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Abstract

Quantitative analysis of the dynamic properties of thoraco-abdominal organs such as lungs 

during respiration could lead to more accurate surgical planning for disorders such as Thoracic 

Insufficiency Syndrome (TIS). This analysis can be done from semi-automatic delineations of the 

aforesaid organs in scans of the thoraco-abdominal body region. Dynamic magnetic resonance 

imaging (dMRI) is a practical and preferred imaging modality for this application, although 

automatic segmentation of the organs in these images is very challenging. In this paper, we 

describe an auto-segmentation system we built and evaluated based on dMRI acquisitions from 95 

healthy subjects. For the three recognition approaches, the system achieves a best average location 

error (LE) of about 1 voxel for the lungs. The standard deviation (SD) of LE is about 1-2 voxels. 

For the delineation approach, the average Dice coefficient (DC) is about 0.95 for the lungs. The 

standard deviation of DC is about 0.01 to 0.02 for the lungs. The system seems to be able to cope 

with the challenges posed by low resolution, motion blur, inadequate contrast, and image intensity 

non-standardness quite well. We are in the process of testing its effectiveness on TIS patient dMRI 

data and on other thoraco-abdominal organs including liver, kidneys, and spleen.

Short Abstract

Quantitative analysis of dynamic properties of thoraco-abdominal organs during respiration could 

lead to more accurate surgical planning for certain disorders. This analysis can be done from semi-

automatic delineations of lungs from dynamic dMRI acquisitions of the thoraco-abdominal region, 

although automatic segmentations of the organs in these images is challenging. In this paper, we 

describe an auto-segmentation system we built and evaluated based on dMRI acquisitions from 

95 healthy subjects, which has yielded Dice Coefficient of about 0.95 in this very challenging 

problem of segmenting dynamic organs in a 4D MRI image.
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1. INTRODUCTION

Thoracic Insufficiency Syndrome (TIS) [1] is an uncommon disorder in which there 

is inability of the thorax to support normal respiration or lung growth, leading to 

complications. In surgical planning for children with TIS, locations along the skeleton that 

should be connected with rods are identified so that abnormal growth and orientation of the 

osseous structures can be controlled with minimal complications. At present, this surgical 

planning is largely based on subjective qualitative intuition. Yet, quantitative comparisons 

of the dynamic properties of the thoraco-abdominal organs between children with TIS 

and healthy children, under free-breathing conditions, can give detailed insights for more 

accurate surgical planning. Such properties during respiration can be captured effectively 

with dynamic magnetic resonance imaging (dMRI), which does not involve radiation 

exposure, does not require special patient maneuvers or breathing control, and can be 

implemented readily on MRI scanners available in the community.

The aforementioned insights can be represented quantitatively from the semi-automatic 

delineations (segmentations) of the organs in dynamic MR images. To the best of our 

knowledge, methods dealing with multi-organ segmentation from dMRI acquisitions, 

especially of the thorax, do not exist. In general, MR images have lower spatial resolution 

compared to computed tomography (CT) images, and are prone to various artifacts and 

non-standardness, which are exacerbated in the case of dMRI, especially pediatric studies, 

all of which make multi-organ segmentation from dynamic MR images very challenging 

(see Figure 1). Therefore, the auto-segmentation system we present in this paper is novel.

Dynamic MRI acquisitions are inherently four dimensional with the dimensions being time 

and space in the three spatial dimensions. In our dMRI acquisition, a sagittal plane MR 

image is first acquired continuously for a specified duration (typically over 10 respiratory 

cycles), then the next sagittal slice is captured for the next specified duration, and so on until 

the image of the entire thoraco-abdominal region is fully captured. However, to segment 

these organs, we first perform a 4D construction of the body region image representing the 

dynamic body region over one respiratory cycle via an optical flux strategy [2] and then 

segment the 3D organs in the 3D image corresponding to any specified respiratory phase, 

such as the end-inspiration (EI) and end-expiration (EE) time points.

In this paper, we present a system for auto-segmentation of the right lung and left lung 

in pediatric dMRI by utilizing our extensive experience and the tools we had previously 

developed for segmenting organs body-wide in computed tomography (CT) images [3-6]. 

The contributions in this paper are as follows.
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1. We present a novel and unique system for the problem of multi-organ 

segmentation from dynamic MRI acquisitions of the thoraco-abdominal region. 

This challenging segmentation problem has not been addressed in the literature.

2. We have compared several combinations of recognition and delineation 

approaches toward building a practical and accurate system to be employed in 

the setting of thoracic insufficiency syndrome (TIS).

2. METHODS

In this section, we give a brief overview of the 4 modules which operate sequentially. They 

are referred to as AAR-R, DL-R, AAR-R-DL-R, and DL-D in subsections 2.1, 2.2, 2.3, and 

2.4, respectively. We perform segmentation in two steps: a recognition step and a delineation 

step. In recognition, we try to get a rough idea of the location of the object of interest in 

the unseen image with the help of bounding boxes. In delineation, the approach marks the 

outline of the object of interest within the aforesaid bounding box. The first three modules 

(AAR-R, DL-R, and AAR-R-DL-R) are recognition steps while the last module (DL-D) is a 

delineation step.

2.1 AAR-R [3]:

The first step in AAR-R is the model building step. AAR-R takes as input from the user the 

order in which multiple objects of interest should be recognized in an unseen image. This 

hierarchy of objects is given as a tree. Objects at the parent nodes are recognized before the 

objects at the child nodes of the tree.

An object at a child node can be recognized with additional information that uses the 

recognition of its parent object. If we know that additional information such as relative 

anatomical position to the parent object, shape, pose, and textural properties of the objects 

are consistent in the images of the seen dataset, then the additional information can be 

encoded as fuzzy measures in a model which can be used later on during recognition of the 

object in an unseen image. The model building step involves encoding these fuzzy measures 

in a model.

The next step in AAR-R is the recognition step where we try to localize objects of interest 

in the unseen image. In the recognition step, after the root object has been recognized in the 

unseen image from its textural properties, the location of its child in the unseen image is 

guessed from the relevant fuzzy measures in the model. This is continued recursively until 

the objects at the leaves of the tree are recognized. In the aforesaid manner, the hierarchy 

and the model are used by the AAR approach to localize multiple objects in an unseen 

image. The output of AAR-R is a fuzzy mask for the object of interest in the unseen image. 

This fuzzy mask gives an estimate of the shape, pose, and location of the object in the 

unseen image.

2.2 DL-R [4]:

The DL-R approach, a recognition step, was primarily targeted at detecting thin sparse 

objects like the esophagus as well as non-sparse objects like the heart. In this paper, we 
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discuss those design aspects of DL-R that pertain to segmentation of non-sparse objects. The 

design of the DL-R approach can be broken down into three modules: backbone network, 

neck network, and head network. We discuss these modules briefly in the next paragraphs.

A sagittal slice of the approximated 3D view is converted into a 3 channel image by 

mapping the pixel intensity to a number in each of three pre-defined intensity intervals. This 

three-channel slice is taken as input to the backbone network. The backbone network uses 

pre-trained model weights of classical neural networks like the ResNet [7] and the DenseNet 

[8]. Four feature maps (C2, C3, C4, and C5) are taken from the last four convolutional layers 

of the backbone network. These convolutional layers use strides of 4, 8, 16, and 32 pixels, 

respectively. The map C2 captures lower level textural information compared to C3, C4, 

and C5. The map C5 captures higher level contextual information from the 3 channel input 

image. These feature maps (C2, C3, C4, and C5) are taken as input to the neck network.

The design of the neck network is based on the Path Aggregation Network (PAN) [9] and 

the Dual Attention Network (DAN) [10]. The PAN uses bottom-up connections, top-down 

connections, and lateral connections to merge feature maps (C2, C3, C4, and C5) into maps 

referred to by Q4, Q5, and Q6. In addition to the PAN, DAN is used to create prediction 

maps which contain the information dependency across the spatial dimensions and the 

channel dimensions of the maps Q4, Q5, and Q6. The maps Q4, Q5, Q6 and the prediction 

maps are taken as input to the head network.

The head network recognizes the non-sparse organs with the maps Q4, Q5, and Q6 by 

associating them with anchor sizes 32 x 32, 64 x 64, and 128 x 128, respectively. This 

recognition step gives a rough idea of where the organs may be located. The recognition 

is further refined with the help of convolutional layers in the head network that use the 

prediction maps and the anchors. The convolutional layers take into account high-level 

semantic information from the prediction maps and predict the category and location 

of the non-sparse objects in an unseen image in the form of bounding boxes and their 

corresponding labels. The output of DL-R is a bounding box in those sagittal slices which 

are identified to contain the objects of interest. These bounding boxes come from the head 

network.

2.3 AAR-R-DL-R [4, 5]:

Each of the above two recognition modules, the natural intelligence approach like AAR-R 

and the artificial intelligence approach like DL-R, have their own distinct advantages and 

disadvantages. The DL-R approach can use textural information to accurately discern the 

location of the object of interest in the unseen image, but fails to localize the object if 

the textural information of the object in the unseen image is different from the textural 

information of the object over all images of the seen dataset. The AAR-R approach uses 

high-level anatomical knowledge of the thoraco-abdominal organs to localize the objects in 

the unseen image. This design feature of the AAR-R is able to localize the organ robustly 

even if textural information from the unseen image cannot provide reliable insights into the 

image or artifacts corrupt the image. Yet, the drawback of AAR-R is that the fuzzy mask for 

the objects of interest is usually coarse, meaning that the mask is larger in size compared to 

the actual size of the organ.
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The objective of AAR-R-DL-R approach is to include the recognition output of AAR-R and 

the recognition output of DL-R for the same objects in the same unseen image to get a better 

localization of the objects of interest. The shape and pose of an object can be captured with 

the fuzzy mask by AAR-R and the location of an object can be captured with the position of 

the bounding box of DL-R. This is accomplished by shifting the fuzzy mask of AAR-R for 

a slice such that the centroid of the fuzzy mask coincides with the centroid of the bounding 

box that is obtained by DL-R for the same slice. This shifting of the fuzzy mask is actually 

done after some smoothing of the positions of the bounding boxes by DL-R, across all the 

slices of a subject. The shifted (refined) fuzzy mask is taken along with the input image (the 

sagittal slice) to another neural network (i-DL-R) whose design is similar to DL-R. The only 

difference between the design of DL-R and i-DL-R is that the former takes only the sagittal 

slice (in the form of a 3 channel image) as input while the latter takes the sagittal slice as 

well as the refined fuzzy mask as input (in the form of 3+1=4 channel image). The output of 

i-DL-R (and AAR-R-DL-R) is a set of refined bounding boxes which localize the objects of 

interest in every sagittal slice of the unseen dynamic MRI image.

2.4 DL-D [6]:

This module utilizes a network called ABCNet [6] which was originally designed to 

delineate the different types of body tissues: subcutaneous adipose tissue, visceral adipose 

tissue, skeletal muscle tissue, and skeletal tissue from low dose CT images of the body torso. 

The design of ABCNet is similar to an encoder-decoder architecture.

All units in the design of ABCNet are derivatives of BasicConv, which is comprised of 

four modules in succession: concatenation, batch normalization, activation, and convolution. 

Bottleneck is a special case of BasicConv with a convolutional kernel of 1x1x1. The 

ABCNet employs the technique of adopting connections between a layer and each of 

its successive layers as done in DenseBlock [8]. There are four DenseBlocks used in 

the encoder-decoder architecture of ABCNet. The DenseBlock in direct connection to 

the input image extracts low level information while the DenseBlock higher up in the 

encoder architecture extracts higher-level contextual information from the input image. Each 

DenseBlock of ABCNet is composed of several layers referred by Dense Layers, which 

are themselves composed of Bottleneck and a BasicConv with a kernel size of 3x3x3 in 

succession. The bottleneck, because of its lower convolutional kernel size, keeps the number 

of parameters low and simultaneously acts as a feature extractor through the normalization 

and activation functions of its BasicConv architecture.

The ABCNet uses a Dice coefficient-based loss function for training its model and uses 

patch-based training. The patches are randomly selected from the images in the seen dataset. 

The output of ABCNet is the outline of the objects of interest in the unseen image, 

as obtained from the decoder of ABCNet. Unlike existing encoder-decoder architectures 

(DeepMedic, Dense V-Net, V-Net, and 3D U-Net) which have typically 12 or 31 layers 

and 1 million or 80 million parameters, ABCNet has 118 layers with only 1.4 million 

parameters. The usage of ABCNet is thus attractive because of its deeper architecture with a 

fewer number of parameters.
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3. RESULTS AND DISCUSSION

We have utilized dMRI acquisitions of 95 normal pediatric subjects from the Children’s 

Hospital of Philadelphia (CHOP) for evaluation of our thoraco-abdominal organ 

segmentation algorithms on these images. These acquisitions have been approved for our 

study by the Institutional Review Board of CHOP along with a Health Insurance Portability 

and Accountability Act Waiver. These sagittal dMRI acquisitions have a pixel resolution 

of 1.46 mm in the plane of the slice and 6.00 mm in between adjacent sagittal slices. The 

dataset from CHOP was gradually increasing in size with time based on availability of 

pediatric subjects for dMRI acquisitions. Therefore, in some experiments we utilized only 

those images which were available at the time of carrying out the experiment and not all the 

95 subjects.

In the first experiment, we compare the three recognition approaches: AAR-R, DL-R, and 

AAR-R-DL-R based on the location error (LE). The LE expresses the average of the 

distance between the 2D centroid of the bounding box given by the recognition approach 

for the object in a slice and the 2D centroid of the tight fitting bounding box around the 

ground truth of the object in the same slice, over all slices in the 3D image. Images of 

60 subjects have been used for modelbuilding of AAR-R and for training the DL-R and 

i-DL-R networks. Images of 21 subjects have been used for testing the AAR-R, DL-R, and 

AAR-R-DL-R approaches. At the time of carrying out this experiment, we had 81 (=60+21) 

subjects (which later gradually increased in number with collection of dMRI acquisitions of 

pediatric subjects in CHOP, to 95 subjects). The results are shown in Table 1.

We observe that the performance of the DL-R approach is the best for the recognition of the 

left lung and right lung. Because of the promising performance of DL-R, we have adopted 

DL-R as the recognition approach in a separate experiment which evaluates the performance 

of ABCNet, a delineation approach. The ABCNet uses the bounding boxes from the DL-R 

as input during delineation of a thoraco-abdominal organ in an unseen image.

Seventy-two subjects were used in the training set, 10 subjects were used in the validation 

set, and 13 subjects were used for testing the ABCNet. In this experiment, we utilized 

the dMRI acquisitions of all the 95 (=72+10+13) subjects. The performance of ABCNet 

(DL-D) in terms of average (and standard deviation of) Dice coefficients is shown for the 

left lung and the right lung in Table 2. The results in the last column of Table 2 show 

excellent DC for the healthy subjects. In Figure 2, in the top (bottom) two rows, we have 

shown six sagittal slices where the delineations of the left (right) lung by the proposed 

auto-segmentation algorithm in green outline and the expert human tracer in red outline have 

been superimposed. No two sagittal slices in Figure 2 for the left lung (or right lung) belong 

to the same dMRI acquisition. We intend to adopt the DL-R approach for the recognition 

step and the ABCNet for the delineation step of the thoraco-abdominal organ segmentation 

from sagittal dMRI acquisition of patients with TIS.
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4. CONCLUSIONS

In this paper, we have developed an automated segmentation set up for the right lung and 

the left lung in dynamic MRI sagittal acquisitions of normal pediatric subjects. We have 

performed the segmentation in two steps: recognition and delineation. We have compared 

two artificial intelligence (DL-R and AAR-R-DL-R) modules and one natural intelligence 

module (AAR-R) for recognition. We have evaluated one artificial intelligence module 

(ABCNet) for delineation. We observe that (1) the simple artificial intelligence recognition 

approach (DL-R) performed the best compared to the simple natural intelligence recognition 

approach (AAR-R). The hybrid intelligence recognition approach (AAR-R-DL-R) for 

recognition showed competitive performance with respect to DL-R with no statistically 

significant difference (p=0.3645). (2) The delineation results for the lungs by ABCNet 

from sagittal dynamic MRI (dMRI) acquisitions of the thoraco-abdominal region of healthy 

subjects are excellent given the extreme difficulties of segmenting these objects in the 

dMRI images. We are further investigating this system for the segmentation of the thoraco-

abdominal organs in sagittal dMRI acquisitions of patients with thoracic insufficiency 

syndrome (TIS).
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Figure 1. 
Some dMRI slices with the true boundary delineated for right lung (left figure) and left lung 

(right figure).
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Figure 2: 
Twelve slices which depict the delineations of the left lung (top two rows) and right lung 

(bottom two rows) by the proposed auto-segmentation algorithm and the expert human 

tracer in green and red outlines respectively.
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Table 1:

The average location error (Avg. LE) in mm and standard deviation (SD) of LE for the recognition of left lung 

and right lung by AAR-R (A), DL-R (D), and AAR-R-DL-R (A-D) methods.

Organ Left Lung Right Lung

Method A D A-D A D A-D

Avg. LE (mm) 28.04 6.11 6.98 16.55 5.92 6.16

SD (mm) 10.78 3.19 6.04 7.98 2.99 2.46
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Table 2:

The average Dice coefficients (Avg. DC) and the corresponding standard deviations (SD) for delineation of 

left lung and right lung by ABCNet.

Organ Left lung Right lung

Avg. DC 0.948 0.958

SD 0.021 0.008

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2024 July 02.


	Abstract
	Short Abstract
	INTRODUCTION
	METHODS
	AAR-R [3]:
	DL-R [4]:
	AAR-R-DL-R [4, 5]:
	DL-D [6]:

	RESULTS AND DISCUSSION
	CONCLUSIONS
	References
	Figure 1.
	Figure 2:
	Table 1:
	Table 2:

