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Abstract

Relative alchemical binding free energy calculations are routinely used in drug discovery 

projects to optimize the affinity of small molecules for their drug targets. Alchemical methods 

can also be used to estimate the impact of amino acid mutations on protein:protein binding 

affinities, but these calculations can involve sampling challenges due to the complex networks 

of protein and water interactions frequently present in protein:protein interfaces. We investigate 

these challenges by extending a GPU-accelerated open-source relative free energy calculation 

package (Perses) to predict the impact of amino acid mutations on protein:protein binding. Using 

the well-characterized model system barnase:barstar, we describe analyses for identifying and 

characterizing sampling problems in protein:protein relative free energy calculations. We find 

that mutations with sampling problems often involve charge-changes, and inadequate sampling 

can be attributed to slow degrees of freedom that are mutation-specific. We also explore the 

accuracy and efficiency of current state-of-the-art approaches—alchemical replica exchange and 

alchemical replica exchange with solute tempering—for overcoming relevant sampling problems. 

By employing sufficiently long simulations, we achieve accurate predictions (RMSE 1.61, 95% 

Cl: [1.12, 2.11] kcal/mol), with 86% of estimates within 1 kcal/mol of the experimentally-

determined relative binding free energies and 100% of predictions correctly classifying the sign 

It is made available under a CC-BY 4.0 International license.
*For correspondence: john.chodera@choderalab.org (JDC); sukrit.singh@choderalab.org (SS).
Author Contributions
Conceptualization: IZ, JDC; Data Curation: IZ; Formal Analysis: IZ; Funding Acquisition: JDC, LER; Investigation: IZ; 
Methodology: IZ, DAR, JDC, KH; Project Administration: JDC, LER, SS; Resources: JDC, LER; Software: IZ, DAR, IP, MMH; 
Supervision: JDC, LER, SS; Visualization: IZ; Writing - Original Draft: IZ; Writing - Review & Editing: IZ, JDC, SS, DAR, LER, 
KH, IP, MMH

Disclaimers
The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of 
Health.

HHS Public Access
Author manuscript
J Chem Theory Comput. Author manuscript; available in PMC 2024 July 02.

Published in final edited form as:
J Chem Theory Comput. 2023 August 08; 19(15): 4863–4882. doi:10.1021/acs.jctc.3c00333.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


of the changes in binding free energies. Ultimately, we provide a model workflow for applying 

protein mutation free energy calculations to protein:protein complexes, and importantly, catalog 

the sampling challenges associated with these types of alchemical transformations. Our free open-

source package (Perses) is based on OpenMM and available at https://github.com/choderalab/

perses.

INTRODUCTION

Predicting the impact of amino acid mutations on protein:protein binding has important 
applications

Protein:protein interactions (PPIs) underlie fundamental biological processes, such as 

transcriptional regulation (e.g., p53:MDM2 [1]), signal transduction (e.g., GRB2-EGFR [2]), 

and membrane fusion (e.g., SARS-CoV-2 RBD:ACE2 [3]). As protein:protein interactions 

are driven by binding events, changes in protein:protein binding affinity often have 

functional impact. Even a single amino acid substitution can significantly alter binding and 

function, which can give rise to disease [4], impact the fitness of a pathogen [5], or alter the 

activity of monoclonal antibody drugs [6]. Thus, quantifying the impact of an amino acid 

mutation on protein:protein binding is highly useful for predicting the functional implication 

of a mutation, as it can provide mechanistic understanding of disease-associated genetic 

variants [7, 8] and facilitate the design of biologic drugs such as monoclonal antibodies [9, 

10].

Alchemical free energy calculations represent an accurate and generalizable approach for 
estimating mutational impact on PPIs

There are many experimental and computational approaches for quantifying the impact of 

a mutation on protein:protein binding. Experimental approaches, while highly accurate and 

generally considered “ground truth,” can be resource intensive, often requiring significant 

amounts of human labor time and costly reagents and instruments [11–14]. Computational 

methods, which can circumvent these resource challenges, serve as a complementary 

approach that can be combined with experimental methods to enable more efficient 

acquisition of high confidence data. Examples include computationally inexpensive methods 

(e.g., MM/PBSA and MM/GBSA [15, 16], machine learning (ML) models [17, 18], 

and Rosetta-based methods [19, 20]), as well as computationally expensive methods 

such as alchemical free energy calculations. Several studies have compared the tradeoffs 

between using computationally inexpensive methods and alchemical free energy calculations 

to predict the impact of a point mutation on binding [21–25]. While computationally 

inexpensive methods can be accurate for certain systems [21, 22], these methods often 

fail to account for key biophysical phenomena (i.e., conformational heterogeneity, explicit 

solvent interactions, multiple protonation states), and therefore perform worse on systems 

which require modeling of these properties [23–25]. Despite their increased computational 

cost, alchemical free energy calculations can account for these biophysical phenomena using 

rigorous statistical mechanics, so they tend to demonstrate better accuracy than the cheaper 

methods and are generalizable to any PPI with available structural data [24–27]. Ultimately, 

the optimal choice in approach will depend on the scientific goal and the computational 
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resources available. However, given their accuracy and generalizability, as well as rapid 

advancements in graphics processing units (GPUs) that have made it feasible to carry out 

these calculations in reasonable timeframes [28–31], alchemical free energy calculations 

represent a highly promising approach for predicting mutational effect on protein:protein 

binding.

Relative alchemical binding free energy calculations aim to predict the impact of a 
mutation on the free energy of binding (ΔΔGbinding)

While there are numerous types of alchemical free energy calculations [32], relative 

alchemical binding free energy (RBFE) calculations estimate the relative binding free 

energies (ΔΔGbinding) between two chemically similar complexes, e.g., protein:protein 

complexes that differ by an amino acid mutation (Figure 1A). In protein mutation RBFE 

calculations [21, 23–25], the wild-type (WT) residue is transformed into the mutant residue 

through molecular dynamics simulations of alchemical (non-physical) intermediate states 

bridging the WT and mutant states (Figure 2A). This alchemical transformation is performed 

in two phases, complex and apo, which correspond to the mutating protein in the presence 

and absence of a protein binding partner, respectively (Figure 1A). The change in free 

energy associated with each phase (ΔGphase) is estimated, and the difference in the ΔGphaseS 

gives an estimate of the impact of the mutation on the binding free energy, ΔΔGbinding 

(Figure 1A).

Achieving sufficient sampling of protein and water conformations is particularly 
challenging for RBFE calculations applied to protein:protein interactions

During the last couple of decades, RBFE calculations have become increasingly widely 

used in drug discovery projects for predicting the effects of small molecule modifications 

on protein:small molecule binding [31, 34–40]. In comparison to small molecule 

transformations, application of RBFE calculations to protein mutations has been relatively 

limited, though recent studies have demonstrated that these methods can accurately predict 

mutational impact on protein:small molecule binding [21–23, 41] and protein:protein 

binding [24, 25, 42–46] for a number of biologically-relevant complexes.

One reason for their lack of widespread use stems from the size of protein:protein 

complexes, which can frequently involve approximately double the number of atoms as are 

present in protein:small molecule complexes, making them more computationally expensive 

to simulate. However, the bigger hurdle has been the sampling challenges associated 

with alchemical transformations in protein:protein complexes [24, 47]. RBFE calculations 

require drawing decorrelated samples from the configurational probability distributions at 

each alchemical state [48], a nontrivial task for protein:protein complexes because the 

energy landscapes often contain many minima which can give rise to slow degrees of 

freedom. Slow degrees of freedom are more prevalent in protein:protein complexes because 

protein:protein interfaces are generally broader than protein:small molecule interfaces and 

typically involve complex protein and water interaction networks [4, 49]. Upon mutation, 

extensive reorganization of the mutating residue along with its closely-packed neighborhood 

of interfacial protein residues and waters may be required before one can draw decorrelated 

samples.
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Pinpointing slow degrees of freedom can help address the sampling problems in 
protein:protein RBFE calculations, but existing approaches are not automated

Determining the slow degrees of freedom causing sampling problems in alchemical free 

energy calculations is useful because it may enable improved sampling via methods that 

accelerate known slow degrees of freedom (e.g., metadynamics [50, 51], umbrella sampling 

[52], adaptive biasing force [53]). Moreover, identifying slow degrees of freedom helps 

enumerate the common challenges associated with alchemical transformations and the 

limitations of existing methods, which will facilitate the improvement of existing methods or 

the design of new ones. However, pinpointing the slow degrees of freedom in protein:protein 

interfaces can be challenging because it typically involves careful manual inspection of 

simulation trajectories [33, 54, 55], a process which requires biophysical intuition and can 

be tedious even for experienced practitioners. Moreover, the manual inspection approach 

is not scalable as examining the trajectories for tens or hundreds of mutations would be 

extremely impractical.

Here, we investigate sampling problems associated with protein mutation relative free 

energy calculations using (1) terminally-blocked amino acids, a small and simple test 

system relatively free of interfacial complexities and (2) barnase:barstar, a well-studied 

protein:protein complex. We augment an existing open-source relative free energy 

calculation package (Perses [56], https://github.com/choderalab/perses) to carry out these 

calculations and describe experiments and automated analyses that identify likely causes 

of sampling problems. We find that sampling challenges are more likely to occur for 

charge-changing mutations and can be attributed to mutation-dependent slow degrees 

of freedom. We also compare the accuracy and efficiency of state-of-the-art enhanced 

sampling approaches-alchemical replica exchange (AREX) [31, 57, 58] and alchemical 

replica exchange with solute tempering (AREST) [59, 60]—for overcoming the sampling 

challenges. We find that given sufficient simulation time, our predictions are accurate with 

respect to experiment (RMSE 1.61, 95% Cl: [1.12, 2.11] kcal/mol), with 86% of predictions 

lying within 1 kcal/mol of experimental ΔΔGbinding s and 100% of predictions having the 

correct sign.

THEORY

We perform alchemical free energy calculations using two state-of-the-art enhanced 

sampling approaches: (1) alchemical replica exchange (AREX) [31, 57, 58], the current 

recommended approach based on best practices [27] and (2) alchemical replica exchange 

with solute tempering (AREST) [59, 60], a sampling scheme which builds upon AREX by 

increasing the temperature of a region around the mutating residue and has been shown 

to improve sampling over AREX for some transformations [60–62]. Here, we give a brief 

overview of the salient aspects of each method, as well as the general approach we take 

to alchemical free energy calculations for protein mutations. The alchemical approach 

is implemented in an open-source package (Perses [56], available at https://github.com/

choderalab/perses). Complete simulation details can be found in the Detailed Methods.
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Alchemical transformation

Alchemical free energy calculations aim to sample a set of alchemical states which are 

defined such that two endstates of interest are bridged by alchemical intermediate states with 

modified Hamiltonians. The Hamiltonians are modified such that the nonbonded interactions 

(and potentially valence terms) of the WT and mutant residues are gradually transformed 

between interacting and non-interacting. The first alchemical state, called the WT endstate, 

typically involves the WT residue fully interacting with its environment and the mutant 

residue completely non-interacting. The last alchemical state, known as the mutant endstate, 

involves the mutant residue fully interacting and the WT residue non-interacting. A series 

of intermediate alchemical states bridging the endstates is defined such that WT and mutant 

residues are partially interacting with their environments to varying extents. Taken together, 

these alchemical states form the alchemical transformation (Figure 2A). Note that amino 

acids with backbone cycles (such as proline) require a modified version of this approach 

to avoid the noninteracting residue influencing the conformational distribution of fully 

interacting residues [63], but the mutations in this study do not involve this type of amino 

acid.

To characterize an alchemical transformation, we need to specify both which interactions 

will be alchemically modified during the transformation and how we will modify them. We 

first identify the alchemical interactions by defining an atom mapping, which exploits the 

partial similarity in WT and mutant topologies by pairing up the WT and mutant atoms that 

will share coordinates. The atom mapping is then used to classify each atom into an “atom 

class”: “unique old” atoms are unmapped atoms that are only present in the WT residue, 

“unique new” atoms are unmapped atoms that are only present in the mutant residue, 

“core” atoms are mapped atoms that are shared between the WT and mutant residues (and 

include atoms in the residues immediately preceding and following the mutating residue), 

and “environment” atoms are mapped atoms that are shared between the topologies but lie 

outside of the core atoms. Interactions involving “unique old”, “unique new” and “core” 

atoms are considered alchemical interactions. Since increasing the number of alchemical 

interactions also increases the thermodynamic length (i.e., the distance between alchemical 

states) [64], an atom mapping should be defined to maximize the number of atoms 

mapped between the two residues, which minimizes thermodynamic length. An optimal 

mapping finds a balance between minimizing thermodynamic length and taking advantage 

of the built-in enhanced sidechain sampling that occurs when the unmapped atoms are 

non-interacting (i.e., the nonbonded interactions are scaled to zero, so the sidechains can 

more easily sample alternate rotameric states). To this end, we chose an atom mapping that 

maps all atoms between the WT and mutant residues up to and including the beta carbon 

(but not including beta hydrogens). Because we constrain bonds to hydrogen, we un-map 

any hydrogen atoms whose bond lengths would change between WT and mutant.

To specify how the energies should be modified during the alchemical transformation, we 

introduce an alchemical parameter λ ∈ 0,1  into the potential energy function U x , forming 

the alchemical potential energy function U x; λ . The alchemical potential U x; λ  is typically 

evaluated at a different λ value for each alchemical state. For the WT endstate, U x; λ = 0
is identical to the unmodified WT potential with the addition of the standard valence terms 
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(and not the nonbonded interactions) of the unique new atoms (sometimes called “dummy” 

atoms). For the mutant endstate, U x; λ = 1  is identical to the unmodified mutant potential, 

but with unique old atoms as noninteracting dummy atoms that only retain their valence 

terms. For the alchemical intermediate states λ ∈ 0,1 , U x; λ  is a modified potential where 

interactions involving the WT and mutant residues are scaled to varying extents. The set 

of λ values sampled in the alchemical transformation is termed the “alchemical protocol”. 

To define the alchemical protocol for this study, we selected evenly spaced λ values from 

a simple linear function (Supplementary Figure 1A). The number of λ values used for each 

calculation was chosen such that the neighboring alchemical states have good phase space 

overlap (for more details, see Detailed Methods), which permits robust estimation of free 

energy differences between the fully-interacting WT and mutant endstates [65, 66].

Using the alchemical parameter λ, we define the potential energy functions for electrostatic 

and steric interactions. We compute the alchemically modified electrostatics interaction 

energy according to the Particle Mesh Ewald (PME) method [67] with linearly interpolated 

charges. For the direct space electrostatics contribution:

Udirect r; λ = C qi λ qj λ
reff r, λ ⋅ erfc αreff r, λ

qi λ = χi
oldqi

old λ + χi
newqi

new λ + χi
core qi

old λ + qi
new λ + χi

envqi
old

qi
old λ = 1 − λ qi

old

qi
new λ = λqi

new

(1)

where α is an internal PME parameter (calculated based on the PME error tolerance and 

the cutoff distance, with dimension 1/length), C is the Coulomb constant (with dimension 

energy/length2), qi λ  and qj λ  are the functions for computing the potentially alchemically 

modified charges of atoms i and j (with dimension of charge), and qi
old and qi

new are the 

charges of atom i in the old topology and new topology, respectively. χi
old, χi

new, χi
core, and χi

env

are indicator functions denoting whether atom i belongs in the unique old, unique new, core, 

and environment atom classes, respectively.

reff r, λ  denotes the effective interaction distance used for computing the interaction energy, 

and depends on both the actual inter-particle separation r and the alchemical parameter 

λ. To avoid singularities in the computation of electrostatics (and sterics) energies, we 

use a softcore approach that involves “lifting” certain inter-atomic distances into the “4th 

dimension”, inspired by work of Pomès [68]:

reff r, λ = r2 + w λ 2

w λ = wlifting ⋅ χij
oldλ + χij

new 1 − λ

χij
old = 1 χi

old + χj
old ≥ 0

0 else

χij
new = 1 χi

new + χj
new ≥ 0

0 else
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(2)

where r is the distance between atoms i and j, w λ  is the function for computing the 

lifting distance, and wlifting is the maximal lifting distance, which was selected to minimize 

the number of alchemical states needed to produce robust free energy estimates while 

maintaining good overlap among neighboring alchemical states. χij
old is an indicator function 

that assumes the value of unity only when at least one of the atoms (i and j) belongs in 

the unique old atom class (and zero otherwise), and χij
new is an indicator function indicating 

whether at least one of the atoms (i and j) belongs in the unique new atom class. For more 

details on this approach, see Detailed Methods.

We compute the PME reciprocal space and self-energy contributions using the default 

energy functions in OpenMM [29], but with linearly interpolated charges, where 

interpolation was performed in the same manner as was done for the direct space.

We compute the alchemically modified sterics interaction energy as a standard Lennard-

Jones 12–6 potential [69–71] with linearly interpolated σ and ϵ and “lifted” interaction 

distances to create a softcore potential:

Usterics r; λ = 4ϵij λ x x − 1.0 ; x = σij λ
reff r, λ

6

σij λ = σi λ + σj λ
2 ; σi λ = χi

oldσi
old + χi

newσi
new + χi

core 1 − λ σi
old + λσi

new + χi
envσi

old

ϵij λ = ϵi λ ⋅ ϵj λ ; ϵi λ = χi
oldϵi

old λ + χi
newϵi

new λ + χi
core ϵi

old λ + ϵi
new λ + χi

envϵi
old λ

ϵi
old λ = 1 − λ ϵi

old; ϵi
new λ = λϵi

new

(3)

Here, σij λ  is the function for computing the potentially alchemically modified distance at 

which the interaction energy crosses zero for atoms i and j . σi
old and σi

new are the distances at 

which the energy equals zero for atom i in the old topology and new topology, respectively. 

ϵij λ  is the function for computing the potentially alchemically modified interaction strength 

for atoms i and j. ϵi
old and ϵi

new are the interaction strengths for atom i in the old topology and 

new topology, respectively.

For charge-changing mutations, we ensure the system remains electrostatically neutral by 

transforming a water molecule in the WT system into a sodium or chloride ion in the mutant 

system. The ΔΔGs for charge-changing mutations in terminally-blocked amino acids are 

internally consistent, indicating that in the absence of sampling problems, our counterion 

scheme enables robust estimation of free energies (Figure 3A). Further details on this 

implementation can be found in Detailed Methods.

We estimate free energy differences using the Multistate Bennett Acceptance Ratio 

(MBAR), which is an asymptotically unbiased estimator that, in the large sample limit, 

often has lower variance compared to other commonly used estimators [66].
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Alchemical replica exchange (AREX)

Alchemical free energy calculations must sample from a chain of alchemical intermediate 

states bridging the two endstates of interest (Figure 2A). Because the introduction or 

deletion of bulky residues can often frustrate sampling within alchemical states in which 

these residues are almost fully interacting, alchemical free energy calculations often use 

replica exchange simulations to help reduce correlation times and over-come sampling 

challenges. Replica exchange enhances sampling by allowing each replica to visit multiple 

alchemical states, including those states which may help more rapidly decorrelate slow 

degrees of freedom because of their modified Hamiltonians [31,57,58]. Here, we refer to this 

approach as alchemical replica exchange (AREX).

AREX can be thought of as a Markov Chain Monte Carlo (MCMC) algorithm that aims to 

generate equilibrium samples from a family of K probability densities corresponding to the 

K alchemical states:

xk p xk ∣ sk ∝ exp −usk x k = 1, …, K

(4)

where xk is a configuration drawn from state k, sk is the kth state, and usk x  is the potential 

energy of sample x at state sk.

To generate equilibrium samples, AREX utilizes weakly-coupled replicas (copies of the 

system of interest), where the number of replicas is typically equal to the number of 

alchemical states K. AREX employs a Gibbs sampling framework where in each iteration 

n, the positions Xn = xk k = 1
K  of all K replicas are first updated with molecular dynamics 

simulations, yielding Xn + 1, and then the permutation set of alchemical state indices 

Sn = sk k = 1
K  associated with the corresponding positions are updated based on the updated 

positions Xn + 1, yielding Sn + 1:

Xn + 1 P Xn + 1 ∣ Xn, Sn
Sn + 1 P Sn + 1 ∣ Xn + 1

(5)

In sufficiently long simulations, the resulting samples Xn, Sn  are distributed with respect to 

the joint probability density P Xn, Sn  such that

P X, S ≡
k = 1

K
p xk ∣ sk

(6)

The algorithm updates the state indices by exchanging the alchemical state labels for 

pairs of replicas according to a Metropolis criterion that compares the energies of the two 

replicas considered for swapping. The replica swap acceptance rate will depend on how well 
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the alchemical states overlap, i.e., the thermodynamic length between states (Figure 2B). 

Numerous methods can be used to update the states S, including attempting exchanges only 

between replicas visiting neighboring thermodynamic states (where state overlap is highest). 

Here, we use a simple strategy that attempts to draw an independent permutation Sn + 1 given 

configuration Xn + 1 by attempting many swaps of pairs of alchemical state indices, which has 

been shown to enhance mixing and reduce correlation times [72].

AREX involves running many cycles of molecular dynamics followed by exchange attempts 

with the goal of ensuring all replicas ultimately perform a random walk through all 

alchemical states (Figure 2B). If the exchanges are accepted at a sufficiently high rate 

over the course of the simulation, we expect to observe improved sampling because 

configurational correlation times associated with the alchemical region are likely decreased 

for alchemical states with partially interacting residues.

Alchemical replica exchange with solute tempering (AREST)

AREST is AREX with an added layer of sophistication that aims to enhance sampling 

to a greater extent than AREX. AREST involves running AREX with a REST (replica 

exchange solute tempering [59]) region, a user-defined set of atoms for which the effective 

temperature is increased in alchemical intermediate states (Figure 2C–D). Therefore, in 

AREST, the alchemical states do not solely differ by the extent to which the WT and mutant 

residues are interacting with their environment, they also differ by the effective temperature 

of the REST region. Although introducing differences in effective temperature will increase 

the thermodynamic length between alchemical states (Figure 2C), the goal is to decrease 

the correlation time of the slowest degrees of freedom sufficiently to compensate for the 

decrease in state overlap, yielding more decorrelated samples in the same amount of total 

simulation time.

To incorporate REST into AREX, we classify each bond, angle, torsion, and nonbonded 

interaction as “REST” (all atoms in the interaction are part of the REST region), “inter” (at 

least one atom is part of the REST region and at least one atom is not), or “non-REST” 

(none of the atoms are part of the REST region) based on an initial conformation. Each 

interaction energy is multiplied by a scale factor depending on the REST class. Therefore, 

total potential energy is defined as:

utotal λ = α λ, Tmax, T0 ⋅ urest λ + α λ, Tmax, T0 ⋅ uinter λ + unonrest λ
α λ, Tmax, T0 ∝ T0/Tmax

(7)

where T0 is the temperature of the desired distribution and Tmax is the user-selected maximum 

effective temperature. The function we use to define the REST scale factor, α λ, Tmax, T0 , is 

shown in Supplementary Figure 1B. Note that when λ = 0 or 1, α λ, Tmax, T0 = 1 to ensure the 

endstates are unscaled.
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METHODS AND SYSTEMS

For complete details on system setup and simulation parameters, see Detailed Methods.

Barnase:barstar

Our investigation primarily focuses on the bacterial protein:protein complex barnase:barstar. 

The interaction of barnase, an extracellular ribonuclease, with its intracellular inhibitor, 

barstar, regulates RNA degradation in bacterial cells with a binding free energy of −19 

kcal/mol [73]. Solvated barnase:barstar simulation models contain only ~ 41,000 atoms 

(including hydrogens and solvent), making it a computationally tractable system for 

studying sampling challenges in high-affinity protein:protein interfaces (Figure 1C, see 

Detailed Methods for system preparation details). Barnase:barstar has been well-studied 

both computationally [25, 47, 74] and experimentally [73, 75–77]). The barnase:barstar 

mutations considered in this work come from Schreiber et al. [73], who used stopped-flow 

measurements to derive experimental relative binding free energies (ΔΔGbindings) for 14 

single amino acid substitutions across 13 residue positions in either barnase or barstar. 

The ΔΔGbindings for this set of mutations span an unusually large dynamic range (7.8 kcal/

mol) with a statistical error of 0.1 kcal/mol, and involves a diverse set of amino acids, 

making it particularly useful for assessing quantitative predictive models. All mutations 

occur within or are in close proximity to the barnase:barstar interface, which is a complex 

network of interactions dominated by electrostatic interactions and coordinated by buried 

waters (Figure 1C) [73]. Therefore, the mutations tend to disrupt numerous interfacial 

interactions, potentially requiring significant conformational and water reorganization to 

achieve equilibrium, which may give rise to sampling challenges.

Terminally-blocked amino acids

As a control to the complexity of barnase:barstar, we also study terminally-blocked amino 

acids, which lack the complex interaction networks of barnase:barstar and have relatively 

few solute degrees of freedom. Specifically, we introduce mutations in small, solvated 

amino acids in two different environments: either terminally-blocked with ACE and NME 

caps at the N- and C-termini, respectively (ACE-X-NME), or terminally blocked with 

ALA residues with natural zwitterionic termini (ALA-X-ALA) (Figure 1D). The terminally-

blocked mutation set consists of the same amino acid mutations as in the barnase:barstar 

mutation set, but contains only 10 total mutations (instead of 14 for barnase:barstar) as some 

of the barnase:barstar mutations involve the same amino acid transformation at different 

residue positions. By introducing the same mutations into the terminally-blocked amino 

acids, we separate the sampling challenges present in the barnase:barstar interface from the 

common challenges associated with alchemical free energy calculations.

To obtain relative free energies (ΔΔGs), we estimate the free energy differences (ΔGs) for 

two phases. For barnase:barstar, we are interested in the ΔΔGbinding, so the two simulation 

phases are complex and apo (Figure 1A). For terminally-blocked amino acids, there is no 

notion of binding, so the two phases are: ACE-X-NME and ALA-X-ALA (Figure 1B).
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RESULTS

In the following sections, we investigate the sampling problems associated with applying 

relative free energy calculations to predict the impact of mutations in a model protein:protein 

complex. We establish an open-source workflow which consists of: (1) identifying mutations 

that are potentially plagued by sampling problems, (2) determining the slow degrees 

of freedom responsible for poor sampling, and (3) exploring state-of-the-art approaches 

for improving sampling. We first apply our workflow to a simple test system, terminally-

blocked amino acids. We then focus the rest of the work on sampling challenges at 

the complex protein:protein interface of barnase:barstar, benchmarking to experimentally-

determined binding free energies. While this study mainly focuses on analyzing the 

sampling problems in one protein:protein complex, past studies have performed similar 

types of analyses on other protein:ligand and protein:protein complexes [24, 54], so we 

expect our approach to be generalizable to other systems.

1 Mutations at protein:protein interfaces can be challenging for alchemical replica 
exchange relative free energy calculations, likely due to inadequate sampling in complex 
phase simulations

1.1 The relative free energy differences (ΔΔGs) for terminally-blocked amino 
acid mutations are internally consistent, well converged, and relatively absent 
of sampling problems—We first establish that running alchemical replica exchange 

(AREX) with our alchemical approach (e.g., alchemical protocol, atom mapping, softcore 

and counterion approaches, etc.) is free of sampling and convergence issues when the 

mutation is not located in the context of a complex network of protein interactions. 

We estimated the ΔΔGs of 10 terminally blocked amino acid mutations between two 

environments: ACE-X-NME and ALA-X-ALA, where X is an amino acid. For each 

mutation, we ran simulations in both the forward (A→B) and reverse (B→A) directions, 

where A corresponds to the amino acid in the WT barnase:barstar crystal structure (PDB ID: 

1BRS). A mutation was considered internally consistent if the ΔΔG for the forward mutation 

(A→B) was within statistical error of the −ΔΔG for the reverse mutation (B→A). We found 

that with 5 ns/replica AREX simulations, all of the mutations are internally consistent and 

the forward ΔΔGs match the negative of the reverse ΔΔGs with high accuracy (root mean 

square error (RMSE): 0.21, 95% confidence interval (CI): [0.12, 0.28] kcal/mol, Figure 3A).

We next confirm that our calculations lack replica mixing bottlenecks and convergence 

issues. We first checked that there are no replica mixing bottlenecks for any of the 

mutations, indicating that the alchemical states are spaced such that they have reasonable 

overlap (Supplementary Figure 2). We next determined the extent to which the free energy 

difference of mutating WT→Mutant in one phase (ΔG) is converged because a converged 

ΔG indicates that the simulation has likely sampled all relevant degrees of freedom 

sufficiently. We assessed convergence by monitoring the changes in ΔG as a function of 

simulation time, which we call a “ΔG time series”. A ΔG time series was considered 

converged if, within the last five nanoseconds, it appeared flat with a close-to-zero slope 

(0 ± 0.1 kcal/mol/ns) (Supplementary Figure 3A). A ΔG time series was considered not 

converged if the magnitude of the slope of the last 5 ns was not within statistical uncertainty 
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of 0 kcal/mol/ns. We found that for all 10 mutations in both phases and in both the forward 

and reverse directions, the slope of the ΔG time series is within statistical uncertainty of 0 

kcal/mol/ns (Figure 3C–D, Supplementary Figure 3B–C), suggesting that the calculations 

are converged and relatively free of sampling problems.

Finally, we verify that 5 ns/replica AREX simulations thoroughly sample the slowest 

degrees of freedom for terminally blocked amino acid mutations [78]. We monitored the 

ϕ and ψ angles for the ACE-X-NME phase of two representative mutations with significant 

sampling problems in barnase:barstar, A2T (ALA to THR at residue 2) and R2A (ARG 

to ALA at residue 2) (see Section 2). If the ϕ and ψ degrees of freedom are thoroughly 

sampled, the time series should rapidly decorrelate. We quantify the extent to which each 

time series is hindered by slow correlation times by estimating its statistical inefficiency, 

g = 2τ + 1, which is proportional to the autocorrelation of the time series τ [79, 80]. Since 

the sampling interval for the time series is 0.1 ns, if the statistical inefficiency g  is close 

to 0.1 ns, the samples are completely decorrelated, and the larger the value of g, the 

more correlated the samples are [80]. We observed that for both representative mutations, 

ACE-X-NME phase simulations thoroughly sample both angles with g close to 0.1 ns 

(Supplementary Figure 4), providing further support that the terminally-blocked amino acid 

calculations are converged and have minimal sampling problems.

These results demonstrate that in the absence of significant sampling problems, running 

AREX with our alchemical approach can provide reliable estimates of relative free energy 

differences (ΔΔGs), indicating that we can use this approach to explore the challenges 

associated with applying RBFE calculations to interfacial residues in the barnase:barstar 

protein:protein complex.

1.2 Several barnase:barstar mutation predictions show poor accuracy due to 
slow convergence of the complex phase free energy difference (ΔGcomplex), 
suggesting the presence of sampling problems—We assess the performance of 

AREX on predicting barnase:barstar relative binding free energies (ΔΔGbindings). We ran 

10 ns/replica AREX simulations for the 14 mutations in the barnase:barstar mutation set in 

both the forward (i.e., mutations start from crystal structure residue) and reverse directions, 

resulting in a total of 28 ΔΔGbinding predictions. We first compared the predicted versus 

experimental ΔΔGbindings and considered a mutation to be significantly discrepant if the 

95% Cls of its predicted and experimental ΔΔGbindings were not within 1 kcal/mol of each 

other. We observed relatively poor agreement (RMSE: 2.49, 95% Cl: [1.32, 3.74] kcal/mol) 

with 7% (2/28) of the predictions having the wrong sign and 21% (6/28) of the predictions 

considered significantly discrepant (Figure 6B, Supplementary Figure 6A). Moreover, when 

we compared the forward and negative of the reverse ΔΔGbindings for each mutation, we 

found that 21% (3/14) of mutations have poor internal consistency (i.e., the forward and 

negative reverse ΔΔGbindings are not within statistical error of each other) (Figure 6A or 

Figure 3B). We refer to the following mutations, all with poor accuracy with respect to 

experiment, as significantly discrepant mutations: A42T, R87A, D35A, H102A, A29Y, 

Q83R (Supplementary Figure 6A). A subset of these mutations (A42T, R87A, Q83R) also 

has poor internal consistency (Figure 6A, Supplementary Table 1).
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We next demonstrate that all mutations with significant discrepancy have sufficiently 

overlapping alchemical states and some have slow ΔGcomplex convergence. To assess state 

overlap, we checked for sufficient replica mixing in both phases of simulation and found 

that the replicas mix well, indicating that the ΔΔGbinding discrepancies are not a result of 

poor overlap of alchemical states (Supplementary Figure 5). We next determined whether 

the free energy difference of mutating WT→Mutant in each phase (ΔG) has converged by 

checking whether the slope of the last 5 ns of the ΔG time series (i.e., ΔG as a function 

of simulation time) is within statistical uncertainty of zero (0 ± 0.1 kcal/mol/ns). We found 

that 67% (4/6) of the significantly discrepant mutations (A42T, R87A, H102A, and Q83R) 

have ΔGcomplexs with slow convergence, suggesting that the corresponding simulations may 

contain significant sampling problems (Figure 3E–G). For the remaining 33% (2/6) of 

significantly discrepant mutations (D35A and A29Y), the ΔGcomplexs do converge within 10 

ns (Figure 3G), which indicates that they may have minimal sampling problems, though it 

is possible that the slowest degrees of freedom in these simulations have correlation times 

longer than 10 ns and therefore have not yet been sampled.

Finally, we show that sampling problems often occur in complex phase simulations, 

especially for charge-changing mutations. We extended the convergence analysis to 

all 28 barnase:barstar mutations and observed that most of the mutations (27/28) 

have ΔGapos that converge within 10 ns/replica (Figure 3H). However, 25% (7/28) of 

mutations have ΔGcomplexs that do not converge, some of which are mutations that have 

predicted ΔΔGcomplexs close to experiment (R83Q, A39D, A35D) and should therefore be 

considered problematic mutations (Figure 3G). More importantly, this analysis indicates 

that convergence may be more difficult to achieve in the complex phase simulations, likely 

because of difficulties in sampling. Furthermore, out of the seven mutations with poor 

ΔGcomplex convergence, six of the mutations are charge-changing, suggesting that sampling 

may be more challenging for charge-changing mutations (Figure 3G).

In summary, we identified several barnase:barstar mutations with predicted ΔΔGcomplexs 

that exhibit poor accuracy and described an approach for identifying mutations that 

potentially have significant sampling challenges. We found that 32% (9/28) of the mutations 

have discrepant ΔΔGcomplexs or slow ΔGcomplexs convergence with 10 ns/replica AREX 

simulations. Moreover, while sampling problems are absent for terminally-blocked amino 

acid mutations, they are likely present in the complex phase for several barnase:barstar 

mutations, most of which involve charge-changes. In the next section, we attempt to identify 

the slow degrees of freedom causing sampling challenges.

2 Poor complex phase sampling can occur due to mutation-dependent slow protein or 
water degrees of freedom

We choose two significantly discrepant mutations for deeper analysis of potential 

sampling challenges, A42T and R87A, each of which also has poor internal consistency 

(Supplementary Figure 6A, Figure 3B). These mutations encompass distinct types of 

transformations: A42T is a reverse mutation that involves a neutral, small to medium 

amino acid change (ALA to THR) and R87A is a forward mutation that involves a 

charge-changing, large to small transformation (ARG to ALA). Both mutations have slowly 
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converging complex phase free energy differences (ΔGcomplexs) which are likely a result 

of sampling problems (Figure 3F). In this section, we confirm the presence of sampling 

problems in A42T and R87A complex phase simulations and identify slow degrees of 

freedom likely causing poor sampling.

2.1 Sampling challenges can be caused by hindered protein conformational 
dynamics—We first hypothesize that slow ΔGcomplex convergence can be attributed to 

poor sampling of slow protein backbone or side chain motion in the A42T and R87A 

complex phase simulations. To test this hypothesis, we ran 10 ns/replica complex phase 

AREX simulations where we imposed restraints on the heavy-atom coordinates to eliminate 

protein motion as a source of slow degrees of freedom, and compared the ΔGcomplex time 

series with and without restraints for each mutation. Because these restraints significantly 

reduce protein motion, if the slow ΔGcomplex convergence is caused by slow protein motions 

that are insufficiently sampled, the restraints should eliminate the sampling problem and 

the ΔGcomplex time series should converge immediately. The A42T ΔGcomplex time series 

with restraints converges rapidly within 10 ns, lacking the downward trend that is present 

in the ΔGcomplex time series without restraints and indicating that the A42T complex phase 

simulation has a protein sampling problem (Figure 4A). However, for R87A, the ΔGcomplex 

time series with restraints is within error of the time series without restraints, exhibiting 

the same downward trend as the unrestrained time series, which suggests the lack of 

convergence in the R87A ΔGcomplex is not solely caused by protein sampling problems 

(Figure 4D). Although this analysis can help determine the presence (or absence) of protein 

sampling problems, it does not identify the specific slow degrees of freedom that are likely 

causing sampling problems.

2.2 Poor sampling can specifically be attributed to individual sidechain 
torsions, interfacial contacts, or nearby waters—We next determine the specific 

degrees of freedom which may be responsible for slow ΔGcomplex convergence by 

identifying conformational degrees of freedom that are tightly coupled to ∂U / ∂λ [54]. We 

are particularly interested in mutations with slowly-varying ∂U / ∂λ (i.e., highly correlated 

and with large statistical inefficiency, g), because slowly-varying ∂U / ∂λs indicate slow 

ΔGcomplex convergence. We monitored hundreds of protein and water degrees of freedom 

near the protein:protein interface over time because we observed that slow convergence is 

more common for ΔGcomplex than ΔGapo (Figure 3G–H). Specifically, we monitored the 

following degrees of freedom: backbone and rotameric torsion transitions near the interface, 

residue contacts within or between binding partners, and waters near the alchemical residue. 

We then computed the Pearson correlation coefficient (PCC) between ∂U / ∂λ and each 

degree of freedom, averaging over all replicas. For mutations with slowly-varying ∂U / ∂λ, 

the most highly coupled (largest magnitude PCC) degree of freedom is likely implicated 

in slow ΔGcomplex convergence. We emphasize that the slow degrees of freedom discussed 

hereafter are relatively slow (in the context of the degrees of freedom we analyzed and in the 

timescales of our simulations), and that they are not necessarily the globally slowest degrees 

of freedom for each alchemical transformation.
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For A42T, which has slowly-varying ∂U / ∂λ (g = 6.4 ns, Figure 5), the degrees of freedom 

with the largest magnitude PCCs are the χ1 angle of T42 (PCC: −0.63, 95% CI: [−0.68, 

−0.56], Figure 5) and the distance between interface barstar residues T42 and E76 (PCC: 

0.61, 95% Cl: [0.53, 0.66], Figure 5). The time series of a typical replica show that both 

degrees of freedom are highly correlated with ∂U / ∂λ and slowly sample two metastable 

states during the 50 ns replica trajectory (Figure 4B–C). The relatively slow sampling of 

sidechain rotamer and interface contact metastable states (correlation time: 9.2 ns for T42 

χ1 and 9.5 ns for T42-E76, Figure 4B–C) likely explains the slow convergence of the A42T 

ΔGcomplex time series in Figure 3F. Water sampling does not seem to play a significant role 

in causing poor ΔGcomplex convergence for A42T, as the waters near T42 are only weakly 

correlated to ∂U / ∂λ (PCC: 0.30, 95% CI: [0.21, 0.37], Figure 5).

For R87A, which also has slowly-varying ∂U / ∂λ (g = 32.1 ns, Figure 5), the degree of 

freedom with the largest magnitude PCC is the number of waters near A87 (PCC −0.74, 

95% CI: [−0.78, −0.68], Figure 5). The correlation is also particularly high for the distance 

between interface residues R87 (barnase) and D39 (barstar) (PCC: −0.73, 95% CI: [−0.76, 

−0.69], Figure 5). The time series of a representative replica shows that both degrees of 

freedom are highly correlated with ∂U / ∂λ (Figure 4E–F). Both degrees of freedom also have 

long correlation times (9.6 ns for R87-D39 and 14.3 ns for neighboring waters) and slow 

equilibration times (evidenced by the upward trend in both degree of freedom time series), 

which suggests the slow convergence of R87A ΔGcomplex is likely explained by slowness in 

R87-D39 and nearby waters (Figure 4E–F).

We next attempted to identify general trends in the slow degrees of freedom across all 

barnase:barstar mutations and found that there is no common degree of freedom (or 

category of degrees of freedom) that is implicated in all complex phase sampling problems 

(Figure 5). We observed that backbone torsions consistently show PCCs less than 0.5 in 

magnitude (which is smaller than the PCCs of the other degrees of freedom), indicating that 

backbone torsions are unlikely to be the primary cause of sampling problems. The other 

four categories—sidechain torsions, intra interface contacts, inter interface contacts, and 

neighboring waters—each have many high correlation values (magnitude of PCC greater 

than 0.5), but no single category explains the majority of sampling problems. Therefore, the 

slowest degrees of freedom are highly variable depending on the mutation (Figure 5).

Finally, we observed that for complex phase simulations, mutations involving charge-

changes show slower convergence than charge-preserving transformations. 83% (10/12) 

of neutral mutations have ∂U / ∂λ time series with g < 1, whereas 100% (16/16) of charge-

changing mutations have g > 1 (Figure 5). We emphasize that the slow convergence of 

charge-changing mutations predominantly occurs in the complex (and not apo) phase 

(Figure 3G–H), indicating that introduction of a counterion to accommodate charge-changes 

does not significantly contribute to slow convergence. Instead, the sampling difficulties for 

charge-changing mutations likely emerge as a result of the strong network of electrostatic 

interactions at the barnase:barstar interface (Figure 1C).

One limitation of this work is that we studied only one protein:protein complex, and 

it is possible that other types of sampling problems are present in other protein:protein 
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complexes. From our focused experiments, we cannot extrapolate how common the 

barnase:barstar sampling issues are for other protein:protein complexes, though it seems 

likely that the issues observed here are sufficiently fundamental in origin to be present 

in other complexes. It is worth remarking that the uniquely strong electrostatic nature of 

the barnase:barstar interface may exacerbate sampling challenges compared to other PPIs 

with less electrostatically-driven binding. The barnase:barstar interface involves 14 hydrogen 

bonds, more than the average protein:protein complex [75]. Of the 14 hydrogen bonds, most 

involve at least one charged residue, which is also atypical for protein:protein complexes 

[75]. Further work will be necessary to determine the extent to which the sampling problems 

observed in barnase:barstar are similar to those in other protein:protein systems and identify 

other mechanisms by which sampling problems could manifest.

Another caveat of this work is that the degrees of freedom explored in this analysis are 

not exhaustive; other, more complex collective variables (e.g., identified by time-lagged 

independent component analysis (TICA) [81, 82]) may correlate with ∂U / ∂λ even more 

highly than those explored here. Nevertheless, our scan of simple degrees of freedom reveals 

specific slow degrees of freedom (sidechain torsions, interfacial contacts, or nearby waters) 

likely implicated in slow ΔGcomplex convergence. Moreover, we found that the degrees 

of freedom causing poor sampling are highly dependent on the mutation. This analysis 

serves as an example approach for diagnosing sampling problems in other protein:protein 

complexes. In the next section, we explore approaches for ameliorating the sampling 

challenges.

3 Given sufficient simulation time, AREX and AREST can provide converged and 
accurate ΔΔGbinding predictions

We explore two potential solutions for overcoming the observed sampling challenges: (1) 

running much longer simulations with the same sampling strategy (AREX) with the goal 

of exceeding the relevant slow correlation times to enable convergence, and (2) using an 

enhanced sampling strategy that aims to reduce the correlation times to shorter timescales. 

For (2), we consider the addition of solute tempering to alchemical replica exchange 

(AREST). We explore the extent to which each approach improves convergence for the 

complex phase simulations of all barnase:barstar mutations, with a special focus on A42T 

and R87A.

3.1 Significantly longer (50 ns/replica) complex phase AREX simulations 
yield improved ΔGcomplex convergence and adequate sampling of slow 
conformational degrees of freedom—We first demonstrate that running longer (50 ns/

replica) complex phase AREX simulations improves barnase:barstar ΔΔGbinding predictions. 

We found that the accuracy of the predictions improved: the RMSE decreased from 2.49 

(95% Cl: [1.32, 3.74]) kcal/mol with 10 ns/replica AREX to 1.61 (95% Cl: [1.12, 2.11]) 

kcal/mol with 50 ns/replica AREX (Figure 6D). Moreover, with 50 ns/replica AREX 

simulations, 86% (24/28) of predictions are close to experiment and all mutations have 

the correct sign (Figure 6D, Supplementary Figure 6C). We also found that the internal 

consistency improved: the RMSE decreased from 3.07 (95% Cl: [0.89, 4.76]) kcal/mol 

for 10 ns/replica AREX to 0.89 (95% Cl: [0.25, 1.43]) kcal/mol for 50 ns/replica AREX 
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(Figure 6C). Finally, we found that with 50 ns/replica AREX simulations, the convergence 

of ΔGcomplex improved significantly, such that 100% (28/28) of mutations have converged 

(Supplementary Figure 11B). We then confirmed that the improved convergence for A42T 

and R87A is a result of more thorough sampling of the likely slowest degrees of freedom 

associated with each mutation. Examination of representative time series shows that between 

10–50 ns, the slow degrees of freedom are sampled more comprehensively than with only 10 

ns (Figure 4B, F).

We next show that the poor accuracy with respect to experiment for mutations with 

significantly discrepant ΔΔGbindings (even after 50 ns) are likely due to errors in force 

field parameters or extreme sampling problems. Despite the improved predictions obtained 

from running longer AREX, 14% (4/28) of the mutations still demonstrate significantly poor 

accuracy: D35A, A35D, Q83R, and A29Y (Figure 6D). Common reasons for discrepant 

ΔΔGbinding predictions include insufficient protein or water sampling, errors in force field 

parameters, and failure to model multiple protonation states [33]. We found that A29Y has 

a significantly discrepant ΔΔGbinding (and relatively poor internal consistency) because the 

mutant tyrosine residue does not sample the relevant energetically favorable orientations that 

enable it to contribute favorably to the barnase:barstar interface (details in Supplementary 

Information B).

We next investigated the causes of discrepancy for the remaining significantly discrepant 

mutations (D35A, A35D, and Q83R), all of which pass the internal consistency check 

with sufficient simulation time (100 ns/replica for Q83R and 50 ns/replica for the other 

two mutations, see Figure 6C and Supplementary Table 1). We first assessed whether 

the discrepancies are a result of failing to account for all relevant protonation states and 

found that protonation states are not the cause of these discrepancies (see Supplementary 

Information C). Given the absence of protonation state problems, the discrepancies are 

likely due to inaccurate force field parameters or insufficient sampling (of a slow degree 

of freedom with a correlation time longer than 50 ns). However, it is worth noting that 

with sufficient simulation time, the sign is correct for each of these discrepant ΔΔGbindings, 

indicating that the estimates are still useful in characterizing whether a mutation is 

energetically favorable or unfavorable (Figure 6D).

Despite the exceptions described above, we emphasize that running longer AREX improved 

our barnase:barstar predictions (RMSE is 1.61, 95% CI: [1.12, 2.11] kcal/mol, Figure 6D), 

indicating that for several mutations, sampling was insufficient with 10 ns/replica AREX but 

sufficient with 50 ns/replica. Moreover, 50 ns/replica may not be necessary depending on 

the desired accuracy, e.g., to achieve an RMSE of less than 2 kcal/mol for barnase:barstar 

predictions, ~20 ns/replica AREX simulations should be sufficient (Figure 7C).

3.2 AREST convergence is comparable to that of AREX for most mutations
—We next demonstrate that running 50 ns/replica AREST simulations also yields 

improved barnase:barstar ΔΔGbinding with respect to 10 ns/replica AREX simulations (for 

a comparison to 10 ns/replica AREST simulations, see Supplementary Information A.7). 

We ran 50 ns/replica AREST (with radius = 0.5 nm and Tmax = 600 K, see Supplementary 

Information D for details on REST parameter selection) for the complex phase of 
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all barnase:barstar mutations and observed sufficient replica mixing for all mutations 

(Supplementary Figure 12). We observed improvement in the accuracy with respect to 

experiment; the RMSE decreased from 2.49 (95% Cl: [1.32, 3.74]) kcal/mol for 10 ns/

replica AREX to 1.65 (95% Cl: [1.23, 2.04]) kcal/mol for 50 ns/replica AREST (Figure 

6F, Supplementary Figure 6D). We also found that the internal consistency significantly 

improved with the RMSE decreasing from 3.07 (95% Cl: [0.89, 4.76]) kcal/mol for 10 

ns/replica AREX to 0.53 (95% Cl: [0.33, 0.71]) kcal/mol for 50 ns/replica AREST (Figure 

6E). Finally, we also observed that with 50 ns/replica AREST simulations, 100% (28/28) of 

the complex free energy differences (ΔGcomplexs) converge (Supplementary Figure 11C).

We next show that while the two methods predict similar ΔΔGbindings for each mutation 

(Supplementary Figure 14), AREST converges more efficiently than AREX for two 

mutations with sampling problems, but not for the rest of the barnase:barstar mutations. 

We monitored the discrepancy in predicted ΔΔGbinding with respect to experiment as a 

function of time and compared the discrepancy time series for 50 ns/replica AREST versus 

that from 50 ns/replica AREX simulations. We analyzed the discrepancies in ΔΔGbindings 

for each of the seven mutations identified as potentially containing sampling problems due 

to slow ΔGcomplex convergence with 10 ns/replica AREX: A42T, R87A, R83Q, Q83R, 

H102A, A35D, and A39D (Figure 3G). For A42T, the AREST discrepancy flattens out (to 

a close-to-zero discrepancy) more quickly than that of AREX, indicating that for A42T, 

AREST converges with less simulation time than AREX (Figure 7A). Similarly, for R87A, 

the AREST discrepancy starts to flatten out around 10 ns, while the AREX discrepancy 

doesn’t start to flatten out until ~40 ns, demonstrating that for R87A, AREST converges 

faster than AREX (Figure 7D). We next investigated why AREST yields faster convergence 

by comparing AREX and AREST sampling of the likely slowest degrees of freedom (T42 

χ1 angle for A42T and number of waters near A87 for R87A) in representative time series. 

We found that AREST more thoroughly samples these degrees of freedom and the statistical 

inefficiencies of the AREST time series are smaller than those of AREX, indicating that the 

faster convergence of AREST is due to reduction of relevant correlation times (Figure 7B, 

E).

Importantly, we found that for the remaining 71% (5/7) of mutations potentially containing 

sampling problems, the discrepancy in ΔΔGbinding does not converge to zero significantly 

faster for AREST than AREX (Supplementary Figure 15). Finally, to assess convergence 

across all mutations, we monitored the root mean square error (RMSE) and mean unsigned 

error (MUE) over time and observed that for both RMSE and MUE, the AREX and AREST 

time series are within error of each other (Figure 7C, F). Therefore, although AREST shows 

faster convergence than AREX for A42T and R87A, AREST convergence is comparable 

to that of AREX when comparing the two sampling strategies over all barnase:barstar 

mutations.
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DISCUSSION

Widespread application of RBFE calculations to protein:protein complexes is primarily 
limited by the simulation time required to achieve reliable estimates

For some mutations, running RBFE calculations long enough to achieve converged, 

accurate, and reliable predictions can be computationally expensive, depending on the 

simulation time required and the computing resources available. For example, to achieve 

highly accurate RBFE predictions (RMSE ~1.6 kcal/mol) for barnase:barstar, the most 

challenging mutations (i.e., charge-changing mutations with sampling challenges) require 

50 ns/replica for the complex phase and 10 ns/replica for the apo phase. This amounts to 

~220 graphics processing unit (GPU) hours per mutation on an NVIDIA A100 graphics 

card—at the cost of roughly $920 per mutation on an equivalent instance on Amazon 

Web Services (AWS) (Supplementary Information A.12). However, we emphasize that we 

obtained converged and accurate ΔΔGbinding estimates for most of the mutations with 10 

ns/replica AREX (Section 1.2), indicating that most mutations would not require such 

computationally expensive simulations (and instead would cost ~62 GPU hours and $260 

per mutation on AWS). Taken together, our results demonstrate that given current best 

practices sampling strategies and state-of-the-art computing resources, the primary limiting 

factor in applying RBFE calculations to protein:protein complexes is the computational cost 

associated with achieving sufficient sampling for a small subset of mutations.

Given that similar types of sampling problems are also challenging for small molecule 

transformations [54, 55, 83], finding ways to reduce computational cost for alchemical 

transformations with difficult sampling problems will be highly useful for the development 

of alchemical free energy calculations in general. One straightforward approach for reducing 

computational cost involves waiting for improvements in hardware. GPU performance has 

rapidly improved over the last decade and will continue to improve in the coming years [84]. 

There are also particularly exciting developments in the realm of cheaper parallelization 

through the introduction of wider GPUs that enable a single GPU to be partitioned into 

multiple instances (e.g., NVIDIA’s Multi-Instance GPU feature).

Improvement of AREX and AREST simulation parameters may reduce the simulation time 
required for converged ΔΔG estimates for mutations with sampling challenges

Beyond anticipating advancements in hardware, a promising avenue for decreasing 

computational cost involves further optimizing the AREX and AREST simulation 

parameters used in this study. For both AREX and AREST, we chose the same number 

of alchemical intermediate states for all neutral mutations and a different, larger number of 

states for all charge-changing mutations. Additionally, we defined the alchemical and REST 

scaling protocols for each state according to simple, piecewise linear functions. Moreover, 

for AREST, we chose the REST parameters (radius and Tmax) by exploring a small set of 

extreme REST parameters (Supplementary Information D).

Although we confirmed that our AREX and AREST parameter choices do not result in 

any replica mixing bottlenecks (Supplementary Figures 2, 5, 12), there are likely alternative 

protocol parameters which could provide more efficient ΔΔGbinding convergence. Ideally, 
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each mutation would have optimized protocol parameters that provides a converged and 

accurate ΔΔGbinding estimate in the minimal amount of simulation time. However, because 

the search space for each of the parameters is large, brute-force optimization is unfeasible 

and even exploration of extreme values for each parameter for each mutation would be quite 

computationally expensive. Therefore, future work could involve development of methods 

for mutation-specific parameter optimization. Furthermore, there are also opportunities for 

optimizing mutation-independent protocol parameters, such as the integrator timestep [85], 

alchemical functional form [86–89], and Particle Mesh Ewald error tolerance [67] which 

may reduce simulation time.

Adaptation of other enhanced sampling methods for use in alchemical free energy 
calculations may also decrease the simulation time required to sufficiently sample difficult 
transformations

There are many existing methods for enhancing sampling in molecular dynamics 

simulations [90], many of which accelerate sampling of known slow degrees of freedom in 

a targeted manner [50–53, 91–96]. Some existing enhanced sampling methods also identify 

the slow degrees of freedom (as an intermediate step) [97, 98], but they do not necessarily 

identify the slow degrees of freedom that are most highly coupled to the alchemical 

coordinate (i.e. ∂U / ∂λ), which are responsible for slow convergence of RBFEs. Future work 

could involve incorporating existing enhanced sampling methods into alchemical free energy 

calculations to further improve sampling and convergence, as has been demonstrated for 

simple test systems [99]. Furthermore, when adapting methods that identify slow degrees of 

freedom, it will be important to account for coupling to the alchemical coordinate.

CONCLUSIONS

In this work, we explored the sampling challenges associated with applying relative binding 

free energy (RBFE) calculations to estimate the impact of protein mutations in a model 

protein:protein complex (barnase:barstar). We found that sampling problems are absent 

when the mutation is not located in the context of a complex network of protein interactions 

(i.e. in terminally-blocked amino acids), but are present in the complex phase for several 

barnase:barstar mutations, yielding slow convergence of ΔGcomplexs. Moreover, most of 

the mutations with complex phase sampling and convergence problems involve charge-

changes. Furthermore, we attributed the barnase:barstar complex phase sampling problems 

to specific slow degrees of freedom (individual sidechain torsions, interfacial contacts, 

and nearby waters) which are highly dependent on the mutation. Finally, we found that 

given sufficient simulation time (50 ns/replica), both AREX and AREST can address most 

of the aforementioned sampling problems, with both methods demonstrating comparable 

convergence for most mutations.

Ultimately, our analyses and findings provide a model framework for diagnosing and 

mitigating sampling problems in other protein:protein complexes. By facilitating deep 

investigation of these sampling challenges in an open-source manner, our study lays 

the groundwork for the development of better methods for improving sampling in 

protein:protein RBFE calculations and free energy calculations in general.
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Figure 1. Relative free energy calculations predict the impact of single point mutations using 
thermodynamic cycles that each involve transformations in two environments.
(A) Thermodynamic cycle representing how the relative binding free energy (ΔΔGbinding) 

can be computed for a protein mutation in the barnase:barstar complex. By cycle closure, 

the ΔΔG equation shown inside the thermodynamic cycle can be recovered. In practice, it 

is easier to compute the horizontal legs (ΔGapo and ΔGcomplex, shown in bold) [33], which 

involve transforming a WT residue (green circle) into a mutant residue (gray circle). The 

free energy differences for each phase (apo and complex) are subtracted to compute the 

ΔΔGbinding (B) Thermodynamic cycle representing how the relative free energy (ΔΔG) can 

be computed for a protein mutation between two phases of terminally-blocked amino acids. 

The horizontal legs (ΔGALA-X-ALA and ΔGACE-X-NME), shown in bold) are simulated, which 

involve transforming a WT residue (magenta or pink circle) into a mutant residue (gray 

circle). The free energy differences for each phase (ACE-X-NME and ALA-X-ALA) are 

subtracted to compute the ΔΔG. (C) Structural model of barnase:barstar (PDB ID: 1BRS) 

with barstar shown in green and barnase shown in blue. Barstar and barnase contain ~ 16000 

and ~ 25000 atoms, respectively (including hydrogens and solvent). Zoomed-in view of the 

barnase:barstar interface shows the 13 residues undergoing mutation in this study (all of 

which are interfacial) as sticks. Nitrogen atoms shown in blue and oxygen atoms are shown 

in red. (D) Example structural models of terminally-blocked amino acids: ALA-X-ALA and 

ACE-X-NME (where X is ALA) shown in pink and magenta, respectively. Each terminally-

blocked amino acid contains ~ 4000 atoms (including hydrogens and solvent). Nitrogen 

atoms are depicted in blue, oxygen atoms in red, and hydrogen atoms in white.
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Figure 2. Strategies for sampling an alchemical transformation: Alchemical replica exchange 
(AREX) and alchemical replica exchange with solute tempering (AREST). AREST modifies 
AREX by introducing local heating around the alchemical region at intermediate alchemical 
states.
(A) Schematic representing an alchemical transformation (with one alchemical intermediate 

state) for one simulation phase. The WT (λ = 0, green) endstate contains a fully-interacting 

threonine residue and the mutant (λ = 1, gray) endstate contains a fully-interacting alanine 

residue. The alchemical intermediate (λ = 0.5, green-gray gradient) state contains partially 

interacting threonine and alanine residues. Nitrogen atoms are shown in blue and oxygen 

atoms are shown in red. (B) Schematic representing alchemical replica exchange (AREX), 

sometimes called Hamiltonian replica exchange among alchemical states, which utilizes 

multiple replicas (in this schematic, three replicas) to explore alchemical states that bridge 

the WT (λ = 0, green circle) and mutant (λ = 1, gray circle) fully interacting states. 

The temperature remains constant at 300 K for all alchemical states. Representative 

configurational distributions for each alchemical state are shown (on the right) to be 

overlapping for neighboring states, which is a requirement for accurate ΔΔG estimates. 

(C) Schematic representing alchemical replica exchange with solute tempering (AREST), 

which elevates the effective temperature for a small region (i.e., the REST region) to further 

enhance sampling. The REST region is shown as an orange, dashed circle. The effective 

temperature of the REST region reaches a maximum at 600 K at λ = 0.5. Representative 
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configurational distributions for each alchemical state are shown (on the right) with less 

overlap than in AREX (panel B), because increasing the effective temperature usually causes 

increased thermodynamic length. (D) Structural model of barnase:barstar with barstar shown 

in green and barnase shown in blue. Zoomed-in view highlights an example REST region 

(orange, dashed circle) for residue T42 in barstar. T42 and neighboring residues (within 5 Å 

of T42) are shown as sticks and neighboring waters (also within 5 Å of T42) are shown as 

spheres.
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Figure 3. The relative free energy difference (ΔΔG) predictions for small terminally-blocked 
amino acid mutations are internally consistent and show good convergence, but several of the 
predictions for interfacial barnase:barstar mutations show poor internal consistency due to slow 
convergence of complex phase free energy differences (ΔGcomplexS).
(A) (Negative of the) Reverse versus forward ΔΔGs for each terminally-blocked amino 

acid mutation computed using alchemical replica exchange (AREX) simulations (number of 

states = 12 and 24 for neutral and charge mutations, respectively, and simulation time =5 ns/

replica for each phase). Data points are labeled if the mutation involves a charge-change (to 

emphasize that our counterion introduction scheme works well in the absence of sampling 

problems). The y = x (black dotted) line represents zero discrepancy between forward 

and (negative of the) reverse ΔΔGs, the dark gray shaded region represents 0.5 kcal/mol 

discrepancy, and the light gray region represents 1 kcal/mol discrepancy. Data points are 

colored by how far they are from zero discrepancy (dark blue and red indicate close to 

and far from zero, respectively). Error bars represent two standard deviations and were 
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computed by bootstrapping the decorrelated reduced potential matrices 200 times. Root 

mean square error (RMSE) and mean unsigned error (MUE) are shown with 95% confidence 

intervals obtained from bootstrapping the ΔΔGs 1000 times. (B) (Negative of the) Reverse 

versus forward ΔΔGs for each barnase:barstar mutation computed using alchemical replica 

exchange (AREX) simulations (number of states = 24 and 36 for neutral and charge 

mutations, respectively and simulation time = 10 ns/replica for each phase). Data points 

are labeled if the forward and (negative of the) reverse ΔΔGbindings are not within statistical 

error of each other (i.e., neither the forward nor the negative reverse ΔΔGbinding is within 

1 kcal/mol of the 95% Cl for the other ΔΔGbinding). For more details on the plot and error 

bars, refer to the caption for panel A. (C) Free energy difference (ΔG) time series for 

representative mutations A2T (left) and R2A (right) in the ACE-X-NME phase. Alchemical 

replica exchange simulations were performed with number of states = 12 and 24 for A2T 

and R2A, respectively and the simulation time was 5 ns/replica. Dashed line indicates the 

ΔG at t = 5 ns. Shaded region represents ± two standard deviations, which were computed 

by bootstrapping the decorrelated reduced potential matrices 200 times. (D) Same as (B), but 

for the ALA-X-ALA phase, instead of the ACE-X-NME phase. (E) Free energy difference 

(ΔG) time series for the apo phase of representative mutations with sampling problems: 

A42T (left) and R87A (right). Alchemical replica exchange simulations were performed 

with number of states = 24 and 36 for A42T and R87A, respectively and the simulation time 

was 10 ns/replica. Dashed line indicates the ΔG at t = 10 ns. For details on the error bars, 

refer to the caption for panel C. (F) Same as (E), but for the complex phase instead of the 

apo phase. (G) Slopes of the last 5 ns of the ΔGcomplex time series for each barnase:barstar 

mutation are shown as blue (forward mutations) and purple (reverse mutations) circles. 

ΔGcomplex time series were generated from complex phase AREX simulations (number of 

states = 24 and 36 for neutral and charge mutations, respectively, and simulation time = 10 

ns/replica). Error bars represent 2 standard deviations and were computed using the SciPy 

linregress function. Slopes within error of the shaded gray region (0 ± 0.1 kcal/mol/ns) 

are close to zero and are therefore considered “flat.” (H) Same as (G), but for apo phase 

barnase or barstar mutations instead of complex phase barnase:barstar mutations.
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Figure 4. Complex phase convergence problems can arise due to insufficient sampling of protein 
and water degrees of freedom, e.g., a sidechain rotamer and intra-barstar contact for A42T and 
an inter-chain contact and neighboring waters for R87A.
(A) Residual complex phase free energy difference (ΔG) time series for AREX simulations 

of A42T (number of states = 24 and simulation time =10 ns/replica), where the residual 

ΔG is computed as ΔG t − ΔG t = 10ns . Blue curve represents the time series for the AREX 

simulation without restraints and green curve represents the time series for the AREX 

simulation with heavy atoms restraints (force constant = 50 kcal/moIÅ2). Shaded regions 

represent ± two standard deviations, which were computed by bootstrapping the decorrelated 

reduced potential matrices 200 times. (B) Time series for ∂U / ∂λ (left y-axis, purple) and χ1

angle for residue T42 (right y-axis, gray) for a representative replica (replica 4) of the A42T 

complex phase AREX simulation (number of states = 24, simulation time = 50 ns/replica). 

PCC indicates Pearson correlation coefficient and g indicates statistical inefficiency, which 

is proportional to the correlation time. g = 0.1ns indicates very thorough sampling (because 

the sampling interval is 0.1 ns) and large values of g indicate poor sampling. (C) Time series 

for ∂U / ∂λ (left y-axis, purple) and T42-E76 distance (right y-axis, gray) for a representative 

replica (replica 4) of the A42T complex phase AREX simulation (number of states = 24, 

simulation time = 50 ns/replica). (D) Same as (A), but for R87A instead of A42T (number of 

states = 36 and simulation time = 10 ns/replica) and using a force constant of 75 kcal/molÅ2 

instead of 50 kcal/molÅ2. (E) Time series for ∂U / ∂λ (left y-axis, purple) and R87-D39 

distance (right y-axis, gray) for a representative replica (replica 25) of the R87A complex 

phase AREX simulation (number of states = 36, simulation time = 50 ns/replica). (F) Time 

series for ∂U / ∂λ (left y-axis, purple) and number of waters within 5 Å of A87 (right y-axis, 
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gray) for a representative replica (replica 25) of the R87A complex phase AREX simulation 

(number of states = 36, simulation time =50 ns/replica).
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Figure 5. Charge-changing mutations demonstrate worse complex phase sampling than neutral 
mutations and the slowest degrees of freedom responsible for poor sampling are highly variable 
depending on the mutation.
Data in this plot was generated from 50 ns/replica complex phase AREX simulations. Each 

row of the heatmap corresponds to a mutation and each of the first five columns corresponds 

to a degree of freedom category: backbone torsions, sidechain torsions, intra-interface 

contacts, inter-interface contacts, and neighboring waters. Each category contains a set of 

degrees of freedom, i.e., the backbone torsions category contains the ϕ and ψ angles for all 

interface residues, sidechain torsions contains the χ1, χ2, χ3, and χ4 angles for all interface 

residues (if the angle is present for the residue), intra-interface contacts contains pairs of 

interface residues that are within the same chain, inter-interface contacts contains pairs of 

interface residues that span different chains, and neighboring waters involves monitoring 

the number of waters within 5 Å of the mutating residue. Each heatmap value (in the first 

five columns) is the maximum of (the absolute value of) the Pearson correlation coefficients 

(PCCs) between ∂U / ∂λ and each of the degrees of freedom in the corresponding category 
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for the corresponding mutation. For example, the top left value of the heatmap indicates that 

for R83Q, the backbone torsion with maximum correlation to ∂U / ∂λ has a PCC of 0.45. 

The background colors for the PCC values are different shades of gray, with darker grays 

indicating values closer to 1. The subscript and superscript values associated with each PCC 

represent the 95% confidence interval. Each heatmap value in the last column corresponds 

to the statistical inefficiency of ∂U / ∂λ across all replica trajectories for the corresponding 

mutation. Statistical inefficiency is proportional to the correlation time, where a value of 

0.1 ns indicates very thorough sampling (because the sampling interval is 0.1 ns) and large 

values indicate poor sampling. Statistical inefficiency values are colored different shades of 

purple, with darker colors indicating larger values. The rows of the heatmap are ordered 

from highest to lowest by the statistical inefficiency of ∂U / ∂λ across all replicas. Blue dots 

indicate mutations for which the degree of freedom with the largest magnitude PCC is 

relatively far from the mutating residue. See Detailed Methods for more information about 

this analysis.
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Figure 6. Running long (50 ns/replica) simulations of alchemical replica exchange (AREX) 
and alchemical replica exchange with solute tempering (AREST) yields improved ΔΔGbinding 
predictions with respect to 10 ns/replica AREX simulations.
(A) (Negative of the) Reverse versus forward ΔΔGbindings for each barnase:barstar mutation 

computed from AREX simulations (number of states = 24 and 36 for neutral and charge 

mutations, respectively and simulation time = 10 ns/replica for each phase). The y = x 

(black dotted) line represents zero discrepancy between forward and (negative of the) reverse 

ΔΔGbindings, the dark gray shaded region represents 0.5 kcal/mol discrepancy, and the light 

gray region represents 1 kcal/mol discrepancy. Data points are colored by how far they are 

from zero discrepancy (dark blue and red indicate close to and far from zero, respectively). 

Data points are labeled if the forward and (negative of the) reverse ΔΔGbindings are not 

within statistical error of each other (i.e., neither the forward nor the negative reverse 

ΔΔGbinding is within 1 kcal/mol of the 95% Cl for the other ΔΔGbinding). Error bars represent 

two standard deviations and were computed by bootstrapping the decorrelated reduced 

potential matrices 200 times. Root mean square error (RMSE) and mean unsigned error 

(MUE) are shown with 95% confidence intervals obtained from bootstrapping the data 1000 

times. (B) Calculated versus experimental ΔΔGbindings for each barnase:barstar mutation 

computed from AREX simulations (number of states = 24 and 36 for neutral and charge 

mutations, respectively and simulation time = 10 ns/replica for each phase). The y = x (black 

dotted) line represents zero discrepancy between calculated and experimental ΔΔGbindings, 

the dark gray shaded region represents 0.5 kcal/mol discrepancy, and the light gray region 

represents 1 kcal/mol discrepancy. Data points are labeled if the 95% Cls of the calculated 
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and experimental ΔΔGbindings are not within 1 kcal/mol of each other. For more details on 

the plot and error bars, refer to the caption for panel A. (C) Same as (A), but using 50 

ns/replica AREX simulations for the complex phase and 10 ns/replica AREX simulations 

for the apo phase instead of 10 ns/replica AREX simulations for both phases. (D) Same 

as (B), but using 50 ns/replica AREX simulations for the complex phase and 10 ns/replica 

AREX simulations for the apo phase instead of 10 ns/replica AREX simulations for both 

phases. (E) Same as (A), but using 50 ns/replica AREST simulations for the complex phase 

and 10 ns/replica AREX simulations for the apo phase instead of 10 ns/replica AREX 

simulations for both phases. (F) Same as (B), but using 50 ns/replica AREST simulations 

for the complex phase and 10 ns/replica AREX simulations for the apo phase instead of 10 

ns/replica AREX simulations for both phases.
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Figure 7. Alchemical replica exchange with solute tempering (AREST) and alchemical replica 
exchange (AREX) demonstrate comparable convergence for most barnase:barstar mutations.
(A) ΔΔGbinding discrepancy (with respect to experiment) time series for A42T. The 

discrepancy was computed as ΔGcomplex − ΔGapo − ΔΔGexperiment, where ΔGcomplex 

corresponds to the (AREX or AREST) complex phase ΔG at a particular time point, ΔGapo 

corresponds to the apo phase ΔG computed from a 10 ns/replica AREX simulation, and 

ΔΔGexperiment is the experimental value from Schreiber et al [73]. AREX time series shown 

in blue and AREST time series (with radius = 0.5 nm, Tmax = 600 K) shown in orange. 

Number of states is 24 for both AREX and AREST. Shaded regions represent ± two 

standard deviations, computed by bootstrapping the decorrelated reduced potential matrices 

200 times. Gray dashed line indicates ΔΔGbinding discrepancy = 0. (B) Time series of 

the χ1 angle for residue T42 for a representative replica (replica 4) of the A42T complex 

phase AREX simulation (blue) and AREST simulation (orange) (number of states = 24, 

simulation time = 50 ns/replica). g indicates statistical inefficiency, which is proportional 

to the correlation time. g = 0.1 ns indicates very thorough sampling (because the sampling 

interval is 0.1 ns) and large values of g indicate poor sampling. (C) Time series of the 

root mean square error (RMSE) (with respect to experiment) for the ΔΔGbindings of all 

barnase:barstar mutations. The ΔΔGbindings used to compute the RMSE at each time point 

were computed as ΔGcomplex − ΔGapofor each mutation, where ΔGcomplex corresponds to the 

(AREX or AREST) complex phase ΔG at a particular time point and ΔGapo corresponds 

to the apo phase ΔG computed from a 10 ns/replica AREX simulation. AREX time series 

shown in blue and AREST time series (with radius = 0.5 nm, Tmax = 600K) shown in orange. 
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Number of states is 24 for neutral mutations and 36 for charge-changing mutations. Shaded 

regions represent ± two standard deviations, computed by bootstrapping 1000 times. (D) 
Same as (A), but for R87A instead of A42T. Number of states is 36 for both AREX 

and AREST. (E) Time series of the number of waters within 5 Å of residue A87 for 

representative replica (replica 25) of the R87A complex phase AREX simulation (blue) and 

AREST simulation (orange) (number of states = 36, simulation time =50 ns/replica). (F) 

Same as (C) but for mean unsigned error (MUE) instead of RMSE.

Zhang et al. Page 41

J Chem Theory Comput. Author manuscript; available in PMC 2024 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	Predicting the impact of amino acid mutations on protein:protein binding has important applications
	Alchemical free energy calculations represent an accurate and generalizable approach for estimating mutational impact on PPIs
	Relative alchemical binding free energy calculations aim to predict the impact of a mutation on the free energy of binding ΔΔGbinding
	Achieving sufficient sampling of protein and water conformations is particularly challenging for RBFE calculations applied to protein:protein interactions
	Pinpointing slow degrees of freedom can help address the sampling problems in protein:protein RBFE calculations, but existing approaches are not automated

	THEORY
	Alchemical transformation
	Alchemical replica exchange AREX
	Alchemical replica exchange with solute tempering AREST

	METHODS AND SYSTEMS
	Barnase:barstar
	Terminally-blocked amino acids

	RESULTS
	Mutations at protein:protein interfaces can be challenging for alchemical replica exchange relative free energy calculations, likely due to inadequate sampling in complex phase simulations
	The relative free energy differences ΔΔGs for terminally-blocked amino acid mutations are internally consistent, well converged, and relatively absent of sampling problems
	Several barnase:barstar mutation predictions show poor accuracy due to slow convergence of the complex phase free energy difference (ΔGcomplex), suggesting the presence of sampling problems

	Poor complex phase sampling can occur due to mutation-dependent slow protein or water degrees of freedom
	Sampling challenges can be caused by hindered protein conformational dynamics
	Poor sampling can specifically be attributed to individual sidechain torsions, interfacial contacts, or nearby waters

	Given sufficient simulation time, AREX and AREST can provide converged and accurate ΔΔGbinding predictions
	Significantly longer (50 ns/replica) complex phase AREX simulations yield improved ΔGcomplex convergence and adequate sampling of slow conformational degrees of freedom
	AREST convergence is comparable to that of AREX for most mutations


	DISCUSSION
	Widespread application of RBFE calculations to protein:protein complexes is primarily limited by the simulation time required to achieve reliable estimates
	Improvement of AREX and AREST simulation parameters may reduce the simulation time required for converged ΔΔG estimates for mutations with sampling challenges
	Adaptation of other enhanced sampling methods for use in alchemical free energy calculations may also decrease the simulation time required to sufficiently sample difficult transformations

	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.

