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Enhancing efficiency of protein language
models with minimal wet-lab data through
few-shot learning

Ziyi Zhou1,2,7, Liang Zhang1,7, Yuanxi Yu 1,7, Banghao Wu3,7, Mingchen Li 4,5,
Liang Hong 1,2,4,6 & Pan Tan 1,2,4

Accuratelymodeling the proteinfitness landscapes holds great importance for
protein engineering. Pre-trained protein languagemodels have achieved state-
of-the-art performance in predicting protein fitness without wet-lab experi-
mental data, but their accuracy and interpretability remain limited. On the
other hand, traditional supervised deep learning models require abundant
labeled training examples for performance improvements, posing a practical
barrier. In this work, we introduce FSFP, a training strategy that can effectively
optimize protein language models under extreme data scarcity for fitness
prediction. By combining meta-transfer learning, learning to rank, and
parameter-efficient fine-tuning, FSFP can significantly boost the performance
of various protein language models using merely tens of labeled single-site
mutants from the target protein. In silico benchmarks across 87 deep muta-
tional scanning datasets demonstrate FSFP’s superiority over both unsu-
pervised and supervised baselines. Furthermore, we successfully apply FSFP to
engineer the Phi29 DNA polymerase through wet-lab experiments, achieving a
25% increase in the positive rate. These results underscore the potential of our
approach in aiding AI-guided protein engineering.

Proteins play an indispensable role in biological activities. Due to their
attributes as biocatalysts, which are green, efficient, and cost-effective,
the demand for their applications in scientific research and industrial
production is steadily increasing1–4. However, most wild-type proteins,
directly obtained from the biological species, cannot be directly
applied in industrial conditions, as some of their physicochemical
properties, such as stability, activity, and substrate specificity, are not
good enough. Protein engineering seeks to excavate proteins with
properties useful for specific applications. Traditional protein engi-
neering, relying on methods like directed evolution and rational
design, seeks to enhance these properties5,6. Directed evolution,

although powerful, faces challenges in screening vast mutant libraries
due to high-throughput assay constraints in terms of setup complexity
and costs7,8. Rational design, despite its reduced experimental
requirements, is often limited by the unavailability of detailed struc-
tural knowledge and mechanistic insights9,10. In recent years, deep
learning has shown great potential in uncovering the implicit rela-
tionships between protein sequences and their functionality, i.e., fit-
ness, thus being helpful to efficiently explore the vast design space.

Generally, deep learning approaches can be categorized into
supervised and unsupervised models, with the main distinction
being whether the training data require manually collected labels11–13.
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Pre-trained protein language models (PLMs) are the most trending
unsupervised approaches to fitness prediction. These models, such
as ESM-213, ProGen14, SaProt15, and ProtT516, trained on the expansive
protein universe, can estimate probability distributions for various
protein sequences independent of experimental data. This capability
facilitates the prediction of mutational effects but is limited in
accuracy. Since these models fundamentally represent statistical
characteristics of natural protein sequences found in nature, their
zero-shot likelihood scores for mutation fitness essentially measure
how similar a mutant protein sequence is to natural proteins or a
particular protein family. While this measure can predict certain
natural protein properties like solubility and stability12,17,18, it inher-
ently lacks the capability to predict non-natural catalytic properties,
such as the catalysis of non-natural substrates or the production of
non-natural products19.

Supervised deep learning models, in contrast, have recently
shown high accuracy in predicting protein fitness11,20,21. Based on their
strong ability to extract both local and global features of the proteins,
they could construct more accurate sequence-fitness correlations by
training on sufficient labeled data. However, these models are heavily
reliant on extensive data derived from expensive, high-throughput
mutagenesis experiments22,23, posing a significant challenge for most
proteins. Recently, Hsu et al.24 developed an efficient ridge regression
model that combines the one-hot features of amino acids and the
probability density feature calculated by an unsupervised model.
When training on limited labeled data, it demonstrates improved
performance against more sophisticated and expensive methods.
However, one-hot features are not informative enough to represent
the relationships between different residues. Besides, as a linear
model, ridge regression might have difficulty in learning complex
patterns that affect protein fitness. Therefore, it is meaningful to
develop new strategies to effectively fine-tune PLMswith scant wet-lab
data in protein engineering, where the advantages of both unsu-
pervised and supervised approaches can be fused.

In this work, we leverage the synergistic methodologies of meta-
transfer learning (MTL)25, learning to rank (LTR)26,27, and parameter-
efficient finetuning28,29 to develop a versatile approach for training
PLMs. Our approach, named FSFP (Few-Shot Learning for Protein Fit-
nessPrediction), is notable for its relianceon aminimal labeleddataset
for the target protein, comprising merely tens of random single-site
mutants.With FSFP, this streamlineddataset can substantially enhance
the accuracy of the trained model to predict mutational effects.
To validate our approach, we conduct in-silico benchmarks using
various representative PLMs, including ESM-1v, ESM-2, and SaProt.
Although FSFP is theoretically compatiblewith any PLMs, our selection
of models for testing is primarily influenced by practical considera-
tions, particularly computational efficiency and resource constraints.
Our methodology demonstrates remarkable performance on
ProteinGym30, a benchmark including an extensive range of 87 deep
mutational scanning (DMS) datasets, showing robustness when
adapting to different PLMs and proteins. This is achieved in compar-
ison with both unsupervised and supervisedmodels trained on tens of
data. In particular, our approach enhances the performance of the
PLMs by up to 0.1 on average Spearman correlation with merely 20
labeled single-site mutants from the target protein. Moreover, FSFP is
applied to engineer the Phi29 DNA polymerase through wet-lab
experiments where both the average melting temperature (Tm) and
positive rate of the top 20 predictions from ESM-1v are improved.
These results underscore its efficiency in data utilization, indicating its
potential in aiding AI-guided protein engineering.

Results
Transferring PLMs with limited training data via FSFP
FSFP leverages meta-learning to better train PLMs in a label-scarce
scenario. Meta-learning aims to train a model that can rapidly adapt

to a new task using only a few training examples and iterations, by
accumulating experience from learning multiple tasks25,31,32. To build
the training tasks required for meta-learning, we search for existing
labeled mutant datasets that are potentially helpful to predict the
variant effects on the target protein, as well as generate pseudo
labels through multiple sequence alignment (MSA) for the candidate
mutants (Fig. 1a and “Methods”). In this stage, the wild-type
sequences or structures of the target protein and the ones in the
database are first encoded into embedding vectors by PLMs. Pro-
teinGym is used as the database to retrieve from because it is the
largest public collection of DMS datasets at the time of writing. After
that, the associated datasets of the top two proteins that are closest
to the target protein in the vector space are selected to form the first
two tasks. This is motivated by the fact that the fitness landscapes of
similar proteins may share similar properties33. On the other hand,
existing literature shows that it is promising to predict the effect of
genetic variation using MSA11,18,30,34–38. We thereby use an alignment-
based method, GEMME34, to utilize MSA information of the target
protein, and score the candidate mutants of interest to build the
dataset of the third task. The labeled data of these tasks are randomly
split into training and testing data, respectively. In this way, we
expect the meta-trained model to learn to utilize the target training
data from both evolutionary information and similar fitness
landscapes.

We apply model-agnostic meta-learning (MAML)32, a popular
gradient-basedmeta-learningmethod, to meta-train PLMs on the built
tasks (Fig. 1b and “Methods”). In effect, MAML learns to find the opti-
mal initial model parameters such that small changes in them will
produce large improvements on the target task. The meta-training
procedure has two levels of optimization in each iteration, and will
eventually turn the PLM into a meta-learner for initialization (Fig. 1b,
right). In the inner-level optimization, a temporary base-learner is
initialized by the current meta-learner and then updated into a task-
specific model using the training data of a sampled task. In the outer-
level optimization, the test loss of the task-specific model on that task
is used to optimize the meta-learner.

PLMs typically use heavily parameterized Transformer39 models
as the base architecture and pre-train on large-scale unlabeled protein
sequences12–14,16,18,40 or structures15,41. However,whenfinetuningon very
few labeled training data, they are likely to suffer from catastrophic
overfitting. Therefore, FSFP utilizes low-rank adaptation (LoRA)28 to
inject trainable rank decomposition matrices into PLMs with their
original pre-trained parameters frozen, and all of the model updates
are constrained to these small number of trainable parameters (Fig. 1b,
left and “Methods”).

Aftermeta-training, a good initialization of the LoRA parameters
is obtained, and we finally transfer the meta-trained PLMs to the
target few-shot learning task, i.e., learning to predict the mutational
effects of the target protein using its limited labeled data. Unlike
conventional approaches to train supervised protein fitness pre-
dictors, which formalize this to a regression problem11,20,21,24, FSFP
treats it as a ranking problem and leverages the LTR technique
(Fig. 1c and “Methods”). In protein engineering and directed evolu-
tion, the most important index is whether a mutation enhances the
functional fitness of the existing protein. Therefore, instead of
focusing on the precise score values of mutations, their relative
effectiveness or ranking order should hold greater significance.
Specifically, FSFP learns to rank the fitness by computing ListMLE
loss27, which is defined by the likelihood of the permutation of a
correct ranking. In each iteration, the model is trained to fix its
predictions for one or more sampled data subsets towards the
ground truth permutation. The above training scheme is adopted in
both the transfer learning stage (using the target training data) and
the inner-level optimization during themeta-training stage (using the
training data of the auxiliary tasks).
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Fig. 1 | Overview of FSFP. FSFP includes three stages: building auxiliary tasks for
meta-learning, meta-training PLMs on the auxiliary tasks, and transferring PLMs to
the target task. aBasedon thewild-type sequenceor structureof the targetprotein,
the labeledmutant datasets of two similar proteins are retrieved to be the first two
tasks. In addition, an MSA-based method is used to estimate the variant effects of
the candidate mutants as pseudo labels for the third task. b MAML algorithm is
used to meta-train the PLM on the built tasks and eventually optimizes it into a

meta-learner that provides good parameter initialization for the target task (right).
To prevent PLMs from overfitting on small training data, LoRA is applied to con-
strain model updates to a limited number of parameters (left). c The meta-trained
model is then transferred to the target few-shot learning task. FSFP treats fitness
prediction as a ranking problem, and leverages the LTR technique for both transfer
learning andmeta-training. It trains PLMs to rank the fitness by computing a listwise
ranking loss between their predictions and the ground truth permutation.

Article https://doi.org/10.1038/s41467-024-49798-6

Nature Communications |         (2024) 15:5566 3



Benchmark setup
We evaluate model performance on the substitution benchmark of
ProteinGym, which consists of about 1.5M missense variants from 87
DMS assays. Among these 87 datasets, 11 contain multi-site mutants.
ProteinGym is originally used for evaluating the zero-shot perfor-
mance of PLMs, and we turn it into a few-shot learning benchmark as
follows. For eachdataset in the benchmark, wefirst randomly select 20
single-site mutants as an initial training set. Then we expand the
training set size to 40 by sampling another 20 single-site mutants. The
training sets with sizes of 60, 80, and 100 are built accordingly. For
each training set, all the remaining data (or part of them if specified)
are used as a test set, and we use cross-validation on the training data
to determine the training hyperparameters (“Methods”). The data
splitting process is repeated five times with different random seeds,
and we average the model performance over different splits of a cer-
tain training size. In most experiments, the predictive performance
is measured by two metrics: Spearman rank correlation and normal-
ized discounted cumulative gain (NDCG)42 with the fitness labels as
ground truth.

Our main baseline on few-shot protein fitness prediction is
the ridge regression approach introduced by Hsu et al.24. It uses one-
hot encoded site-specific residue features and the fitness score pre-
dicted by an existing evolutionary probability density model as
the input features to train a ridge regression model. Although it
is simple, it turns out to be more effective than other supervised
learning approaches in such low-resource scenarios. When
applying FSFP to a foundation model for evaluation, we compare it
to the ridge regression-augmented version of this model. We use
the official implementation of this baseline to ensure its
performance.

All components of FSFP contribute positively to few-shot
learning
To thoroughly evaluate the impact of different components thatmake
up FSFP, we conduct an ablation study taking ESM-2 as the foundation
model. Themodel size is chosen to be 650M, while other sizes are also
evaluated and FSFP keeps achieving better performance on larger
models (Supplementary Fig. 1a). In detail, we compare FSFP with the
following training strategies:
(1) LTR + LoRA +MTL (no MSA) is a variant of FSFP that does not

depend on MSA to build auxiliary tasks. It replaces the third task
of FSFP with another labeled dataset retrieved from the database.

(2) LTR + LoRA is a variant of FSFP that transfers the LoRA-adapted
model to the target task via LTR without meta-training on
auxiliary tasks.

(3) MSE denotes fine-tuning the entire PLMwith fitness labels as done
by Rives et al.40, which uses the log-likelihood difference between
the mutant and the wild type as a predictor.

(4) MSE + LoRA further enhances the MSE method with LoRA.
(5) Ridge regression denotes the approach proposed by Hsu et al.24.
(6) We also perform zero-shot inference using the PLM following

Meier et al.12.

Compared with zero-shot inference, MSE exhibits major degra-
dation in the average predictive performance (Fig. 2a and Supple-
mentary Fig. 1b, c). This can be attributed to the quick overfitting
caused by directly fine-tuning the whole model on small training
datasets (Supplementary Fig. 2b, c). Equipping LoRA significantly
mitigates such negative impact overall due to its efficient para-
meterization for minimal adjustments. However, its performance still
fails to match the original unsupervised model until the training set

a b

Fig. 2 |AblationstudyonESM-2. aAverageperformanceof each strategy across all
datasets in ProteinGym with respect to the training data size, evaluated by Spear-
man correlation. For each dataset, we randomly pick a small number of (20, 40, 60,
80, and 100) single-site mutants as a training set, with all the rest as a test set. Each
dot in the figure is the average test performance of five random data splits, along
with the error bar indicating the standard deviation caused by different splits. Two-
sidedMann–Whitney U tests are used for comparing the performance of FSFP with

all other strategies, and the largest P value among all training sizes is 0.0079.
Analogous results measured by NDCG, Pearson correlation, and MAE are
shown in Supplementary Fig. 1b–d. b Distribution of the performance improve-
ment in Spearman correlation over zero-shot prediction across all datasets in
ProteinGym, with a training size of 40. The performance gain of each dataset is
averaged among the five random splits. Source data are provided as a Source
Data file.
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size reaches 80. As our main baseline, the performance of ridge
regression exceeds zero-shot inference across most of the training
sizes. This is consistent with the comparison results presented by Hsu
et al.24. LTR + LoRA outperforms the above methods on all training
sizes (Fig. 2a and Supplementary Fig. 1b, c). Meanwhile, on most
datasets, LTR greatly boosts the model performance compared with
regression (Fig. 2b). As mentioned before, the ranking order of dif-
ferent mutants is often more important than their absolute scores in
directed evolutions. On the other hand, in the context of few-shot
learning, accurately predicting the exact label values becomes chal-
lenging because there is usually a significant difference in their range
between training and testing data. In fact, when additionally con-
sidering mean absolute error (MAE), even the regression-based
methods exhibit poor performance (Supplementary Fig. 1d), render-
ing their absolute output values impractical for applications. Since the
ordermattersmore, the ranking-relatedmetrics are favored for fitness
prediction and thus LTR is more suitable.

Using MTL to obtain initial model parameters for few-shot train-
ing further increases the performance (Fig. 2a and Supplementary
Fig. 1b, c). The improvements of LTR + LoRA +MTL (no MSA) over
LTR + LoRA indicate that similar properties in fitness landscapes from
other proteins can be helpful. FSFP, which additionally learns the MSA
knowledge during meta-training, achieves the best scores on all
training data sizes (Fig. 2a and Supplementary Fig. 1b, c). This suggests
that apart from the training data of the target protein, the evolutionary
information from MSA may also effectively supervise the model in
estimating mutational effects. As illustrated by the training curves
(Supplementary Fig. 2), with or without MSA, MTL could significantly
improve the model performance using very few training iterations
comparedwithother approaches. Besides, the initialmodel aftermeta-
training can already substantially outperform zero-shot inference
without access to the target training data (i.e., with no training itera-
tion) in some cases. These demonstrate that by utilizing FSFP, the
model successfully learns useful information from auxiliary tasks and
thus can well transfer to the target few-shot learning task.

FSFP as a general few-shot learning approach for PLMs
FSFP can be applied to any deep learning-based protein fitness pre-
dictor that uses gradient descent for optimization, while we focus on
PLMs in this work. To validate its versatility, we select three repre-
sentative PLMs—ESM-1v, ESM-2, and SaProt—as the foundationmodels
to be trained (“Methods”). For each of them, the 650M version is
chosen for evaluation, where the trainable LoRA parameters account
for 1.84% of the entire model. We compare FSFP with their zero-shot
predictions, as well as the ridge regression approach across all 87
datasets in the benchmark. Since FSFP leverages GEMME to generate
pseudo labels for meta-training, we also add GEMME and GEMME
augmented by the ridge regression approach as two additional base-
lines. The test performances on single-site mutants and multi-site
mutants are reported separately (Fig. 3 and Supplementary Fig. 3).
Note that the best approach reported byHsu et al.24 is DeepSequence36

augmented by ridge regression. However, we find that its overall per-
formance is worse than the ridge regression-augmented GEMME on
ProteinGym, so we omit this approach from the figures.

Considering the average performance, the PLMs trained by FSFP
consistently outperform other baselines on all training data sizes
(Fig. 3a, c). Among them, SaProt (FSFP) emerges as the top performer,
while ESM-1v (FSFP) and ESM-2 (FSFP) show comparable performance.
Besides, on most datasets in ProteinGym, the best Spearman correla-
tion is achievedbyoneof the FSFP-trainedPLMs (Fig. 3b, d). Compared
with zero-shot predictions, FSFP boosts the performance of PLMs on
single-site mutants by nearly 0.1 on Spearman correlation using only
20 training examples, and this gap becomes even larger when it comes
to multi-site mutants. The improvements keep increasing as the
training dataset expands, aligning with the results of the prior ablation

study. This demonstrates the adaptability and effectiveness of FSFP on
different foundation models. By contrast, the ridge regression
approach fails to noticeably outperform its zero-shot counterparts
with 20 training examples (Fig. 3a, c). On multi-site mutants, it shows
major negative impacts on the performance of GEMME, ESM-1v, and
ESM-2 when the training size is 20. Although its performance also
tends to improve as the training size increases, it is consistently behind
the FSFP-trained models. Except for the training strategy, this is likely
due to the limitation of simple one-hot features andmodel capacity of
the ridge regression approach. It is worth noting that when predicting
multi-site mutants, the standard errors of FSFP are much smaller than
those of ridge regression, indicating that the former ismore stable and
reliable when given different few-shot training data.

Notably, the average zero-shot performance of GEMME is better
than the PLMs we chose. This is not surprising because PLMs may not
always be better than MSA-based methods for predicting variant
effects24,30,38, despite their strong ability to model the statistical char-
acteristics of protein sequences or structures. Therefore, resorting to
guidance from a state-of-the-art MSA-based method is reasonable in
such a few-shot scenario. As shown in Fig. 3a, themodels utilizing FSFP
achieve substantial improvements over both GEMME and its ridge
regression-augmented version on all training sizes. This suggests that
FSFP not only instills the MSA knowledge from GEMME into PLMs, but
also successfully combines it with the supervised information from the
target training data throughMTL. This again verifies the superiority of
FSFP as a few-shot learning strategy, especially with exceedingly small
training datasets.

FSFP holds robust generalizability and extrapolation ability
For protein engineering, the effect of mutations whose positions do
not occur in existing labeled data is always wondered. Therefore, the
capability of the fitness predictors to extrapolate across positions is
important for probing mutants with good properties from the enor-
mous sequence space. We examine the extrapolation ability of differ-
ent approaches by evaluating them on specific subsets of the testing
data. In detail, from each original test set, we first select all single-site
mutants whose mutated positions are different from those of the
training examples, resulting in a more difficult test set of single-site
mutants. Then we select the multi-site mutants whose individual
mutations have no overlap with the mutations in the training data,
resulting in another challenging test set. We do not force all mutated
positions of a testing multi-site mutant to be different from the
training positions because this will lead to insufficient testing exam-
ples for some datasets. Under these settings, we can find that the zero-
shot performanceof the basemodelsobviously varieswith the training
set size (Fig. 4). This can be attributed to the greater changes in the test
sets: as the training dataset expands, available testing examples satis-
fying the above conditionsmay drastically decrease for somedatasets,
impacting the evaluation results of zero-shot predictions.

When extrapolating to single-site mutants with different posi-
tions, the models augmented by ridge regression do not show clear
improvements over the base models even with 100 training examples
(Fig. 4a). For multi-site mutants, the ridge regression approach fails to
effectively enhance GEMME and ESM-2 when the training size is <60,
and it exhibits larger standarddeviations thanFSFP asobserved before
(Fig. 4c). In stark contrast, the PLMs trained by FSFP continue to score
better than all baselines on Spearman correlation across different
training sizes. Compared with their zero-shot performance, they show
considerable improvements after being trained by FSFP, especially for
ESM-1v. Also, the best performer of most datasets is an FSFP-trained
model (Fig. 4b, d). These are consistent with the quantitative conclu-
sions illustrated in Fig. 3. Since PLMs have intrinsic strong general-
izability owing to their high capacity and embedded knowledge
through pre-training, it is possible to boost their performance on hard
downstream tasks by proper training paradigms. However, the input
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features of the ridge regression approach are much less informative,
resulting in limited extrapolation ability.

To further demonstrate the applicability and generalizability of
FSFP, we show the comparison results of different approaches on four
proteins: the envelope protein Env from HIV43, the human α-
synuclein44, protein G (GB1)45, and the human TAR DNA-binding pro-
tein 43 (TDP-43)46. In these cases, one or more unsupervised models
show poor performance and are not reliable in practice, highlighting
the need for effective training using limited labeled data (Supple-
mentary Figs. 5 and 6). Notably, for TDP-43, the zero-shot results of all

models have no or even negative correlation with the actual fitness
labels (Supplementary Fig. 5d), and those of ESM-2 have low accuracy
for HIV Env (Supplementary Fig. 5a) and α-synuclein (Supplementary
Fig. 5b). As seen, except for GB1 (Supplementary Fig. 5c), mostmodels
enhanced by ridge regression do not show significant improvements
against their zero-shotperformance, evenwith larger trainingdatasets.
On the contrary, utilizing FSFP, the PLMs achieve considerable gain by
training on small datasets, therefore becoming more useful for direc-
ted evolution. It can also be observed that the performance of GEMME,
themethod used by FSFP for yielding pseudo labels, is not dominating

a b

c d

Fig. 3 | Overall performance on single-site and multi-site mutants. a Average
model performance tested on single-site mutants across all 87 datasets, evaluated
by Spearman correlation. Errorbars represent the standarddeviationcausedbyfive
randomsplits. SaProt (FSFP) is significantly better than all baselines with the largest
P value among all training sizes being 0.0079 (two-sided Mann–Whitney U test).
Analogous results measured by NDCG are shown in Supplementary Fig. 3a.
b Summary of how often the best test Spearman correlation for single-sitemutants
on a certain dataset is achieved by a PLM, where the colors represent different

strategies applied to the best PLMs. c Averagemodel performance tested onmulti-
site mutants across 11 datasets, evaluated by Spearman correlation. Error bars
represent the standard deviation caused by five random splits. SaProt (FSFP) is
significantly better than all baselines with the largest P value among all training
sizes being 0.016 (two-sided Mann–Whitney U test). Analogous results measured
by NDCG are shown in Supplementary Fig. 3b. d Similar to (b) but counted for the
best performance on multi-site mutants. Source data are provided as a Source
Data file.
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among other base models in the later three examples. Nevertheless,
this does not hinder the FSFP-trained models from being the top
performers, which suggests that FSFP learns to generalize from the
auxiliary tasks instead of simply overfitting them.

Engineering of Phi29 using FSFP
We proceed to demonstrate the practical efficacy of FSFP by engi-
neering the Phi29 DNA polymerase47 through wet-lab experiments
(“Methods”). Phi29 DNA polymerase has a pivotal role in biotechno-
logical applications and has been rigorously validated as an efficient

isothermal DNA amplification enzyme47,48. Improving the thermo-
stability in Phi29 has currently attracted great research interest49–51.
Herein, we focus on enhancing its thermostability by starting from
acquiring enough positive single-site mutants, so that potentially
better multi-site mutants can be originated from them afterward. We
apply FSFP to train ESM-1v based on a limited set of wet-lab experi-
mental data and then use it to find new single-site mutants for
experimental validation (Fig. 5a and “Methods”).

Initially, in the absence of prior wet-lab data, ESM-1v is employed
to identify the top 20 single-site mutants of Phi29 based on its zero-

a b

c d

Fig. 4 | Extrapolative performance on single-site and multi-site mutants.
a Extrapolating to single-sitemutants whosemutated positions do not occur in the
training set, evaluated by Spearman correlation. Error bars are centered at average
performance and indicate the standard deviation caused by five random splits.
SaProt (FSFP) is significantly better thanall baselineswith the largest P value among
all training sizes being 0.016 (two-sided Mann–Whitney U test). Analogous results
measured by NDCG are shown in Supplementary Fig. 4a. b Summary of how often
the best extrapolative Spearman correlation for single-site mutants on a certain
dataset is achieved by a PLM, where the colors represent different strategies

applied to the best PLMs. c Extrapolating to multi-site mutants whose individual
mutations have no overlap with the mutations in the training data, evaluated by
Spearman correlation. Error bars are centered at average performance and indicate
the standard deviation caused by five random splits. SaProt (FSFP) is significantly
better than all baselines with the largest P value among all training sizes being
0.0079 (two-sided Mann–Whitney U test). Analogous results measured by NDCG
are shown in Supplementary Fig. 4b. d Similar to (b) but counted for the best
extrapolative performance on multi-site mutants. Source data are provided as a
Source Data file.
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shot predictions for the first round of wet-lab experiments. These
mutants are constructed, purified, and subsequently assayed to
ascertain their thermal stability. The resultant Tm values are measured
and compared against the wild-type baseline. We then train ESM-1v via
FSFP on all 20 mutants with these Tm values as labels. The enhanced
model is then used to predict a new set of top 20 single-site mutants
for further wet-lab experiments.

When comparing the top 20 predictions from ESM-1v before and
after FSFP training, it can be found that the average Tm value is
improved by more than 1 °C and the positive rate is improved by 25%
(Fig. 5b and Supplementary Table 1). Specifically, the best mutant (i.e.,
the one with the highest Tm value) found by ESM-1v (FSFP) is also
recommended by ESM-1v (zero-shot). However, among the positive
mutants predicted by ESM-1v (FSFP), nine of themdo not appear in the
training data, suggesting that FSFP can enable PLMs to identify more
protein variants that are better than the wild type. These results affirm
the potential of FSFP in accelerating the iterative cycle of design and
testing in protein engineering, thereby being helpful to the develop-
ment of proteins with enhanced functional profiles.

Discussion
In this work, we introduce FSFP, a paradigm for effectively training
PLMs to predict protein fitness using only a small number (tens) of
labeled mutants. FSFP integrates the techniques of LTR, LoRA, and
MTL, where LTR meets the intrinsic needs of directed evolutions to
rank the protein fitness, LoRA greatly reduces the overfitting risk of
PLMs when encountering small training datasets, and MTL provides
PLMs with better initial parameters for fast adaptation to the target
protein.We apply FSFP to three representative PLMs, i.e., ESM-1v, ESM-
2, and SaProt for the case study, though it is theoretically compatible
with any PLM. Through comprehensive in-silico experiments across 87
DMS datasets, we demonstrate the effectiveness and robustness of
FSFP in few-shot protein fitness prediction: (1) it boosts the test per-
formance of the PLMs by up to 0.1 on average Spearman correlation
using merely 20 training examples; (2) it improves the performance of
different PLMs consistently and considerably; (3) it enables PLMs to
well extrapolate to the mutations whose positions are absent in the

training data; and (4) it can be both effective and data-efficient even
when the PLMs exhibit poor zero-shot performance on the target
protein. We also apply FSFP to engineer Phi29 DNA polymerase using
wet-lab experiments and the results show that it significantly improves
both the average Tm value and positive rate of the top 20 predictions
from ESM-1v.

Reasonably, we find that meta-training PLMs on the proteins that
contain more mutants and have higher similarity to the target protein
leads to better performance of transfer learning (Supplementary
Fig. 7a). Compared with finetuning PLM without MTL (LTR + LoRA),
meta-learning is helpful when the dataset size of the auxiliary tasks is
≥500 even if the retrieved proteins have low similarities. Since our
third auxiliary task is solely built from the MSA of the target protein,
the negative impact of the dissimilar proteins can be mitigated.
Notably, in the worst case (the leftmost bar in Supplementary Fig. 7a),
theperformance of FSFP is comparable to LTR+ LoRAand still exceeds
zero-shot prediction by a large margin. The underlying reason is that
we use the target training data to early stopmeta-training (“Methods”),
and thus prevent the model from overfitting on the low-quality aux-
iliary tasks. In general, the more informative the auxiliary tasks for the
target protein, the more significant the effect of meta-learning.
Therefore, it is important to collect auxiliary datasets that are close
enough to the target task based on prior knowledge, e.g., by using
different types of experimental data from the target protein.

To search for related proteins, FSFP originally computes the cosine
similarities between the protein embeddings yielded by PLMs, while
other methods can also be adopted such as MMseqs252 and Foldseek53

(Supplementary Fig. 7b–d). Overall, there is no huge difference in uti-
lizing these search methods, indicating that they are all reliable for
identifying relevant training datasets (Supplementary Fig. 7c, d). In
addition, we can find that the zero-shot performance of a PLM varies on
different types of datasets, e.g., ESM-2 performs best on predicting
activity while SaProt performs best on predicting expression (Supple-
mentary Fig. 7c). Such performance trend across the datasets remains
after FSFP training, which suggests that FSFP may keep the advantage
or bias of the trained PLM over data when boosting its accuracy. Due to
the fact that different models suit differently when learning the fitness

Wild type of Phi29

Test Tm

Construct and purify 
the mutants

Labeled training 
data

Train ESM-1v 
via FSFP

ESM-1v

Select top 20 single-site 
mutants using ESM-1v

Trained 
ESM-1v

Select top 20 single-site mutants 
using the trained ESM-1v

a b

Fig. 5 | Engineering Phi29 using FSFP. a The workflow of using FSFP to engineer the Phi29 DNA polymerase. bWet-lab experimental Tm values of the top 20 single-site
mutants predicted by ESM-1v before and after training by FSFP. Source data are provided as a Source Data file.
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landscapes of various proteins (in our experiments, the top-performing
model varies for different datasets), the choice of the foundationmodel
to be trained should be given careful consideration.

Based on the superior few-shot performance, FSFP could enable
more effective directed evolution, especially when high-throughput
screens are difficult. The initial data for directed evolution may origi-
nate from rational design, randommutations, or zero-shot predictions
from PLMs. Regardless of the proportion of positive mutants in this
initial dataset, it could serve as a basis for selecting the most suitable
PLMs. In subsequent iterative rounds, FSFP could be applied to train
the selected PLMs. Leveraging the extrapolative capabilities of the
models trained by FSFP, they can be applied to recommend new
mutants.

Methods
Efficient solution for the fitness ranking problem
Parameter-efficient fine-tuning of PLMs. To prevent PLMs from
overfitting on small training datasets, we use LoRA28 to learn a small
number of task-specific parameters instead of optimizing the full
model. LoRA hypothesizes that the change of weights during model
tuning has a low intrinsic rank. In detail, given a pre-trained weight
matrix W0 2 Rd × k , LoRA constrains its update by representing the
latter with a low-rank decomposition:

W0 +ΔW=W0 +BA ð1Þ

where B 2 Rd × r , A 2 Rr × k , and the rank r≪min d,kð Þ. A is randomly
initialized but B is initialized by zero, so ΔW is also zero at the begin-
ning of training. We freeze the original pre-trained model and apply
LoRA to the weight matrices in its self-attention modules and feed-
forward layers. Thehyperparameter r is set to 16 in all our experiments.

Learning to rank the fitness. We use a listwise LTR approach, namely
ListMLE27 to train PLMs on few-shot training data. It defines the loss
function based on the likelihood of the permutation of a correct
ranking. Let x= x1, . . . ,xn

� �
be the objects to be ranked, y= fy1, . . . ,yng

be their corresponding labels, and π be a permutation of x satisfying
π 2 πjyπðiÞ ≥ yπðjÞ; i< j

n o
where πðiÞ denotes the index of the object

ranked at position i in π. The ListMLE loss is defined as:

L f ;x,πð Þ= � log P πjx; fð Þ ð2Þ

where f is a parameterized scoring function, and the probability
P πjx; fð Þ is defined by the Plackett-Luce model54:

P πjx; fð Þ=
Yn

i= 1

exp f xπðiÞ
� �� �

Pn
k = i exp f xπðkÞ

� �� � ð3Þ

Given a mutant s, we score its fitness by comparing the probability
assigned to each mutated residue by PLMs with the one for the wild
type, following Meier et al.12:

f sð Þ=
X

t2T
logP st = s

mt
t jswt� �� logP st = s

wt
t jswt� �� 	

ð4Þ

Here T represents all mutants in s and st is the residue at position t of
themutant andwild-type sequence. In thisway, the initial performance
of the supervised model is equal to its zero-shot performance, which
makes it easier to fit the training data.

In each training iteration, we randomly select m subsets of size n
with replacement from the training data (n is smaller than the training
data size, and m can be viewed as batch size) and then compute
ListMLE loss on each subset. The average loss on them subsets is used
to update the trainable parameters in PLMs via gradient descent. The

values ofm and n depend on the actual training size and the validating
performance on the training data.

Meta-learning on auxiliary tasks
Meta-learning aims to train a model that can quickly adapt to a new
task using only a few data points and training iterations, typically by
accumulating experience from learning multiple tasks25,31,32. Before
transferring PLMs to the target few-shot learning task, we perform
meta-learning to obtain a better initialization of the LoRA parameters
that can learn the target training data faster and further reduce the
possibility of overfitting. To build the training tasks required for meta-
learning, we search for existing labeled mutant datasets that are
potentially helpful to predict the variant effects on the target protein,
as well as generate pseudo labels through MSA for the candidate
mutants.

Searching similar experimental datasets. Since ProteinGym has
already included a wide variety of mutant data collected from 87 DMS
assays, we use it as a database to search from. First, the wild-type
sequences (or structures in the case of SaProt) of the target protein
and the ones in the database are sent to a PLM (the one to be trained)
to obtain their corresponding embedding vectors. Specifically, the
output vectors representing each residue from the last hidden layer
are averaged to form the protein embedding vector. Then, the rele-
vance between the target protein and a candidate protein is measured
by the cosine similarity between their embeddings p and q:

simðp,qÞ= p � q
kpk2 � kqk2

ð5Þ

Finally, we choose twoproteins that have the highest similarities to the
target protein, and take their corresponding DMS datasets as the
labeled data for the first two tasks.

Estimating mutational effects based on MSA. MSA has proved to be
useful in predicting the mutational effects34–38, andmay also boost the
performance of PLMs on various downstream tasks11,18,30. In this work,
we integrate MSA knowledge into PLMs by meta-train PLMs on the
pseudo labels generated by an alignment-based method, rather than
modifying the model architecture. We choose GEMME algorithm34 to
utilize MSA information, which predicts mutational effects by expli-
citly modeling interdependencies between all positions in a sequence.
It uses MSA to construct Joint Evolutionary Trees55, and compute
conservation degrees of different positions in the protein sequence
based on evolutionary traces. The conservation degrees are then used
to estimate the evolutionary fit required to accommodate mutations.
The relative frequency of the mutation occurrence serves as another
quantity to infer the mutational effect. Utilizing GEMME, we score the
candidate mutated sequences of the target protein and build the
dataset of the third task.

Meta-training of PLMs. We apply MAML32, a state-of-the-art meta-
learning algorithm, to enable PLMs to better utilize the few-shot
training data. MAML is also successfully applied to recognize
drug–target interactions56 and antigen binding57. In essence, MAML
learns to find the optimal initial model parameters such that small
changes in them will produce large improvements on any target task,
when altered by the target loss. Formally, we denote the fixed para-
meters of the original PLM and the added LoRAparameters asω and θ.
Before training, for each task T i we built, we randomly selected half of
its data as training dataDtr

i and the other half as testing dataDte
i . Meta-

training can be viewed as a bilevel optimization problem. In the inner-
level optimization, a task T i is randomly picked, and the loss on Dtr

i is
used to temporarily update the current trainable parameters θ into
task-specific parameters θ0i by gradient descent. Assuming there is only
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one gradient update step, it can be expressed as:

θ0i =θ� α∇θLDtr
i
f ω,θ

� �
ð6Þ

Here the loss functionL and scoring function f are the same as theones
in Eq. (2), and α is the step size. For the outer-level optimization, the
parameters θ are trained by optimizing for the test performance of
fω,θ0i

across the tasks in the current meta-batch:

θ θ� β∇θ

X

i

LDte
i

f ω,θ0i

� �
ð7Þ

where β is the meta step size. The above two levels of updates are
performed repeatedly during the meta-training process until the stop
criterion is satisfied. Through meta-learning, we aim to train a meta-
learner fω,θ that learns to learn similar tasks. After that, we fine-tune
fω,θ on the target training data and still keep ω frozen. In our
experiments, the gradient step size α and number g for each inner loop
are set to 0.005 and 5, respectively, and eachmeta-batch contains one
randomly sampled task. Taking ESM-2 (650M) as the backbone, we try
different combinations of α and g on our benchmark, and find that
FSFP isoverall not sensitive to gbutprefers a smallerα (Supplementary
Table 2). Since the outer update of Eq. (7) involves a gradient through a
gradient, we use a first-order approximation introduced by Finn et al.32

to reduce the computational cost. Stochastic gradient descent is
applied to solve the inner optimization andweuse Adam58 with default
hyperparameters for the outer optimization.

Foundation models
ESM1v. ESM-1v12 is a transformer language model for variant effects
prediction, which employs the ESM-1b architecture and masked lan-
guage modeling approach of Rives et al.40. It is trained on unlabeled
protein sequences fromUniref9059, with 650Mparameters. It includes
five models trained with different seeds for ensemble, but we only use
the first checkpoint in our experiments.

ESM-2. ESM-213 introduces improvements to ESM-1b in architecture
and increases the data for pre-training. In detail, it equips rotary
position embedding60, and uses UniRef50 for training. We take the
650M version of ESM-2 for our experiments.

SaProt. Su et al. propose SaProt15, a PLM trained with both protein
sequence and structure data. They introduce a structure-aware voca-
bulary that combines both residue types and 3Di structure tokens
encoded by Foldseek. The pre-training dataset of SaProt consists of
around 40Mstructures predictedbyAlphaFold261. SaProt employs the
same model architecture as ESM-2, with the structure-aware tokens as
input. In this work, we choose the SaProt version that is continuously
pre-trained on PDB structures. For SaProt, the scoring function Eq. (4)
is modified as follows so that it can fit the new vocabulary:

f sð Þ= 1
Uj j

X

t2T

X

u2U
logP st = s

mt
t ujswt� �� logP st = s

wt
t ujswt� �� 	

ð8Þ

where u is a 3Di token, U is the structure alphabet used by Foldseek,
and stu is a structure-aware token in the new vocabulary.

Early stopping strategy
Early stopping is widely used in deep learning to prevent the model
from overfitting. When sufficient labeled data are available, it is gen-
erally based on a separate validation set. However, a held-out valida-
tion set may result in insufficient training data in a low-resource
scenario. On the other hand, if the validation data size is assigned
too small, the validation scores such as Spearman correlation may not
be representative enough for early stopping. Based on these

considerations, we propose to estimate the number of training itera-
tions for transfer learning by Monte Carlo cross-validation62. Specifi-
cally, we create five random splits of the training set into training and
validating data. The proportion of training and validating data is
0.5:0.5 when the training data size is <50 otherwise 0.75:0.25. For each
split, the model is trained on the sub-sampled training data for up to
500 steps, and we record the Spearman correlation calculated on the
validating data every five steps. After five rounds of training and vali-
dating, we choose the training step number with the highest average
validation score across different splits, and finally train the model for
that number of steps on the whole training data.

The training data from the target protein is also used to early stop
the meta-training procedure. Similarly, five random splits of it are
generated first. For every five steps of the outer optimization during
meta-training, we train the current meta-learned model f ω,θ on the
sub-sampled target training sets for five gradient steps (same to the
inner optimization) and compute the validation Spearman scores. We
stop meta-training if the average validation score of different splits
does not improve within 20 consecutive records and pick the best
meta-learner according to this score.

Benchmark datasets
ProteinGym is an extensive set of DMS assays for comparisons of dif-
ferent mutational effect predictors30. We evaluate the model perfor-
mance on its substitution benchmark, which consists of about 1.5M
missense variants from 87 DMS assays. Since the maximum input
length of ESM-1v is 1024 tokens, we truncate the proteins that have
more than 1024 amino acids and ensure that most of the mutations in
their corresponding datasets occur in the resulting interval. To build
the inputs for SaProt, we obtain the structures of the proteins via
AlphaFold2 or download them from AlphaFoldDB if available.

For each dataset in ProteinGym, we first randomly sample 20
single-site mutants as an initial training set. On the basis of these
training examples, we add another 20 randomly selected single-site
mutants to build the second training set. Analogously, we expand the
training set size to 60, 80, and 100 for separate experiments. For each
training set, all the remaining data (or part of them if we specify) are
used as test set and we do not access them for hyperparameter
selection. The above process for data splitting is repeated five times
with different random seeds, and we report the average model per-
formance for each training data size. Since the test data changes across
the experiments, the zero-shot performance is not constant.

Protocol of wet-lab experiment for Phi29
Phi29 DNA polymerase is extensively employed in various DNA
amplification techniques, such as rolling-circle amplification, multiple
displacement amplification (MDA), and non-specific whole genome
amplification (WGA). It has been rigorously validated as an efficient
isothermal DNA amplification enzyme47,48. Each amplification method
necessitates distinct enzymatic characteristics. For example, WGA and
MDA reactions performed at elevated temperatures could benefit
from expedited reaction kinetics. Additionally, increased reaction
temperatures may mitigate the influence of C/G content on amplifi-
cation bias, offering further advantages49,50. Consequently, the
enhancement of thermostability in Phi29 has been a focal point of
academic research. Despite extensive documentation of engineered
protein, the thermal stability of these variants has yet to meet the
practical application requirements, with no substantial breakthroughs
reported to date49,51,63.

Mutant selectionprocedure. Initially, we use anensemble offive ESM-
1v models to score saturated single-site mutants of Phi29, where the
zero-shot predictions of five models are averaged. Then, 20 mutants
with the highest predicted scores are chosen tomeasure experimental
Tm values. Subsequently, a training dataset comprising these mutants
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with the obtained Tm values as labels is constructed. FSFP is then
applied to train the first ESM-1v model in the ensemble to refine its
predictions. The top 20 predictions from the trained model for single-
sitemutants are selected for the next iteration of wet-lab experiments.

Plasmid construction. A codon-optimized version of Phi29 DNA
polymerase and variants genes is synthesized by Sangon Biotech
(Shanghai, China). It is cloned into the pET28(a) plasmid (the con-
struction of Phi29 protein is shown in Supplementary Fig. 8) to con-
struct pET28a-phi 29-MX with an N-terminal His-tag.

Protein expression. The expression plasmid is transformed into
Escherichia coli BL21(DE3) cells. A 30ml seed culture is grown at 37 °C
in LB medium with 50 µg/ml kanamycin and is subsequently trans-
ferred to 500mL of LB in a shaker flask containing 50 µg/ml kanamy-
cin. The cultures are incubated at 37 °C until the OD600 reaches 1.0,
and protein expression is then induced by the addition of isopropyl-D-
thiogalactopyranoside to a final concentration of 0.5mM, followed by
incubation for 16 h at 25 °C.

Protein purification. Cells are harvested by centrifugation for 30min
at 3345 × g and the cell pellets are collected for later purification. The
cell pellets are resuspended in lysis buffer (25mM Tris-HCl, 500mM
NaCl, pH 7.4) and then disrupted using ultrasonification (Scientz,
China). The lysates are centrifuged for 30min at 15,615 × g at 4 °C, after
which the supernatants are subjected to Ni-NTA affinity purification
with elution buffer (25mMTris-HCl, 500mMNaCl, 250mM imidazole,
pH 7.4). Further, the protein is desalted with lysis buffer (25mM Tris-
HCl, 500mM NaCl, pH 7.4) using ultrafiltration. The fractions con-
taining the protein are flash frozen at −20 °C in buffer (25mMTris-HCl
pH 7.4, 200mM NaCl, 20% glycerol).

Melting temperature assessment. The Tm values are determined by
differential scanning fluorimetry (DSF) method using the Protein
Thermal Shift Dye Kit (Thermo Fisher). One microlitter of the SSYPRO
Orange dye (SUPELCO, USA) is added to 49μL lysis buffer (25mMTris-
HCl, 500mM NaCl, pH 7.4). Then, 1μL diluted dye is mixed with 19μL
of 0.1mg/mL protein. DSF experiments are then carried out using the
LightCycler 480 Instrument II (Roche, USA). The reaction mixture first
reaches 25 °C, then raises to 99 °C at the speed of 0.05 °C/s and
maintains it for 2min. Protein Thermal Shift software is used for data
processing.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used for benchmarking are from ProteinGym30 https://
github.com/OATML-Markslab/Tranception. The detailed perfor-
mances of different approaches on each dataset measured by Spear-
man correlation and NDCG are available in Supplementary Data 1 and
2, respectively. Source data are provided with this paper.

Code availability
The source code of FSFP is available at https://github.com/
ai4protein/FSFP.

References
1. Wu, S., Snajdrova, R.,Moore, J. C., Baldenius, K. &Bornscheuer, U. T.

Biocatalysis: enzymatic synthesis for industrial applications.Angew.
Chem. Int. Ed. 60, 88–119 (2021).

2. Jemli, S., Ayadi-Zouari, D., Hlima, H. B. & Bejar, S. Biocatalysts:
application and engineering for industrial purposes. Crit. Rev. Bio-
technol. 36, 246–258 (2016).

3. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis.
Nature 485, 185–194 (2012).

4. Blamey, J. M., Fischer, F., Meyer, H.-P., Sarmiento, F. & Zinn, M.
Enzymatic biocatalysis in chemical transformations: a promising
and emerging field in green chemistry practice. In Biotechnology of
Microbial Enzymes 347–403 (Elsevier, 2017).

5. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes
by directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866–876 (2009).

6. Fowler, D. M. et al. High-resolution mapping of protein sequence-
function relationships. Nat. Methods 7, 741–746 (2010).

7. Chen, K. & Arnold, F. H. Enzyme engineering for nonaqueous sol-
vents: random mutagenesis to enhance activity of subtilisin E in
polar organic media. Biotechnology 9, 1073–1077 (1991).

8. Porter, J. L., Rusli, R. A. & Ollis, D. L. Directed evolution of enzymes
for industrial biocatalysis. ChemBioChem 17, 197–203 (2016).

9. Alford, R. F. et al. The Rosetta all-atom energy function for macro-
molecular modeling and design. J. Chem. Theory Comput. 13,
3031–3048 (2017).

10. Sun, Z., Liu, Q., Qu, G., Feng, Y. & Reetz, M. T. Utility of B-factors
in protein science: interpreting rigidity, flexibility, and internal
motion andengineering thermostability.Chem.Rev. 119, 1626–1665
(2019).

11. Luo, Y. et al. ECNet is an evolutionary context-integrated deep
learning framework for protein engineering. Nat. Commun. 12,
5743 (2021).

12. Meier, J. et al. Languagemodels enable zero-shot prediction of the
effects of mutations on protein function. Adv. Neural Inf. Process.
Syst. 34, 29287–29303 (2021).

13. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein
structure with a language model. Science 379, 1123–1130 (2023).

14. Nijkamp, E., Ruffolo, J. A., Weinstein, E. N., Naik, N. & Madani, A.
ProGen2: exploring the boundaries of protein language models.
Cell Syst. 14, 968–978.e963 (2023).

15. Su, J. et al. SaProt: protein languagemodelingwith structure-aware
vocabulary. In International Conference on Learning Representa-
tions (2024).

16. Elnaggar, A. et al. Prottrans: toward understanding the language of
life through self-supervised learning. IEEE Trans. PatternAnal.Mach.
Intell. 44, 7112–7127 (2021).

17. Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M.
Unified rational protein engineering with sequence-based deep
representation learning. Nat. Methods 16, 1315–1322 (2019).

18. Rao, R. M. et al. MSA transformer. in International Conference on
Machine Learning 8844–8856 (PMLR, 2021).

19. Calzini, M. A., Malico, A. A., Mitchler, M. M. & Williams, G. Protein
engineering for natural product biosynthesis and synthetic biology
applications. Protein Eng. Des. Sel. 34, gzab015 (2021).

20. Biswas, S., Khimulya, G., Alley, E. C., Esvelt, K. M. & Church, G. M.
Low-N protein engineering with data-efficient deep learning. Nat.
Methods 18, 389–396 (2021).

21. Gelman, S., Fahlberg, S. A., Heinzelman, P., Romero, P. A. & Gitter,
A. Neural networks to learnprotein sequence-function relationships
from deep mutational scanning data. Proc. Natl Acad. Sci. USA 118,
e2104878118 (2021).

22. Mazurenko, S., Prokop, Z. & Damborsky, J. Machine learning in
enzyme engineering. ACS Catal. 10, 1210–1223 (2019).

23. Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided
directed evolution for protein engineering. Nat. Methods 16,
687–694 (2019).

24. Hsu, C., Nisonoff, H., Fannjiang, C. & Listgarten, J. Learning protein
fitness models from evolutionary and assay-labeled data. Nat. Bio-
technol. 40, 1114–1122 (2022).

25. Sun, Q., Liu, Y., Chua, T.-S. & Schiele, B. Meta-transfer learning for
few-shot learning. In Proc. of the IEEE/CVFConference onComputer
Vision and Pattern Recognition 403–412 (IEEE, 2019).

Article https://doi.org/10.1038/s41467-024-49798-6

Nature Communications |         (2024) 15:5566 11

https://github.com/OATML-Markslab/Tranception
https://github.com/OATML-Markslab/Tranception
https://github.com/ai4protein/FSFP
https://github.com/ai4protein/FSFP


26. Chen,W., Liu, T.-Y., Lan, Y., Ma, Z.-M. & Li, H. Rankingmeasures and
loss functions in learning to rank. In Advances in Neural Information
Processing Systems (Curran Associates, Inc., 2009).

27. Xia, F., Liu, T.-Y., Wang, J., Zhang, W. & Li, H. Listwise approach to
learning to rank: theory and algorithm. In Proc. of the 25th Interna-
tional Conference on Machine Learning 1192–1199 (Association for
Computing Machinery, 2008).

28. Hu, E. J. et al. LoRA: low-rank adaptation of large languagemodels.
In International Conference on Learning Representations (2022).

29. Ding, N. et al. Parameter-efficient fine-tuning of large-scale pre-
trained language models. Nat. Mach. Intell. 5, 220–235 (2023).

30. Notin, P. et al. Tranception: protein fitness prediction with auto-
regressive transformers and inference-time retrieval. In Interna-
tional Conference on Machine Learning 16990–17017 (PMLR, 2022).

31. Huisman, M., Van Rijn, J. N. & Plaat, A. A survey of deep meta-
learning. Artif. Intell. Rev. 54, 4483–4541 (2021).

32. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for
fast adaptation of deep networks. In International Conference on
Machine Learning 1126–1135 (PMLR, 2017).

33. Ding, X., Zou, Z. & Brooks III, C. L. Deciphering protein evolution and
fitness landscapes with latent space models. Nat. Commun. 10,
5644 (2019).

34. Laine, E., Karami, Y. & Carbone, A. GEMME: a simple and fast global
epistatic model predicting mutational effects.Mol. Biol. Evolut. 36,
2604–2619 (2019).

35. Hopf, T. A. et al. Mutation effects predicted from sequence co-
variation. Nat. Biotechnol. 35, 128–135 (2017).

36. Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative
models of genetic variation capture the effects of mutations. Nat.
Methods 15, 816–822 (2018).

37. Frazer, J. et al. Disease variant prediction with deep generative
models of evolutionary data. Nature 599, 91–95 (2021).

38. Abakarova,M., Marquet, C., Rera, M., Rost, B. & Laine, E. Alignment-
based protein mutational landscape prediction: doing more with
less. Genome Biol. Evolut. 15, evad201 (2023).

39. Vaswani, A. et al. Attention is all you need. In Proc. of the 31st
International Conference on Neural Information Processing Sys-
tems (2017).

40. Rives, A. et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences.
Proc. Natl Acad. Sci. USA 118, e2016239118 (2021).

41. Hsu, C. et al. Learning inverse folding from millions of predicted
structures. In International Conference on Machine Learning
8946–8970 (PMLR, 2022).

42. Järvelin, K. & Kekäläinen, J. IR evaluation methods for retrieving
highly relevant documents. In ACM SIGIR Forum 243–250 (ACM,
New York, NY, USA, 2017).

43. Haddox, H. K., Dingens, A. S., Hilton, S. K., Overbaugh, J. & Bloom, J.
D. Mapping mutational effects along the evolutionary landscape of
HIV envelope. Elife 7, e34420 (2018).

44. Newberry, R.W. et al. Robust sequencedeterminants ofα-synuclein
toxicity in yeast implicate membrane binding. ACS Chem. Biol. 15,
2137–2153 (2020).

45. Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical
description of pairwise epistasis throughout an entire protein
domain. Curr. Biol. 24, 2643–2651 (2014).

46. Bolognesi, B. et al. Themutational landscape of a prion-likedomain.
Nat. Commun. 10, 4162 (2019).

47. de Vega, M., Lázaro, J. M., Mencía, M., Blanco, L. & Salas, M.
Improvement of φ29 DNA polymerase amplification performance
by fusion of DNA binding motifs. Proc. Natl Acad. Sci. USA 107,
16506–16511 (2010).

48. Ordóñez, C. D. &Redrejo-Rodríguez,M. DNApolymerases forwhole
genome amplification: considerations and future directions. Int. J.
Mol. Sci. 24, 9331 (2023).

49. Povilaitis, T., Alzbutas, G., Sukackaite, R., Siurkus, J. & Skirgaila, R. In
vitro evolution of phi29 DNA polymerase using isothermal com-
partmentalized self replication technique. Protein Eng. Des. Sel. 29,
617–628 (2016).

50. Sun, Y. et al. Unraveling the salt tolerance of Phi29 DNApolymerase
using compartmentalized self-replication and microfluidics plat-
form. Front. Microbiol. 14, 1267196 (2023).

51. Salas, M. et al. Bacteriophage Phi29 DNA polymerase variants
having improved thermoactivity. WO2017109262 A1 (2017).

52. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets. Nat.
Biotechnol. 35, 1026–1028 (2017).

53. van Kempen, M. et al. Fast and accurate protein structure search
with Foldseek. Nat. Biotechnol. 42, 1–4 (2023).

54. Marden, J. I. Analyzing and modeling rank data. (CRC Press, 1996).
55. Engelen, S., Trojan, L. A., Sacquin-Mora, S., Lavery, R. & Carbone, A.

Joint evolutionary trees: a large-scale method to predict protein
interfaces based on sequence sampling. PLoS Comput. Biol. 5,
e1000267 (2009).

56. Wang, Y. et al. ZeroBind: a protein-specific zero-shot predictor with
subgraph matching for drug-target interactions. Nat. Commun. 14,
7861 (2023).

57. Gao, Y. et al. Pan-peptide meta learning for T-cell receptor–antigen
binding recognition. Nat. Mach. Intell. 5, 236–249 (2023).

58. Kingma, D. P. &Ba, J. Adam: amethod for stochastic optimization. In
International Conference on Learning Representations (2015).

59. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H.
UniRef: comprehensive and non-redundant UniProt reference
clusters. Bioinformatics 23, 1282–1288 (2007).

60. Su, J. et al. Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing 568, 127063 (2024).

61. Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021).

62. Picard, R. R. & Cook, R. D. Cross-validation of regression models. J.
Am. Stat. Assoc. 79, 575–583 (1984).

63. Skirgaila, R. & Povilaitis, T. Phi29 DNA polymerase mutants having
increased thermostability and processivity. 14/135860 (2016).

Acknowledgements
This work was supported by the grants from the National Science
Foundation of China (Grant Number 12104295), the Computational
Biology Key Program of Shanghai Science and Technology Commis-
sion (23JS1400600), Shanghai Jiao Tong University Scientific and
Technological Innovation Funds (21X010200843), and Science
and Technology Innovation Key R&D Program of Chongqing
(CSTB2022TIAD-STX0017), the Student Innovation Center at
Shanghai Jiao Tong University, and Shanghai Artificial Intelligence
Laboratory.

Author contributions
P.T. and L.H. conceptualized and supervised this research project. Z.Z.
and P.T. developed the methodology and designed the benchmark.
Z.Z., L.Z., and Y.Y. implemented the method. Z.Z., L.Z., Y.Y., and M.L.
performed the computational experiments and analyzed the results.
B.W. conducted the wet-lab experiments of Phi29. Z.Z., Y.Y., B.W.,
and P.T. wrote the manuscript. Z.Z., L.Z., Y.Y., and B.W. contributed
equally to this work. All authors reviewed and accepted the
manuscript.

Competing interests
A patent application 2024106909647 relating to the mutants of the
Phi29 DNA polymerase developed in this study has been filed in the
name of Matwings Technology Co., Ltd., pending. B.W. and P.T. are the
inventors of this patent. The other authors declare no competing
interests.

Article https://doi.org/10.1038/s41467-024-49798-6

Nature Communications |         (2024) 15:5566 12



Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-49798-6.

Correspondence and requests for materials should be addressed to
Liang Hong or Pan Tan.

Peer review information Nature Communications thanks Michael Hein-
zinger, and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-49798-6

Nature Communications |         (2024) 15:5566 13

https://doi.org/10.1038/s41467-024-49798-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Enhancing efficiency of protein language models with minimal wet-lab data through few-shot learning
	Results
	Transferring PLMs with limited training data via FSFP
	Benchmark setup
	All components of FSFP contribute positively to few-shot learning
	FSFP as a general few-shot learning approach for PLMs
	FSFP holds robust generalizability and extrapolation ability
	Engineering of Phi29 using FSFP

	Discussion
	Methods
	Efficient solution for the fitness ranking problem
	Parameter-efficient fine-tuning of PLMs
	Learning to rank the fitness

	Meta-learning on auxiliary tasks
	Searching similar experimental datasets
	Estimating mutational effects based on MSA
	Meta-training of PLMs

	Foundation models
	ESM1v
	ESM-2
	SaProt

	Early stopping strategy
	Benchmark datasets
	Protocol of wet-lab experiment for Phi29
	Mutant selection procedure
	Plasmid construction
	Protein expression
	Protein purification
	Melting temperature assessment

	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




