]. (a1)-(a4) Reference images reconstructed by FDK algorithm 

from full-sampled projection data. (b1)-(b4) Images reconstructed by FDK algorithm. (c1)-

(c4) Images reconstructed by TV method. (d1)-(d4) Images provided by DDNet method. 

(e1)-(e4) Images provided by DCAR method. (f1)-(f4) Images provided by FED-INet 

method. (g1)-(g4) Images provided by SEA-Net method. The display window is [0.003, 

0.008].
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Fig. 3. 
Reconstructed images and the zoomed ROIs of different methods with the scanning range 

[0°,135°]. (a1)-(a4) Reference images reconstructed by FDK algorithm from full-sampled 

projection data. (b1)-(b4) Images provided by DDNet method. (c1)-(c4) Images provided by 

DCAR method. (d1)-(d4) Images provided by FED-INet method. (e1)-(e4) Images provided 

by SEA-Net method. The display window is [0.003, 0.008].
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Fig. 4. 
Coronal and sagittal views of different methods with the scanning range [0°, 90°]. (a1)-(e1) 

Coronal images. (a2)-(e2) Sagittal images. (a1)-(a2) Reference images reconstructed by 

FDK algorithm from full-sampled projection data. (b1)-(b2) Images provided by DDNet 

method. (c1)-(c2) Images provided by DCAR method. (d1)-(d2) Images provided by FED-

INet method. (e1)-(e2) Images provided by SEA-Net method. The display window is [0.003, 

0.008].
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Fig. 5. 
Reconstructed results of different modules with the scanning range [0°, 180°]. (a1)-(a2) 

Reference images. (b1)-(b2) Baseline model results. (c1)-(c2) +SE-Net results. (d1)-(d2) 

+PL results. (e1)-(e2) +SE-Net+PL results. (f1)-(f2) SEA-Net results. The display window is 

[0.003, 0.008].
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Fig. 6. 
Reconstructed image quality assessments with different λ.
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Fig. 7. 
Loss function values vs. (a) iteration number and (b) epoch number.
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Fig. 8. 
Reconstructed results of different methods with the scanning range [0°, 180°]. (a1)-(a3) 

Reference images reconstructed by FDK algorithm from full-sampled projection data. (b1)-

(b3) Images provided by SEA-Net method. (c1)-(c3) Images provided by the first stage of 

Sam’s Net method. (d1)-(d3) Images provided by the second stage of Sam’s Net method. 

The display window is [0.003, 0.008].
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Fig. 9. 
Dose plots for different methods and scanning ranges. Results of (a1)-(c4) and (d1)-(f4) 

are different cases. (a) and (c) Dose plots on the pCT. (b) and (d) Dose plots on the 

FV-CBCT. (a1)-(a4) and (d1)-(d4) Dose plots with the scanning range [0°, 180°]. (b1)-(b4) 

and (e1)-(e4) Dose plots with the scanning range [0°, 135°]. (c1)-(c4) and (f1)-(f4) Dose 

plots with the scanning range [0°, 90°]. (a1)-(f1) Dose plots provided by DDNet method. 

(a2)-(f2) Dose plots provided by DCAR method. (a3)-(f3) Dose plots provided by FED-INet 

method. (a4)-(f4) Dose plots provided by SEA-Net method. The dose plot window is [0%, 

120%]. 50%, 80%, 100%, and 110% isodose lines and PTV are highlighted.
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Fig. 10. 
Dose-volume histogram (DVH) plots for different methods with different scanning ranges 

from one case. (a1)-(a5) DVH plots with the scanning range [0°, 180°]. (b1)-(b5) DVH 

plots with the scanning range [0°, 135°]. (c1)-(c5) DVH plots with the scanning range [0°, 

90°]. (a1)-(c1) DVH plots of target. (a2)-(c2) DVH plots of bladder. (a3)-(c3) DVH plots of 

rectum. (a4)-(c4) DVH plots of left femoral head. (a5)-(c5) DVH plots of the right femoral 

head.
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Table II

QUANTITATIVE EVALUATIONS FOR THE PROGRESSIVE ABLATION STUDY.

Metric Baseline +SE-Net +PL +SE-Net+PL SEA-Net

RMSE(10−4) 2.82 2.81 2.82 2.80 2.68

PSNR 32.80 32.88 32.83 32.85 33.22

SSIM 0.9044 0.9085 0.9053 0.9099 0.9132
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Hu et al. Page 30

Table III

COMPUTATIONAL COST OF DIFFERENT METHODS (UNIT: SECOND).

Method DDNet DCAR FED-INet SEA-Net

Time 5.60 156.51 11.60 15.91
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Hu et al. Page 31

Table IV

GPU MEMORY REQUIREMENTS OF DIFFERENT END-TO-END TRAINING METHODS.

Method Geometry Memory Image size Batch size

hdNet [37] Fan-beam 11 GB 512×512 4

CTNet [38] Fan-beam 12 GB 128×128 /

FSR-Net [27] Fan-beam 16 GB 512×512 1

CasRedSCAN [26] Fan-beam 48 GB 256×256 4
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