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Abstract

Body motion tracking for medical applications has the potential to improve quality of life for 

people with physical or speech motor disorders. Current solutions available in the market are 

either inaccurate, not affordable, or are impractical for a medical setting or at home. Magnetic 

localization can address these issues thanks to its high accuracy, simplicity of use, wearability, 

and use of inexpensive sensors such as magnetometers. However, sources of unreliability affect 

magnetometers to such an extent that the localization model trained in a controlled environment 

might exhibit poor tracking accuracy when deployed to end users. Traditional magnetic calibration 

methods, such as ellipsoid fit (EF), do not sufficiently attenuate the effect of these sources 

of unreliability to reach a positional accuracy that is both consistent and satisfactory for 

our target applications. To improve reliability, we developed a calibration method called post-
deployment input space transformation (PDIST) that reduces the distribution shift in the magnetic 

measurements between model training and deployment. In this paper, we focused on change in 

magnetization or magnetometer as sources of unreliability. Our results show that PDIST performs 

better than EF in decreasing positional errors by a factor of ~3 when magnetization is distorted, 

and up to ~7 when our localization model is tested on a different magnetometer than the one it 

was trained with. Furthermore, PDIST is shown to perform reliably by providing consistent results 

across all our data collection that tested various combinations of the sources of unreliability.
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I. INTRODUCTION

AS wearable devices have become more capable, people are more willing to have sensors 

attached to their body. This is a boon for the field of body motion tracking by opening 

new opportunities in applications such as interactive graphics, virtual and augmented 

reality, motion capture, computer-aided surgery, and rehabilitation [1], [2]. Although optical 

tracking is commonly used due to its high accuracy [1]–[4], it cannot be used outside 

of few applications (e.g., research on human motion, entertainment industry) because it 

requires purchasing an expensive camera setup and controlling lighting conditions to work 

effectively.

Therefore, there is a need for an alternative solution that would be affordable and practical to 

be used in any environment. Inertial measurement units (IMUs) are becoming ubiquitous 

sensors for tracking due to their low cost, small size, and their robustness to various 

environmental conditions. However, inertial sensing based on IMUs cannot track position 

as accurately as optical methods because of parasitic motion artifacts and positional drift 

due to the integration of sensor noise over time [1], [5]. To overcome these issues, hybrid 

tracking systems combining inertial sensing with other motion capture methods have been 

developed to improve overall tracking performance [2], [5]. In our previous work [6], [7], we 

developed a hybrid method that combined magnetic tracking and inertial sensing by using 

a 9D IMU (accelerometer, gyroscope, and magnetometer) as a tracer. The 2D orientation of 

the tracer (roll and pitch) is estimated from the inertial data provided by the accelerometer 

and gyroscope, and its 3D position is estimated from the magnetic measurements of the 

magnetometer. The details of our orientation-compensated magnetic localization can be 

found in [6]. In sum, a local magnetic field is created for a target volume by permanent 
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magnets placed at fixed locations in a wearable attachment. As the IMU tracer moves within 

this volume, its estimated orientation is used to rotate its magnetic measurements into a 

reference frame, and the resulting data are fed into a neural network that generates 3D 

positional estimates.

Neural networks are shown to be successful function approximators for magnetic 

localization providing low positional errors in the range of few millimeters for a 

tongue tracking application. They generalize well when trained and tested on the same 

magnetometer, in the same session, and in the same magnetic environment [6], [8]. However, 

the reported tracking performance might drastically decrease in practice because of at least 

two problems. First, a magnetometer's magnetization can be affected when brought too 

close to a ferrous object during shipping, storage, or even in use. Sources of change in 

magnetization are ubiquitous, from the frame of a table to the electric cables in the wall, 

or even from electronic devices and monitors. Change in magnetization poses a challenge 

to the reliability of a localization model since the same magnetometer would then output a 

different magnetic measurement for the same position. Depending on the level of change in 

magnetization, the differences in magnetic measurements can be significant, and thus this 

change cannot simply be considered as noise during localization model training. Moreover, 

the effect of change in magnetization is random and thus cannot be accounted for in the 

localization model.

Secondly, creating a localization model for each magnetometer is not scalable because it 

requires a significant amount of time to collect individual training and validation datasets. 

Therefore, the localization model must be transferable across magnetometers which is 

another challenge because magnetometers are slightly different due to process variations 

during manufacturing. This results in small differences in magnetic measurements by any 

two magnetometers at the same position, resulting in errors large enough to prevent the 

system from being used in applications requiring sub-millimeter accuracy (e.g., tongue 

tracking [6]).

For high-precision magnetic localization using feed-forward neural networks, these two 

problems (Fig. 1), i.e., change in magnetization/magnetometer, cannot be solved by the 

commonly used calibration method that relies on finding a better approximation of the 

underlying true magnetic field such as ellipsoid fit [9]–[11] or more complex methods 

that align magnetometer axes with a gyroscope or accelerometer [12]–[15]. A successful 

calibration strategy should aim at obtaining magnetic field measurements from the same 

input space that was used during training of the localization model to reduce the localization 

errors due to the change of magnetization/magnetometer.

In summary, there is a reliability issue in magnetic localization that is caused by a 

distribution shift [16], [17] of magnetic measurements (input) that changes its relationship to 

the magnetometer's positions (output) due to disturbances that are both intrinsic (differences 

between magnetometers) and extrinsic (change in magnetization). In this paper, our main 

contributions can be summarized as follows:

1. We developed a novel method, called post-deployment input space 

transformation (PDIST), that reduces distribution shift to improve reliability.
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2. We collected multiple datasets with different magnetization/magnetometer 

configurations and provided detailed analysis on the effectiveness of the PDIST.

The rest of the paper is organized as follows: Section II provides a mathematical description 

of the reliability issues along with a description of our PDIST method, Section III describes 

our data collection, Section IV presents our results on tracking accuracy and a discussion on 

the effectiveness of the PDIST, and Section V concludes on the significance and impact of 

this work.

II. MAGNETIC LOCALIZATION

A. Mathematical Background

The objective of magnetic localization is to estimate the 3D position of a magnetometer, 

y ∈ ℝ3, from its magnetic measurement, x ∈ ℝ3, that is moving inside a target volume Vp. 

The output space O is composed of all possible positions of the magnetometer in the 

target volume and the input space I comprises of all possible magnetic measurements. The 

localization model is the mapping function f between the input and output spaces such that

O = yi ∣ yi ∈ Vp, yi ∈ ℝ3 ,

I = xi ∣ xi = f−1 yi , yi ∈ Vp, xi ∈ ℝ3 .

The output space O is usually defined first to meet the tracking requirement for a target 

application. Then, the input space I is determined by the strength and placement of the 

magnets. Therefore, the aim of magnetic localization is to find f :I O, an approximation 

of f, so that given a magnetic measurement x, the position of the magnetometer, can 

be estimated by y = f x , y ∈ ℝ3, where f  is optimized to minimize the 2-norm of the 

localization error, i.e., ∥ y − y ∥2.

B. Sources of Unreliability

When deploying a magnetic localization model, there are two main sources of unreliability 

that can significantly worsen tracking accuracy. The first source is change in magnetization 

due to hard-iron and soft-iron disturbances. We define the current magnetization of a 

magnetometer as a magnetic frame of reference (FoR) representing 3D magnetic readings 

that can be perturbed by magnetic disturbances. Hard-iron disturbances resulting from 

permanent magnetizations by nearby magnetic objects are reflected on FoR as an offset, 

whereas, soft-iron disturbances caused by nearby materials with high magnetic permeability 

result in more complex alterations in FoR, both of which lead to changes in the 

magnetization of the magnetometer [15], [18]. The second source of unreliability comes 

from variations during the manufacturing of magnetometers [19], [20]. This results in 

different magnetometers having slightly different coordinate frames of measurement, due to, 

for example, axial misalignment and non-uniform axial gains.

Regardless of the source of unreliability, the problem remains the same: a magnetometer 

post-deployment will measure magnetic fields differently than expected. More specifically, 
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let x and x denote a magnetic measurement recorded during training and after the 

localization model is deployed, respectively. The magnetic measurements obtained at a 

fixed position y in Vp, denoted by x y and x y, will be different because of the source(s) of 

unreliability, i.e., x y ≠ x y. Hence, the localization model that was trained using xi yi, yi i = 1
N , 

where N stands for the number of samples, will provide a worse tracking accuracy, i.e., 

∥ f x y − y ∥2 > > ∥ f x y − y ∥2.

C. Issues with Traditional Magnetic Calibration

To increase reliability, the standard procedure is to calibrate each magnetometer using a 

linear model as follows,

xc = Ax + b

(1)

where xc ∈ ℝ3 represents the magnetic measurement of a calibrated magnetometer, A is a 

compact matrix that corrects for soft-iron magnetic disturbances, non-orthogonality of axes, 

and sensitivity, while b represents hard-iron disturbance.

Ellipsoid fit (EF) is the most common calibration method that calculates A and b in (1) by 

relying on the constant norm of the Earth's magnetic field [9]–[11]. The magnetometer is 

rotated along all three dimensions of rotation, usually randomly and by hand. The resulting 

magnetic measurements form a 3D ellipsoid, and the objective of EF is to find A and b
that transform the measurements into a sphere. However, EF does not explicitly return the 

orientation of the sphere [12], [13] which results in obtaining different FoRs after changes 

in magnetization/magnetometer. Though EF calibration is likely sufficient for most magnetic 

sensing applications, variations in FoR are preventing our localization from consistently 

reaching sub-millimeter positional accuracy for our tracking applications.

To obtain a reproducible FoR across sessions, alternative methods of calibration relying on 

axis alignment with gyroscopes and accelerometers were designed [12]–[15]. These methods 

require the calibration of a gyroscope and accelerometer in addition to the magnetometer, 

and have infeasible assumptions for our system. Furthermore, any additional error made 

during the calibration of these devices at the time of deployment by an end user of our 

application, such as unwanted linear acceleration, might result in considerable localization 

errors. More importantly, these methods do not directly address the problem of preserving 

the FoR that was used during model training, and fail to return consistent measurements. 

Instead of aligning the magnetometer's FoR with those of other sensors, a better method 

might be to align the FoR observed post-deployment with the one from training, which is the 

purpose of our proposed post-deployment input space transformation (PDIST).

D. Post-Deployment Input Space Transformation

For the rest of the paper, we define the training dataset of magnetic measurements as 

DT = xi, yi i = 1
N , and a deployment dataset as D = xi, yi i = 1

N , where N and N are the number 

of samples. D is collected post-deployment by the user and for an actual tracking session.
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For the localization model to generalize well to the deployment set, the joint probability 

distribution p x, y  should be the same across training and deployment. This implies 

that the function f :ℝ3 ℝ3 obtained by training the model on DT should provide 

sufficient information to generalize to D. One natural assumption is that if the magnetic 

measurements are recorded at the same locations, i.e. yi = yi, it should hold that f xi = f xi , 

∀i ∈ 1, …, N  and N = N. However, we found that even though p y = p y  since the data 

is collected on the same set of locations, we observe that p x ∣ y ≠ p x ∣ y , and this implies 

p x, y ≠ p x, y . The difference between these distributions explain the degradation in the 

model's performance after deployment.

To enable the localization model f  trained on DT to make accurate predictions on D, our 

PDIST method was designed to project the deployment input space I back into the training 

input space IT by using a mapping function G:I IT that is found by following this 

procedure:

1. Collect a one-time sampling of IT before training, and denote as 

DT
Q = xi

Q, yi
Q

i = 1
NQ

.

2. Collect a sampling of I before every new tracking session (post-deployment), 

and denote as DQ = xi
Q, yi

Q
i = 1
NQ

.

3. Find the best G that minimizes ∑i = 1
NQ

xi
Q − xi

Q .

The number of samples NQ is the same for both datasets and should be low enough to 

reduce the duration of this calibration since it must be performed by end users before each 

tracking session. In this paper, we found empirically that 24 is a suitable number of samples 

since collecting more samples increases the effort but does not increase the performance 

substantially. These samples are collected from the same predefined set of positions yi
Q

that is carefully selected to be equally distributed throughout the volume Vp to improve 

the quality of the mapping G. Although experimental evidence suggests that the mapping 

between the input spaces might be non-linear, we found that a linear transformation captures 

most of the variation, which also enables the use of linear regression as a fast and reliable 

optimization method.

More formally, let XT
Q ∈ ℝNQ × 3 and XQ ∈ ℝNQ × 3 represent the magnetic measurements 

collected at YQ ∈ ℝNQ × 3 for the training and deployment sets. Let Z = 1 XQ , 

Z ∈ ℝNQ × 4, where the column vector 1 is added to incorporate the offset term. The 

transformation G ∈ ℝ4 × 3 can be estimated using linear regression as follows,

G = ZTZ −1ZTXT
Q

(2)
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G can be further decomposed as G =
go

T

GR
, where go

T ∈ ℝ3 is the offset, while GR ∈ ℝ3 × 3

consists of scaling, rotation and cross-gain terms. Setting Z = 1 X , the PDIST-calibrated 

magnetic measurements of the deployment set X ∈ ℝN × 3 is then,

X = ZG .

(3)

To demonstrate how PDIST is connected to EF, let xtrue and x denote the true Earth magnetic 

field reading and the measured magnetic field, respectively. EF implicitly tries to find a 

relation between true and measured magnetic fields through A and b when applied to both 

the training and deployment sets, where

xT = A1xtrue + b1

(4)

x = A2xtrue + b2

(5)

for the training and deployment sets, respectively.

Instead, PDIST solves for the deployment set

xT = GRx + go .

(6)

which removes the need to calculate A1, A2, b1, b2 in relation to true magnetic field readings. 

Instead, PDIST directly relates xT and xT by minimizing their difference xT − xT 2. Thus, 

using (4) and (5), and assuming perfect transformation, i.e., xT = xT, (6) can be written as

A1xtrue + b1 = GR A2xtrue + b2 + go

(7)

= GRA2xtrue + GRb2 + go

(8)

Consequently, we find that GR = A1A2
−1 and go = b1 − GRb2. Poor reliability can be explained 

by the fact that A1 and A2 are not necessarily equal, as well as b1 and b2 although xtrue

remains the same. The reason is that magnetic measurements denoted by xT and x are 

not in the same FoR anymore due to aforementioned factors. Across sessions, EF is not 
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capable of finding a consistent transformation, encoded by A1, A2 and b1, b2, required for 

positional accuracy because its underlying optimization problem does not take into account 

the orientation of its FoR. In other words, the measurement sets used for calculating A1, b1

and A2, b2 pairs are independent from each other and do not calibrate the magnetic readings 

to exactly the same FoR. On the contrary, PDIST is effective because it uses a fixed set of 

measurements xT and x to explicitly transform FoR of the latter into the former's. This helps 

to estimate the drift in the FoR reducing the difference between training and deployment 

input spaces. Fig. 2 illustrates the difference between EF and PDIST and their effect on 

localization accuracy.

III. DATA COLLECTION

A magnetic localization model is first trained on a magnetometer, and then tested in two 

separate experiments that simulated a post-deployment environment by (1) changing the 

magnetization of the training magnetometer and (2) replacing it with another magnetometer. 

The data collection was performed with EF and PDIST to evaluate the effect of calibration 

on reliability. Since this work is part of a research project whose aim is to develop an 

articulograph for tongue tracking, Vp is selected to encompass the volume of the oral cavity.

A. Experiment Setup

Fig. 3 shows the 5D positioning stage that was used to accurately place the magnetometer 

in any desired 3D position. Although our positioning stage can also control the orientation 

of the magnetometer, this paper focuses only on investigating reliability for 3D positioning 

since the impact of rotation on tracking accuracy and reliability is a completely separate 

problem that will be studied in future work. However, we would refer interested readers 

to the previous work in [6] for an analysis of performance of the localization model with 

orientation. The 9D IMU used in this study is a BMX160 (Bosch Sensortec, Reutlingen, 

Germany) that includes an accelerometer, gyroscope and magnetometer. As shown in Fig. 

3, up to three IMUs can be used simultaneously to collect multiple datasets at a sampling 

frequency of 125 Hz. The local magnetic field is produced by an array of magnets embedded 

inside an eyewear that was designed for a wearable tongue tracking application. Rotary 

motor encoders provide the ground-truth 3D position of the IMU, and the center of the nose 

bridge area on the eyewear is selected as the origin. The unit of magnetic measurements is 

Least Significant Bit (LSB) for which 1 LSB is equal to 3 milligauss, and output positions 

are in millimeters (mm).

B. Localization Model Training

Fig. 4 shows the training, validation and testing trajectories that are sampled within a 

volume of 10 × 12 × 9 cm3. They are collected sequentially to reduce the possibility of a 

change in magnetization during this session. The number of magnetic samples collected for 

each dataset are as follows: training (215,000), validation (185,000), and testing (45,000). 

The validation set follows a similar trajectory to that of the training set but with a positional 

shift in each axis to ensure that the localization model will not overfit to the training set. The 

testing set is a unique trajectory that traverses positions unseen in the training and validation 

datasets. Furthermore, it includes curved movement similar to the motion of the tongue.
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The localization model f  is based on a feed-forward neural network with two hidden 

layers. The effectiveness of a feed-forward neural network is demonstrated in [8], and our 

preliminary research showed empirically that using two hidden layers provides a localization 

accuracy that is as good as with more than two layers but better than with only a single layer. 

The hyperparameters of the model are tuned using the validation dataset with learning rates 

selected from 0.0003, 0.001, 0.003 , the number of neurons in each hidden layer selected 

from 256, 512, 1024 , and the minibatch size selected from 16, 64, 128 . A grid search 

over these parameters is applied, where candidate models with different hyperparameter 

configurations are trained for 50 epochs. The model with the minimum validation loss is 

selected for testing. Mean squared error is selected as the loss function, Adam [21] is chosen 

as the optimizer, and PyTorch is used to generate the model [22].

C. Deployment Dataset

To evaluate the effect of magnetization, four deployment datasets were collected. A 

Wiha 40010 magnetizer/demagnetizer (Wiha Werkzeuge GmbH, Schonach, Germany) was 

used to induce random magnetization (i.e., different FoR) to the magnetometer between 

each dataset. To evaluate the performance of the model on a different magnetometer, 

two additional datasets were collected for which the magnetometer used to train the 

localization model is replaced by a different magnetometer. The training trajectory is 

purposely used for each of these six deployment datasets in order to emphasize the effects of 

change of magnetization/magnetometer on magnetic localization. During dataset collection, 

magnetometers were not rotated or exposed to magnetic interference.

D. Calibration Procedures

For EF, the magnetometer was rotated in different directions for 20 seconds and away 

from any magnet. The EF method detailed in [10] was used to transform the obtained 

ellipsoid into a sphere. Under the assumption that each magnetic measurement should have 

the same magnitude after a successful calibration, we first calculated the 5% and 95% 

percentiles of the magnitudes, denoted as r1 and r2. As a fitness score for this calibration, we 

used r2 − r1 / 0.5 × r1 + r2  to emphasize that magnitudes should be concentrated around a 

single value. If the fitness score was below an empirical value of 0.07, the calibration was 

considered successful and corresponding transformation matrix GEF = bT

A
 is returned.

For the PDIST, DT
Q and DQ were collected before their complete datasets. Although we 

used a 5D positioning stage in this proof-of-concept study, collecting these datasets can 

be completed by simply placing magnetometers into predetermined positions and recording 

magnetic measurements from those locations. It is important to state that during the data 

collections of DT
Q and DQ, preserving magnet/magnetometer placements and orientations is 

vital for finding the correct transformation. DT
Q was used as the reference dataset to project 

the magnetic measurements of the deployment dataset onto the training's FoR through 

the mapping function GPDIST using equation (2). Depending on the followed calibration 

strategy, we apply equation (3) using either GEF or GPDIST to transform D.
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IV. RESULTS & DISCUSSION

Positional errors are calculated using the L2-norm of the difference between the 3D 

positions that were predicted by our localization model and the ground-truth provided by 

the positioning stage. The distribution of the positional errors are shown as box plots, and 

to facilitate the comparison of our results to other studies, the root mean squared error 

(RMSE), median error and the 75% quartile (Q3) error, are also provided in tables. The 

results have been validated for consistency by repeating the data collection with all possible 

combinations of training and deployment testing using three magnetometers. For brevity, 

only the results from one of the possible train/deployment combinations are reported.

A. Localization Accuracy After Training

Although the primary focus of this paper is on the differences in localization accuracy 

between the training and deployment datasets, the results corresponding to the validation 

and test datasets are still provided to emphasize that the trained model is indeed effective 

in predicting trajectories other than that of the training. Table I shows that the RMSE and 

median errors across all datasets are at or below 1 mm, while Q3 errors are between 1.3 mm 

and 1.6 mm, suggesting that the model generalizes well to the target volume as long as the 

current magnetization of the training magnetometer is preserved.

B. Reliability Under Change in Magnetization

Fig. 5 shows more detailed results with DT denoting the training dataset and D1 − D4

are the four deployment datasets collected by the same magnetometer but with different 

magnetizations. In Fig. 5a, the distribution shift is shown as the difference in magnetic 

measurement between DT and each deployment dataset. The effect of change in 

magnetization on the input space is significantly reduced when PDIST is used compared to 

EF. Indeed, the median differences of magnetic measurements with PDIST are consistently 

below 20 LSB, closer to the range of noise level of the magnetometer (mean: 10.57 LSB, 

std: 7.78 LSB), while being much larger with EF for D2 − D4 (median > 50 LSB). Even 

though EF performed better on D1, it remains worse than PDIST. In contrast, the results with 

PDIST are consistent throughout the four datasets.

Box plots of the positional errors are shown in Fig. 5b. and Table II provides the error 

values for the median, Q3 and RMSE. With EF, the localization results show that even 

for measurements obtained from seen positions during training, the median errors vary 

significantly from 2–4 mm and Q3 from 4–7 mm which is not reasonable for many body 

motion tracking applications. With PDIST (Fig. 5c), the median errors are below 1.5 mm 

and Q3 errors are between 2–2.5 mm. Therefore, the positional errors are not only much 

lower with PDIST when compared to EF, but also more consistent across all deployment 

datasets which provides evidence that PDIST is a more reliable calibration method to 

mitigate the effect of magnetization.

C. Reliability Under Change of Magnetometer

The results are shown in Fig. 6 for which DA and DB denote two deployment datasets 

collected by two magnetometers different than the one used for training DT . For EF, the 
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distribution drift between the input spaces (Fig. 6a) is more evident than in the previous 

data collection. It appears that EF has more difficulty with attenuating distribution drift 

from one magnetometer to another than reducing magnetization of a same magnetometer. 

Consequently, this is reflected on the localization accuracy (Fig 6b) that can reach a median 

error around 9 mm and a Q3 of 13 mm for DA. The results with PDIST (Fig. 6c) is again 

much better with median errors remaining consistently around 1.2 mm and Q3 around 2 

mm. The exact values of positional errors for RMSE, median, and Q3 are shown in Table III.

D. Analysis on Sampling for PDIST

The number of samples of DQ must be carefully selected for our PDIST to be practical. 

Indeed, the PDIST will be performed by end users before starting a tracking session. 

Obviously, they will not have access to a 3D positioning stage, nor have the time to collect 

a large and comprehensive DQ. Therefore, the objective is to reach a sufficient level of 

reliability with the minimum number of samples. In the future, we are planning to develop a 

custom-designed calibration device in which the magnetometer can be placed by an end user 

in a small set of predefined positions to collect DQ. Additionally, the locations of a fixed 

number of samples are important to maximize reliability. To assess the effect of number and 

locations of the DQ samples, we performed PDIST using the following strategies:

• a1. 24 samples distributed across the volume

• a2. 12 samples distributed across the volume

• a3. 6 samples distributed across the volume

• a4. 8 samples distributed across regions of higher magnetic strength (closer to the 

magnets)

• a5. 8 samples distributed across regions of lower magnetic strength (away from 

the magnets)

These strategies were tested on all datasets, but for brevity, Fig. 7 is only showing the results 

for D1, D2, DA and DB.

Overall, a1 and a2 have consistently the lowest localization errors across all datasets, except 

DB for which the difference with the best strategy (a4) is not significant. Similar results to 

a1 and a2 are also shown for a3, however, its poor tracking performance for DB might be 

significant enough to discard it as a suitable strategy. Regarding the region of sampling, 

it seems that a region with higher (a4) or lower (a5) magnetic field strength alone is not 

sufficient for PDIST to improve localization reliably. Indeed, higher localization errors are 

generally found for a4 and a5, and for D2 with a4, the performance with PDIST is even worse 

than with EF. These results show that the region where the samples are collected is more 

important than the number of samples. Therefore, a2 seems to be the best strategy to create 

DQ because it has the best balance between localization error and sample size.
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E. Sources of Error & Limitations

In this section, we discuss sources of errors which include noise, non-linearity and effects 

of orientation and magnetometer/magnet placements, and their effects on the performance of 

PDIST.

1) Noise: The 5D positioning stage stopped at each predetermined PDIST location and 

recorded a sample before moving to the next location. Therefore, there was no noise due to 

motion artifacts. However, the magnetometer has its own electronic noise but was negligible 

to significantly distort measurements.

2) Orientation and magnetometer/magnet placements: During our experiments, 

thanks to the 5D positioning stage, the locations and orientations of magnetometers/magnets 

remained fixed. It is of great importance to preserve this configuration across training and 

deployment in a practical application since differences in orientation might result in finding 

a wrong transformation between input spaces due to outliers and consequently cause higher 

localization errors. Future work will include creating a practical setup that will prevent such 

issues.

3) Non-linearity of transformation: If the relationship between input spaces was 

only a shift or rotation, the location of the samples would not matter to find the linear 

transformation G. However, our results suggest that the samples should be distributed 

throughout the volume, and thus implying that capturing samples in regions with different 

magnetic field strengths has an effect on the performance of PDIST. Therefore, together 

with the fact that PDIST is not completely removing the sources of unreliability since its 

positional errors in the deployment datasets are still higher than after training, this might 

indicate that the underlying transformation G could be non-linear. Future work will compare 

the performance of PDIST with non-linear transformations.

V. CONCLUSION

In this paper, we introduced the post-deployment input space transformation (PDIST) as a 

new magnetic calibration method that was designed to reduce the effect of distribution shift, 

and consequently improve localization reliability after the deployment of the localization 

model in the field. Unlike the conventional ellipsoid fit calibration, PDIST uses the 

information about the input space during the training of the localization model to offer 

superior reliability and accuracy post-deployment by projecting the magnetometer readings 

back to the input space used during training. Although PDIST requires a slightly longer 

calibration procedure than existing methods, future work will aim at improving this 

procedure for the end user by designing a more practical calibration setup that will consist 

of placing the magnetometer into a limited number of predetermined slots on a 2D plate. 

Furthermore, the localization results with PDIST were shown to be consistent across 

multiple datasets that were collected with changing magnetization and magnetometers, 

indicating that our localization method is reliable for practical usage. With this work, the 

objective is to enable researchers to have access to a wearable motion tracking system, 
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including those in the field of speech research that are in a dire need of a wearable 

articulograph to track tongue motion to improve sound production [23].
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Fig. 1. 
Overview of the problem of reliability with magnetic localization in which the change in 

magnetization and the use of a trained model on different magnetometers cause unreliable 

localization post-deployment.
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Fig. 2. 
Illustration of the difference in localization accuracy (right) when calibrating a 

magnetometer with EF (top left) and PDIST (bottom left).
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Fig. 3. 
Experiment setup in which a local magnetic field is generated by permanent magnets 

embedded in an eyewear.
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Fig. 4. 
3D trajectories used to collect the training, validation and testing datasets.

Yaldiz et al. Page 18

IEEE Sens J. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Effects of PDIST under change in magnetization. (a) Distribution of the norm of 

the magnetic measurement differences between training set and deployment sets. (b) 

Distribution of positional errors.
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Fig. 6. 
Effects of PDIST under change of magnetometer. (a) Distribution of the norm of 

the magnetic measurement differences between training set and deployment sets. (b) 

Distribution of positional errors.
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Fig. 7. 
Effects of different sampling strategies for PDIST. Boxplots show the distributions of 

localization errors.

Yaldiz et al. Page 21

IEEE Sens J. Author manuscript; available in PMC 2024 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yaldiz et al. Page 22

TABLE I

POSITIONAL ERRORS OF THE TRAINED MODEL (IN MM).

Dataset RMSE Median Q3

Training DT 0.78 0.89 1.34

Validation 0.75 0.84 1.29

Testing 0.86 1.02 1.54
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TABLE II

POSITIONAL ERRORS (IN MM) ACROSS DEPLOYMENT DATASETS WITH CHANGE IN MAGNETIZATION.

Dataset

RMSE Median Q3

EF PDIST EF PDIST EF PDIST

D1 2.09 1.12 2.43 1.26 4.33 1.99

D2 3.08 1.27 3.89 1.52 6.02 2.38

D3 3.15 1.19 4.04 1.48 6.63 2.26

D4 3.36 1.09 3.43 1.24 6.78 1.99
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TABLE III

POSITIONAL ERRORS (IN MM) ACROSS DEPLOYMENT DATASETS WITH CHANGING MAGNETOMETER.

Dataset

RMSE Median Q3

EF PDIST EF PDIST EF PDIST

DA 5.61 1.18 8.76 1.25 13.42 2.02

DB 2.43 1.26 2.86 1.23 5.22 2.13
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