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Abstract

The epithelial lining of the small intestine mediates its absorptive and secretory function and 

thus is a critical component of human health. Regeneration and renewal of the epithelium is the 

result of proliferation of intestinal stem cells (ISCs). Many cell types and molecular factors are 

known to regulate the ability of ISCs to proliferate, including adjacent neighboring epithelial cells 

and the underlying, supportive stromal cells. The microbiome resides in the lumen of the small 

intestine and is in close contact with the epithelium. Due to its proximity to ISCs, it has been 

hypothesized that species within the microbiome have the capacity to regulate ISC proliferation 

and differentiation. This review highlights research that probes interactions between ISCs and the 

microbiome in the small intestine to detail the current understanding of microbial regulation of 

ISCs. Results from these studies provide important knowledge that can be exploited to identify 

therapeutic targets or develop novel preventative treatments to treat intestinal diseases.

Introduction:

The small intestinal epithelium is a single layer of diverse types of secretory and absorptive 

cells that mediate intestinal function. The epithelium is divided into two microdomains or 

compartments: the villus and the crypt. The crypt region is characterized by invaginating 

pocket-like structures that are surrounded by the underlying stroma, while the villus region 

protrudes into the intestinal lumen to increase surface area for nutrient absorption. The 

crypt is home to intestinal stem cells (ISCs), that undergo two types of cell division. 

Symmetric division generates new ISCs for self-renewal, and asymmetric division gives 

rise to daughter cells that migrate from the crypt region into the villus region, where 

they undergo differentiation to functional secretory and absorptive cells. ISCs continuously 

proliferate and differentiate, replacing the mature cells that line the villus region every 

three to five days. The microenvironment of the small intestinal crypt where ISCs reside is 

termed the “ISC niche.” Components of the ISC niche include the surrounding differentiated 

epithelial cells that remain in the crypt instead of migrating to the villus, and the underlying 

stromal cells, a heterogenous group of cells that reside in the connective tissue including 
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mesenchymal, immune, neuronal, and vascular cells. The epithelial and stromal components 

of the ISC niche serve as a well-known, major source of signals that modulate ISC 

proliferation and differentiation (Santos et al., 2018, Greicius and Virshup, 2019). Recently, 

the human microbiome has emerged as another source of factors that regulate the function 

of ISCs. The advent of the Human Microbiome Project resulted in a wealth of information 

regarding the putative microbial composition in the small intestine (Human Microbiome 

Project, 2012), and a recent focus on the functionality of these organisms has resulted in the 

discovery that the microbiome and ISCs have an intimate relationship (Peck et al., 2017). 

This review will discuss the regulation of ISCs, the current understanding of the landscape 

of the small intestinal microbiome and its products, and the evidence that the microbiome is 

a source of signals for ISCs and thereby a major component of the ISC niche. It is important 

to comprehend how ISCs interact with the small intestinal microbiota and are influenced by 

bacterial products, as this knowledge enhances our understanding of the factors that assist 

in maintaining epithelial homeostasis and contribute to renewal and repair in the context of 

small intestinal damage.

Regulation of the Intestinal Stem Cell:

ISCs in the small intestine undergo continuous rounds of cell division approximately every 

24 hours (Potten, 1998). As they divide in the base of the crypt, undifferentiated daughter 

cells migrate upwards through the transit-amplifying (TA) zone near the crypt-villus axis, 

where they continue to divide as they progress upwards towards the villus. As the cells 

move up the villus, they differentiate into their respective functional cell types, including 

enteroendocrine cells, which secrete hormones, enterocytes, which absorb nutrients, tuft 

cells, which perform chemosensory functions, and goblet cells, which secrete mucus. The 

exception to this upwards movement of differentiating cells are Paneth cells, which reside 

in the base of the crypts, where they secrete anti-microbial factors and shape the intestinal 

microbial composition (Figure 1) (Clevers, 2013, van der Flier and Clevers, 2009, Barker et 

al., 2012, Tian et al., 2011, Bevins and Salzman, 2011, Metcalfe et al., 2014, Clevers and 

Bevins, 2013). Apart from Paneth cells and a few enteroendocrine and tuft cells that remain 

in the crypt region, differentiated daughter cells migrate to the tip of the villus, where they 

are eventually shed into the small intestinal lumen by a process called anoikus. As ISCs 

are primarily responsible for this process of generating new daughter cells that differentiate 

into the mature intestinal cell types, regulation of ISCs is tightly controlled to ensure normal 

epithelial homeostasis and renewal, and conversely, is dysregulated in many small intestinal 

diseases.

Many markers have been used to identify ISCs, facilitating the study of ISC regulation. 

Currently in the small intestine, the most well-studied crypt ISC marker is a cell surface 

receptor named LGR5 (leucine-rich-repeat-containing G-protein-coupled receptor 5, also 

known as Gpr49). Other markers that have been associated with ISCs include OLFM4, 

KI67, PCNA, SOX9, ASCL2, and AXIN2 (Barker et al., 2012, Burclaff et al., 2022). 

Postulated quiescent or reserved stem cells – also called +4 ISCs – reside directly above 

the terminal Paneth cells in the beginning of the TA zone, and are marked by BMI1, 

HOPX, TERT, and LRIG1 (Burclaff et al., 2022, Duckworth, 2021, Yan et al., 2012). The 

existence of quiescent ISCs is controversial, and unlike the actively dividing LGR5+ ISCs, 
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quiescent ISCs are not thought to be the primary source of epithelial renewal in homeostatic 

conditions, but are rather believed to play a major role in regenerative repair in the context of 

LGR5+ ISC damage, especially following radiation exposure (Andersson-Rolf et al., 2017, 

Metcalfe et al., 2014, Dheer and Young, 2021). Control of LGR5+ ISC proliferation and 

differentiation in the small intestine has been linked to conserved signaling molecules and 

pathways, including wingless/integrated (WNT), R-spondin, epidermal growth factor (EGF), 

Hedgehog, Notch, Gremlin, and bone morphogenetic proteins (BMPs) (Vanuytsel et al., 

2013). Key factors in these pathways are provided to ISCs by various cells that comprise 

the ISC niche (Duckworth, 2021, Greicius and Virshup, 2019, Santos et al., 2018), namely 

Paneth cells, which reside in between the actively dividing LGR5+ ISCs (Figure 1) and 

provide WNT and Notch ligands to ISCs (Clevers and Bevins, 2013), and stromal cells, 

such as telocytes and myofibroblasts, which reside underneath the epithelium and serve as a 

source of WNTs, R-spondin proteins, and EGF (Greicius et al., 2018, Greicius and Virshup, 

2019, Gregorieff et al., 2005, Kabiri et al., 2014). The canonical WNT pathway is the most 

well-established regulator of ISCs (Barker et al., 2008, Barker et al., 2007, Barker et al., 

2012, Logan and Nusse, 2004, Katoh, 2007, Katoh and Katoh, 2007), and WNT proteins 

secreted from stromal or Paneth cells locally activate intracellular signaling cascades within 

neighboring ISCs in a paracrine fashion (Sato et al., 2011, Greicius and Virshup, 2019, 

Greicius et al., 2018, Kabiri et al., 2014, Katoh, 2007, Katoh and Katoh, 2007, Theodosiou 

and Tabin, 2003). WNT target genes play an indispensable role in maintaining stemness 

and promoting proliferation in the small intestine, and WNT signaling thereby serves as the 

master regulator of proliferation in the ISC niche (Logan and Nusse, 2004, Katoh and Katoh, 

2007, Biechele and Moon, 2008). In addition to their role in small intestinal homeostasis, 

many of these proliferation-promoting factors, such as WNT, have been shown to play a 

vital role in ISC recovery after damage (Gehart and Clevers, 2019, Santos et al., 2018, 

Greicius and Virshup, 2019, Duckworth, 2021).

The Microbiome:

The microbiome consists of more than 300 trillion bacteria, fungi, and viruses (Dave et 

al., 2012, Human Microbiome Project, 2012) that colonize the gastrointestinal tract. The 

small intestinal organisms are dynamic due to the changing conditions in the small intestine 

caused by intact of food, the intermittent secretion of enzymes and factors, and short transit 

time(Kastl et al., 2020). The composition of organisms varies by region with increasing 

amount and diversity from the proximal to distal portions (Kastl et al., 2020). Interactions 

between these organisms and ISCs could occur through two possible points of contact: 

direct communication between the organism and ISCs or communication with a niche cell 

that then indirectly signals ISCs (Peck et al., 2017, Savage and Blumershine, 1974, Nelson 

and Mata, 1970). Although tantalizing data suggests small intestinal microbes play a role 

in regulating ISCs, the underlying mechanisms that form the basis for microbiome-ISC 

interactions have not been elucidated. Filling this knowledge gap has been challenging, 

partly due to the lack of in vitro models in which microbe-epithelium interactions can 

be interrogated, the diversity of the gut microbiome and factors it produces, and the 

difficulty in pinpointing exactly what organisms are present in the small intestine. Most 

of the studies investigating small intestinal microbe-ISC interactions have utilized murine 
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models. Although much has been learned from these studies, the composition of the 

murine microbiome is distinct from humans due to many factors, including host genetics, 

differences in the composition of outer intestinal mucosa layer that affects mucus-associated 

bacteria survival, lower intestinal pH values, and differences in diet (Arrieta et al., 2016, 

Hugenholtz and de Vos, 2018). Humans and mice share only 15% of intestinal bacteria 

lineages, and while murine models can provide valuable insights into ISC-microbiome 

interactions, the many differences between the human and mouse intestinal microbiomes 

highlight the need to study these interactions in a complimentary human model system 

(Arrieta et al., 2016). Human intestinal organoids provide a new model system in which 

human microbe-ISC interactions can be interrogated ex vivo, as they enable the culturing of 

human ISCs, model differentiation of the human epithelium, and facilitate the exploration of 

microbial-ISC interactions in a reductionist environment (Blutt et al., 2018, Foulke-Abel et 

al., 2014, Zachos et al., 2016). New advances in human organoid cultures will be addressed 

below.

The Landscape of the Intestinal Microbiome and Its Metabolites:

The composition of the small intestinal microbiome is highly variable based on the genetics 

of the individual and environmental factors such as age, diet, and antibiotic use (Hasan and 

Yang, 2019, Kurilshikov et al., 2021). The microbiome produces many factors that appear to 

modulate its functional role in the intestine, including short chain fatty acids (Boffa et al., 

1992, Ichikawa and Sakata, 1997, Lee et al., 2017, Lee et al., 2018), tryptophan metabolites 

(Roager and Licht, 2018), polyamines, (Wang et al., 1991), secondary bile acids (Kozoni et 

al., 2000, Pai et al., 2004), vitamins (Lai et al., 2021), reactive oxygen species (Morris and 

Jasper, 2021), and hydrogen sulfide (Xing et al., 2020). Most of the research characterizing 

the overall intestinal microbiome has utilized 16S gene content analysis in stool, which 

is easily collected via non-invasive methods (Dave et al., 2012, Tang et al., 2020, Human 

Microbiome Project, 2012) but reveals very little about what might be present in the small 

intestine. Recent studies have revealed differences between the composition of the stool 

microbiome compared to the microbiome found at the intestinal epithelial surface (Vuik et 

al., 2019, Vasapolli et al., 2019). Differences in bacterial composition also exist between 

the luminal microbiota and the microbiota proximal to the epithelium, potentially because 

epithelial-associated organisms have unique properties allowing them to utilize nutrients and 

adhere to glycans within the mucous layer that coats the epithelial surface (Robbe et al., 

2004, Juge, 2012). The composition of the microbiome also varies by region in the intestine 

and increases in diversity from the small intestine to the large intestine, with a smaller 

bacterial load and less-diverse microbiota associated within the upper duodenal regions of 

the small intestine and the largest numbers and greatest diversity of bacteria found in the 

terminal large intestine (Martinez-Guryn et al., 2019, Zhang et al., 2014). The diversity of 

the bacterial communities along the different regions of the intestine also contributes to the 

spectrum of products produced by microbes in each intestinal region, thereby affecting the 

local interactions of microbes and their metabolites with the epithelium (Wang et al., 2005, 

Stearns et al., 2011).

While researchers are making strides in gaining a deeper understanding of which bacteria 

inhabit the upper and lower regions of the human gastrointestinal tract, the composition 
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of the human microbiota that colonizes the middle portions of the small intestine – the 

jejunum and upper ileum – has remained elusive (Dave et al., 2012, Tang et al., 2020, 

Kastl et al., 2020). Difficulties in assessing the microbiota in this region is mainly a 

result of technical challenges in sampling these regions through traditional endoscopy and 

colonoscopy methods, as the middle regions of the small intestine are not easily reached 

by scope equipment. Additionally, utilizing animal models to make these discoveries is 

limited by the substantial variations in microbial composition between animals and humans. 

Advancements in identifying which bacteria reside in the small intestine may be achieved 

by examining small intestinal tissues obtained through organ donation. By scraping the 

intestinal tissue, organ donor samples can be used to isolate microbes found in these regions 

from healthy individuals (Sartor, 2015).

Role of the Microbiome on Intestinal Stem Cell Regulation:

The idea that small intestinal microbiome plays a role in modulating ISC activity results 

from its proximity to the epithelium and ability to secrete factors that can modulate ISC 

biology. Indirect evidence for microbial regulation of ISCs originated from observations 

by Gordon and Bruckner-Kardoss in 1961 that germ-free mice showed reduced intestinal 

surface area compared to that of conventionally raised mice (Gordon and Bruckner-Kardoss, 

1961). Many other studies have observed the phenomena of reduced villus height, crypt 

depth, and mitotic indices in the small intestine of germ-free or antibiotic-treated mice when 

compared to mice with a unaltered microbiome (Lesher et al., 1964, Greig et al., 2018, 

Khoury et al., 1969), suggesting that the microbiome can control epithelial regeneration and 

renewal. Further support for a link between the microbiome and ISCs comes from reports 

that colonization with microbes restores normal intestinal epithelial histology in germ-free 

mice, rats, and Drosophila (Gordon and Bruckner-Kardoss, 1961, Buchon et al., 2009a, 

Banasaz et al., 2002). Evidence for direct interactions between microbes and ISCs has 

also emerged from studies by Lee et al. where microbially produced lactate was shown to 

enhance proliferation in the murine small intestine via the stimulation of the LGR5 receptor 

on ISCs (Lee et al., 2018). It remains to be seen whether this activation of LGR5 ISCs 

occurs because microbially derived lactate interacts directly with ISCs or indirectly via the 

stimulation of other cell types of the ISC niche (Table 1). Although an in-depth mechanism 

of how the microbiome regulates ISCs remains to be fully elucidated, evidence from the 

literature suggests that a complex network of microbes and their metabolites are clearly 

involved in regulating ISC activity through various niche pathways, in the context of both 

homeostasis and damage.

Many species and strains of intestinal bacteria have been implicated in affecting ISC 

proliferation and differentiation (Table 1). Due to the amount of genetic variability between 

strains of a bacterial species – especially in those that were isolated from different hosts 

(Frese et al., 2011) – it is probable that many of the observed effects of a given microbe 

are strain-specific. For example, in mice, Lactobacillus reuteri strain 17938 increases murine 

small intestinal crypt cell proliferation, but strain 6475 does not (Preidis et al., 2012). 

Comparative genomics reveals that although these strains are members of the same species, 

they share only 70% of their genes (Saulnier et al., 2011). As these strains differ in their 

ability to induce crypt cell proliferation, these genetic differences may code for factors 
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that modulate ISCs, potentially providing key targets for further exploring the relationship 

between ISCs and the microbiome. Strain-specific differences are particularly relevant when 

drawing conclusions from studies linking specific microbial metabolites or factors from a 

microbial species to ISC regulation, as not all strains of a species may produce the same 

factor.

Many different mechanisms have been proposed to explain how microbes regulate ISCs 

(Table 1 and Table 2), suggesting that microbial regulation of ISCs is most likely complex 

and multi-factorial, involving multiple pathways and mechanisms. Of the major niche 

pathways, the mechanism often proposed for microbial stimulation of ISC proliferation is 

the activation of WNT/β-catenin signaling (Kim et al., 2021, Wu et al., 2020, Lyu et al., 

2022), which is unsurprising, as this pathway is the major proliferation-stimulating pathway 

in LGR5+ ISCs, and without proper WNT/β-catenin signaling, the intestinal epithelium is 

unable to self-renew (Korinek et al., 1998, Pinto et al., 2003, Kuhnert et al., 2004). Whether 

microbes induce these pathways directly, with microbial cells themselves interacting with 

the epithelial surface, or indirectly, via microbial metabolites, secreted proteins, or outer 

membrane vesicles remains poorly understood. Due to the presence of the mucus barrier 

that overlays the intestinal epithelium in the absence of injury or disease, many studies have 

concluded that microbes are unable to physically interact with the epithelium, hypothesizing 

that the ISC niche is a sterile environment, free from microbes themselves (Hansson and 

Johansson, 2010, Johansson et al., 2008, Johansson et al., 2014). However, the crypt 

location would be ideal for microbial modulation of ISC pathways through direct microbial 

communication with the various ISC niche components—potentially through interaction 

of microbial cell wall components with the epithelium or through the release of outer 

membrane vesicles or metabolites that can locally interact with the niche—yet whether these 

direct interactions occur remains unknown.

In addition to WNT/β-catenin signaling, other pathways of microbial regulation of ISCs 

have also been suggested. ISCs robustly express the pattern recognition receptor Nod2, 

which recognizes the peptidoglycan motif muramyl dipeptide (MDP) that is a cell wall 

component in all bacteria (Nigro et al., 2014, Ogura et al., 2003). This finding serves as 

a clue that microbial cells may be able to physically interact directly with ISCs. MDP 

has been linked to beneficial effects in epithelial repair and has recently emerged as a 

microbial-responsive mechanism that aids in ISC survival in murine and organoid studies. 

Nod2 has been shown to trigger a pathway of ISC cytoprotection when stimulated by 

MDP; a mechanism thought to enhance the ability of ISCs to regenerate crypts upon 

exposure to cytotoxic stressors such as reactive oxygen species, radiation damage, or the 

chemotherapeutic agent doxorubicin (Nigro et al., 2014, Levy et al., 2020, Lee et al., 2019).

Many microbially derived metabolites and secreted products are thought to provide 

important components to the ISC niche (Table 2). Recognition that small intestinal microbial 

products such as MDP and lactate can maintain the proliferative capacity of the ISC 

niche in the context of damage highlights the importance of maintaining a diverse, healthy 

microbiome. Several strains promote proliferation and facilitate epithelial renewal following 

damage, as seen in DSS-induced mouse colitis models, radiation-induced rat injury models, 

and during pathogenic infection (Wu et al., 2020, Zhang et al., 2020, Zhang et al., 2023, 
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Lu et al., 2020, Hua et al., 2023) (Table 1). These findings demonstrate that microbes play 

an important role in repairing the small intestinal epithelium following damage. Commensal 

microbes, such as Lactobacillus reuteri D8, can stimulate epithelial proliferation and repair 

to reduce intestinal pro-inflammatory cytokine secretion and serum LPS concentrations 

(Wu et al., 2020). Additionally, in the context of damage due to inflammation or radiation 

injury, commensal microbes – especially lactobacilli – have been documented to play a 

very important role in facilitating small intestinal epithelial renewal by stimulating ISC 

proliferation via IL-22 secretion from immune cells (Zhang et al., 2023, Hua et al., 2023, 

Qiu et al., 2017, Ge et al., 2022, Hamade et al., 2022, Hou et al., 2018). In contrast, other 

evidence suggests that certain microbes might enhance damage. The microbial endotoxin 

lipopolysaccharide (LPS), which is often present in higher amounts during pathogenic 

infection, has been shown to inhibit cellular proliferation and increase apoptosis in bot the 

small intestine upon binding to the toll-like receptor 4 (TLR4) (Naito et al., 2017, Neal et al., 

2012). Further work is necessary to understand both the positive and detrimental effects of 

the small intestinal microbial composition on ISC regulation.

Ways to Study Microbial Regulation of Intestinal Stem Cells:

Most of the research studying the pro-proliferative effects of various microbes on the 

ISC has been conducted in murine models. However, it has not yet been ascertained 

how applicable these discoveries in murine systems are to human biology. The expanded 

use of human intestinal organoid model systems provides the opportunity to overcome 

the hurdles of host and species-specific differences. In 2011, Sato et al. pioneered the 

development of ex vivo tissue-derived human small intestinal organoids (HIOs), which allow 

the direct cultivation of human ISCs in vitro (Sato et al., 2011). Unlike transformed cell 

lines, HIOs are genetically stable and closely model the cellular makeup of the in vivo 
intestinal epithelium (Blutt et al., 2018, Foulke-Abel et al., 2014, Sato et al., 2011, Sato 

et al., 2009), which presents many advantages. HIOs can be grown in multiple formats, 

facilitating the study of many scientific questions involving microbe-epithelial interactions 

(Figure 2). In a 3D format, bacteria can be microinjected into the lumen of the HIO to 

assess how live microbes affect the rate of organoid growth and ISC proliferation (Poletti et 

al., 2021). Williamson et al. recently developed a high-throughput method of 3D organoid 

microinjection to evaluate how various microbes influenced gastrointestinal physiology 

(Williamson et al., 2018). Additional studies in 3D HIOs have analyzed the impacts of 

microbes or their secreted products on various aspects of epithelial biology (Co et al., 2019, 

Dheer and Young, 2021). HIOs can also be grown in a 2D monolayer or transwell format, 

which allows easy access to the epithelial apical surface for the application of microbes or 

their products and more closely mimics the physiologic contact of the epithelium and the 

intestinal microbiome (VanDussen et al., 2015, Wilke et al., 2020). Transwells also facilitate 

access to the basolateral side of the epithelium to address microbial-cell interactions that 

may occur in this region and model systemic infections (Wang et al., 2018). Work in 

organoid models has allowed researchers to determine the colonization patterns of microbes 

and how microbial factors affect the apical surface of the epithelial cells (Rajan et al., 2018, 

Zhang et al., 2020). As HIOs have the advantage of preserving the host’s genetic makeup 

in vitro, microbial-HIO studies can encompass multiple individuals with a variety of genetic 
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backgrounds, permitting the assessment of demographic factors such as sex, ethnicity, and 

age to be studied in the context of the microbiome. The advent of HIOs presents a powerful 

tool that can be used to gain a comprehensive understanding of the intricate interplay 

between the human small intestinal microbiome and ISCs. To circumvent disparities in the 

microbiota between mice and humans, future research endeavors should supplement rodent 

models with the integration of microbiome components into HIOs.

Additional methods to study complex communities of bacteria are being developed that, 

when combined with organoid technology, can be used to assess host-microbe and 

ISC-microbe interactions. Robert Britton’s laboratory pioneered the development of mini-

bioreactor arrays (MBRAs) that can be utilized to cultivate complex human small intestinal 

microbial communities and metabolites (Auchtung et al., 2015). Using the MBRA system, 

stable microbial communities can be reliably and reproducibly cultured within eight days, 

with approximately 94% of the microbes present from the original sample represented 

in the MBRA community (Auchtung et al., 2015). Supernatants from these communities 

can be collected and their biological effects on ISCs assessed using several different 

assays. Other laboratories are actively expanding the repertoire of culturable bacteria; 

an advancement that, when paired with HIO studies, will substantially contribute to the 

scientific community’s ability to uncover the mechanistic relationship between complex 

communities of microbes and ISCs (Wang et al., 2018, Rettedal et al., 2014, Kim et al., 

2016, Kim et al., 2022, Afrizal et al., 2022).

Microbial Regulation of the Large Intestine Stem Cell:

Unlike the small intestinal epithelial landscape, which has a crypt and villus architecture, 

the colonic epithelial landscape is much different, and only consists of deep glandular crypt 

regions. The colon is home to the greatest and most diverse population of microbes in the 

body; therefore, it is also important to understand how the resident bacteria in the colon 

may be impacting the regeneration processes of the colonic stem cell. Due to the ease of 

sampling and characterizing the microbiome in the large intestine, there is a plethora of 

research examining whether large intestinal microbial communities modulate ISCs. Driving 

this work is the association of colorectal cancer and the microbial composition in the large 

intestine. Large intestinal microbial dysbiosis strongly correlates with the development of 

cancer in the large intestine(Kim and Lee, 2021) and there is much focus on understanding 

the effect of the large intestinal microbiome on epithelial proliferation.

Several groups have found that various large intestinal microbes and microbial products can 

influence ISC proliferation in the colon including Bacteroides fragilis, and Lactobacillus 
rhamnosus GG (Wu et al., 2003, Zhang et al., 2023, Darby et al., 2020). Colonic organisms 

have been postulated to interact with the colonic ISC via several different mechanisms, 

including a toxin-mediated destruction of epithelial E-cadherin which subsequently triggers 

an epithelial repair response characterized by β-catenin translocation to the nucleus, a 

hallmark of ISC activation(Wu et al., 2003). Other mechanisms include activation of STAT2 

signaling via the induction of IL-22 (Zhang et al., 2023), leptin mediated induction of 

epithelial proliferation, and proliferation via pathways that involve Nox (Darby et al., 2020). 

Most of the work linking specific large intestinal microbial metabolites to ISC regulation 
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involve short-chain fatty acids (SCFAs), such as butyrate, acetate, propionate, and valproic 

acid, which are produced by microbial fermentation of dietary polysaccharides and are 

found primarily in the colon. The most well-studied SCFA is butyrate, which serves as a 

direct energy source for colonocytes and has been shown to modulate inflammation (Lee et 

al., 2017, Donohoe et al., 2011, Dou et al., 2020, Chang et al., 2014). Butyrate can stimulate 

proliferation in healthy colonic epithelium but inhibits proliferation in tumor cell lines 

(Whitehead et al., 1986, Sakata, 1987, Kien et al., 2007, Frankel et al., 1994), a phenomenon 

known as the “butyrate paradox” (Mariadason et al., 2001, Comalada et al., 2006). 

Although detailed mechanisms explaining how colonic microbial metabolites regulate ISCs 

have not been fully elucidated, evidence from the literature suggests that many microbial 

metabolites can regulate epithelial proliferation. With the high prevalence of colonic cancers 

worldwide (Boustany et al., 2023), it is important to understand the relationship between 

resident colonic microbiota and their influences on epithelial proliferation. Recent work has 

identified a crypt-specific microbiota that resides deep within murine colonic crypts (Pedron 

et al., 2012, Saffarian et al., 2019) which implies local interactions between the two entities. 

Further research is needed to fully understand and appreciate whether organisms that live in 

the large intestinal crypt region provide local signals that regulate ISCs.

Conclusion and Discussion:

The intestinal lumen is a highly dynamic and changing environment that is home to 

trillions of bacteria that constitute the intestinal microbiome, a complex ecosystem of 

organisms that live in symbiosis with the intestinal epithelium. Epithelial maintenance 

is critical for intestinal health and originates from ISCs. The relationship between the 

intestinal microbiota and ISCs is highly dynamic and understanding its complexity is still 

in its infancy. Rodent, zebrafish, and Drosophila model systems provide solid evidence 

that the microbiome plays an important regulatory role in ISC functioning. In addition to 

functioning under homeostasis, the microbiome has also been linked to enhanced intestinal 

repair mechanisms that occur following injury. A deep focus on the role of the microbiome 

in regeneration and renewal following intestinal damage will begin to shed light on the 

utilization and manipulation of the microbiome to treat intestinal disease. Collectively, this 

area of research implies that the intestinal microbiome holds tremendous potential as a 

therapeutic target. In addition, the microbiome can be regulated by many external and 

internal factors including dietary factors (Perler et al., 2023) such as fiber (Myhrstad et 

al., 2020) and sugars (Di Rienzi and Britton, 2020), prebiotic (Bedu-Ferrari et al., 2022), 

probiotic (Hemarajata and Versalovic, 2013) and antibiotic use (Fishbein et al., 2023), stress 

(Segerberg-Konttinen, 1988), physical activity (Holzhausen et al., 2022), sleep (Klimashina 

et al., 1989), aging (Badal et al., 2020), genetics (Hall et al., 2017), and disease (Durack 

and Lynch, 2019). Understanding how these variables indirectly affect ISC dynamics and 

whether they have the potential to modulate intestinal regeneration and repair via their 

effects on the microbiome is an emerging area of research. It is tantalizing to speculate as 

to whether simple interventions such a modulation of diet might modulate ISC renewal in 

humans, as this has been demonstrated in mice (Hou et al., 2021). Deeper knowledge of 

microbiome-ISC interactions will provide an understanding of the potential application of 

the microbiome to human health. We predict that the field will continue to advance with the 
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use of new model systems to fully understand how the microbiome “vibes” with ISCs in 

humans and further define the human ISC niche.
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Figure 1: Landscape of the Intestinal Epithelium.
The intestinal epithelium is made up of diverse cell types organized into microdomains 

termed the crypt and villus. The microbiome lies adjacent to the intestinal epithelium 

in close contact with a mucous layer produced by the epithelium. The villus contains 

differentiated cells including enterocytes, goblet cells, enteroendocrine cells, and tuft cells. 

The crypt contains the undifferentiated intestinal stem cells (ISCs) and transient amplifying 

(TA) cells. The Paneth cells and few enteroendocrine and tuft cells reside alongside the ISC 

in the crypt. The stromal cells reside directly beneath the epithelium in the crypt region and 

provide essential regulatory factors to the ISC. Created in BioRender.
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Figure 2: Formats of Human Intestinal Organoids
Human intestinal organoids (HIOs) can be used in a variety of formats depending on the 

scientific questions to be explored. Created in BioRender.
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